organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis[1-(2,4,6-tri­methyl­phenyl­imino)­eth­yl]pyridine

aDepartment of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
*Correspondence e-mail: a.b.chaplin@warwick.ac.uk

(Received 11 December 2013; accepted 13 December 2013; online 18 December 2013)

In the title mol­ecule, C27H31N3, the imine C=N groups are orientated anti to the pyridine N atom, with N—C—C—N torsion angles of −164.91 (11) and −170.53 (10)°. In the crystal, mol­ecules are connected by weak C—H⋯N and C—H⋯π inter­actions parallel to the b axis.

Related literature

For representative examples of the organometallic and catalytic chemistry of dimino­pyridine complexes, see: Britovsek et al. (1999[Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728-8740.]); Dias et al. (2001[Dias, E. L., Brookhart, M. & White, P. S. (2001). Chem. Commun. pp. 423-424.]); Liu et al. (2009[Liu, P., Zhou, L., Li, X. & He, R. (2009). J. Organomet. Chem. 694, 2290-2294.]); Wieder et al. (2011[Wieder, N. L., Carroll, P. J. & Berry, D. H. (2011). Organometallics, 30, 2125-2136.]); Darmon et al. (2012[Darmon, J. M., Stieber, S. C. E., Sylvester, K. T., Fernández, I., Lobkovsky, E., Semproni, S. P., Bill, E., Wieghardt, K., DeBeer, S. & Chirik, P. J. (2012). J. Am. Chem. Soc. 134, 17125-17137.]). For the synthesis of 2,6-bis­[1-(2,4,6-tri­methyl­phenyl­imino)­eth­yl]pyridine, see: Britovsek et al. (1999[Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728-8740.]).

[Scheme 1]

Experimental

Crystal data
  • C27H31N3

  • Mr = 397.55

  • Triclinic, [P \overline 1]

  • a = 8.2098 (3) Å

  • b = 11.4125 (4) Å

  • c = 13.0619 (4) Å

  • α = 79.224 (3)°

  • β = 77.066 (3)°

  • γ = 76.645 (3)°

  • V = 1148.65 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.52 mm−1

  • T = 150 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.679, Tmax = 1.000

  • 12720 measured reflections

  • 4330 independent reflections

  • 4028 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.04

  • 4330 reflections

  • 279 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the (N1,C2–C6) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯N9i 0.95 2.64 3.5522 (18) 162
C28—H28BCg1ii 0.98 2.91 3.6715 (16) 135
Symmetry codes: (i) x+1, y-1, z; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Ligands based on tridentate di­imino pyridines, containing bulky aryl substituents, find widespread application in organometallic chemistry and catalysis (Britovsek et al., 1999; Dias et al., 2001; Liu et al., 2009; Wieder et al., 2011; Darmon et al., 2012). As part of our work using these ligands, we have determined the structure of the title compound (I).

Compound (I) adopts a conformation with the donor imine and pyridine groups orientated in opposing directions, with N—C—C—N dihedral angles of -164.91 (11)° and -170.53 (10)° (Fig. 1). This conformation contrasts with that observed on coordination of (I) to transitions metals (Britovsek et al., 1999; Wieder et al., 2011).

In the crystal the molecules are connected by weak C—H···N and C—H···π inter­actions, Table 1, parallel to the b axis (Fig. 2).

Experimental top

Synthesis and crystallization top

The title compound (I) was prepared as previously described (Britovsek et al., 1999). Crystallization from CH2Cl2—di­ethyl­ether at -20 °C afforded single crystals suitable for the crystallographic study.

Refinement top

All aromatic-H atoms were placed in geometrically idealized positions (C—H = 0.95 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The methyl-H atoms were located in SHELXL with an ideal geometry (C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)).

Related literature top

For representative examples of the organometallic and catalytic chemistry of diminopyridine complexes, see: Britovsek et al. (1999); Dias et al. (2001); Liu et al. (2009); Wieder et al. (2011); Darmon et al. (2012). For the synthesis of 2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine, see: Britovsek et al. (1999).

Structure description top

Ligands based on tridentate di­imino pyridines, containing bulky aryl substituents, find widespread application in organometallic chemistry and catalysis (Britovsek et al., 1999; Dias et al., 2001; Liu et al., 2009; Wieder et al., 2011; Darmon et al., 2012). As part of our work using these ligands, we have determined the structure of the title compound (I).

Compound (I) adopts a conformation with the donor imine and pyridine groups orientated in opposing directions, with N—C—C—N dihedral angles of -164.91 (11)° and -170.53 (10)° (Fig. 1). This conformation contrasts with that observed on coordination of (I) to transitions metals (Britovsek et al., 1999; Wieder et al., 2011).

In the crystal the molecules are connected by weak C—H···N and C—H···π inter­actions, Table 1, parallel to the b axis (Fig. 2).

For representative examples of the organometallic and catalytic chemistry of diminopyridine complexes, see: Britovsek et al. (1999); Dias et al. (2001); Liu et al. (2009); Wieder et al. (2011); Darmon et al. (2012). For the synthesis of 2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine, see: Britovsek et al. (1999).

Synthesis and crystallization top

The title compound (I) was prepared as previously described (Britovsek et al., 1999). Crystallization from CH2Cl2—di­ethyl­ether at -20 °C afforded single crystals suitable for the crystallographic study.

Refinement details top

All aromatic-H atoms were placed in geometrically idealized positions (C—H = 0.95 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The methyl-H atoms were located in SHELXL with an ideal geometry (C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I); 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Weak intermolecular C—H···N and C—H···π interactions (highlighted in red) in the crystal of (I).
2,6-Bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine top
Crystal data top
C27H31N3F(000) = 428
Mr = 397.55Dx = 1.149 Mg m3
Triclinic, P1Melting point: not measured K
a = 8.2098 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.4125 (4) ÅCell parameters from 9488 reflections
c = 13.0619 (4) Åθ = 3.5–78.0°
α = 79.224 (3)°µ = 0.52 mm1
β = 77.066 (3)°T = 150 K
γ = 76.645 (3)°Block, yellow
V = 1148.65 (7) Å30.5 × 0.4 × 0.3 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini)
diffractometer
4330 independent reflections
Radiation source: Enhance (Cu) X-ray Source4028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.2833 pixels mm-1θmax = 70.1°, θmin = 7.0°
ω scansh = 108
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1313
Tmin = 0.679, Tmax = 1.000l = 1515
12720 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3065P]
where P = (Fo2 + 2Fc2)/3
4330 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C27H31N3γ = 76.645 (3)°
Mr = 397.55V = 1148.65 (7) Å3
Triclinic, P1Z = 2
a = 8.2098 (3) ÅCu Kα radiation
b = 11.4125 (4) ŵ = 0.52 mm1
c = 13.0619 (4) ÅT = 150 K
α = 79.224 (3)°0.5 × 0.4 × 0.3 mm
β = 77.066 (3)°
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini)
diffractometer
4330 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4028 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 1.000Rint = 0.021
12720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
4330 reflectionsΔρmin = 0.20 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.86531 (12)0.40162 (9)0.76760 (8)0.0266 (2)
N90.51220 (13)0.63576 (9)0.71925 (8)0.0274 (2)
N211.17638 (13)0.18893 (9)0.89040 (8)0.0303 (2)
C20.72569 (15)0.48715 (10)0.79075 (9)0.0253 (3)
C30.67074 (15)0.52439 (11)0.89048 (10)0.0286 (3)
H30.57210.58610.90420.034*
C40.76288 (17)0.46953 (12)0.96906 (10)0.0338 (3)
H40.72800.49291.03800.041*
C50.90604 (16)0.38054 (12)0.94679 (10)0.0316 (3)
H50.97060.34120.99990.038*
C60.95368 (15)0.34966 (10)0.84446 (9)0.0266 (3)
C70.63022 (15)0.54337 (11)0.70241 (9)0.0278 (3)
C80.6824 (2)0.48530 (15)0.60287 (12)0.0484 (4)
H8A0.61220.53040.55120.073*
H8B0.66640.40090.61950.073*
H8C0.80270.48670.57290.073*
C100.41917 (15)0.69900 (10)0.63879 (9)0.0264 (3)
C110.25355 (15)0.68233 (11)0.64568 (10)0.0290 (3)
C120.16078 (15)0.74925 (12)0.56935 (10)0.0310 (3)
H120.04840.73790.57320.037*
C130.22751 (16)0.83187 (12)0.48800 (10)0.0320 (3)
C140.39057 (16)0.84921 (12)0.48517 (10)0.0325 (3)
H140.43710.90660.43060.039*
C150.48803 (16)0.78501 (11)0.55990 (10)0.0298 (3)
C160.17720 (18)0.59491 (13)0.73443 (12)0.0415 (3)
H16A0.24930.51360.73310.062*
H16B0.06280.59230.72540.062*
H16C0.16970.62200.80260.062*
C170.12676 (19)0.90007 (15)0.40411 (11)0.0448 (4)
H17A0.15380.85430.34400.067*
H17B0.15650.98040.37980.067*
H17C0.00460.90980.43410.067*
C180.66253 (17)0.80796 (13)0.55733 (11)0.0381 (3)
H18A0.66780.82650.62670.057*
H18B0.68470.87700.50270.057*
H18C0.74860.73530.54090.057*
C191.11231 (15)0.25776 (11)0.81485 (9)0.0284 (3)
C201.18436 (18)0.25592 (14)0.69860 (11)0.0416 (3)
H20A1.29460.19930.68980.062*
H20B1.20000.33780.66460.062*
H20C1.10550.22950.66550.062*
C221.32972 (15)0.10129 (11)0.86847 (9)0.0272 (3)
C231.48311 (16)0.12957 (11)0.87619 (9)0.0275 (3)
C241.63104 (15)0.04141 (11)0.86368 (9)0.0274 (3)
H241.73530.06000.86960.033*
C251.63063 (15)0.07396 (11)0.84263 (9)0.0268 (3)
C261.47697 (16)0.09938 (11)0.83505 (10)0.0295 (3)
H261.47530.17740.82020.035*
C271.32457 (16)0.01400 (11)0.84853 (10)0.0307 (3)
C281.48668 (18)0.25374 (11)0.89815 (11)0.0364 (3)
H28A1.46100.31450.83720.055*
H28B1.60010.25450.91010.055*
H28C1.40130.27300.96140.055*
C291.79323 (16)0.16854 (12)0.83000 (10)0.0326 (3)
H29A1.87550.13910.76950.049*
H29B1.76870.24430.81770.049*
H29C1.84110.18360.89470.049*
C301.15968 (18)0.04735 (14)0.84300 (14)0.0461 (4)
H30A1.07830.03580.90950.069*
H30B1.18130.13270.83220.069*
H30C1.11230.00480.78370.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0237 (5)0.0260 (5)0.0295 (5)0.0025 (4)0.0054 (4)0.0051 (4)
N90.0255 (5)0.0265 (5)0.0298 (5)0.0014 (4)0.0078 (4)0.0046 (4)
N210.0271 (5)0.0291 (5)0.0324 (5)0.0015 (4)0.0064 (4)0.0062 (4)
C20.0238 (6)0.0221 (5)0.0301 (6)0.0038 (4)0.0058 (4)0.0039 (4)
C30.0254 (6)0.0257 (6)0.0325 (6)0.0007 (5)0.0051 (5)0.0065 (5)
C40.0365 (7)0.0347 (7)0.0275 (6)0.0023 (5)0.0065 (5)0.0088 (5)
C50.0316 (7)0.0323 (6)0.0291 (6)0.0020 (5)0.0101 (5)0.0045 (5)
C60.0249 (6)0.0246 (6)0.0295 (6)0.0031 (5)0.0051 (5)0.0040 (4)
C70.0261 (6)0.0268 (6)0.0306 (6)0.0022 (5)0.0070 (5)0.0060 (5)
C80.0552 (9)0.0479 (9)0.0398 (8)0.0190 (7)0.0235 (7)0.0196 (6)
C100.0263 (6)0.0247 (6)0.0273 (6)0.0015 (4)0.0068 (5)0.0074 (4)
C110.0273 (6)0.0268 (6)0.0313 (6)0.0013 (5)0.0060 (5)0.0050 (5)
C120.0234 (6)0.0351 (7)0.0340 (6)0.0017 (5)0.0073 (5)0.0062 (5)
C130.0303 (6)0.0344 (7)0.0281 (6)0.0024 (5)0.0076 (5)0.0049 (5)
C140.0330 (7)0.0315 (6)0.0289 (6)0.0033 (5)0.0032 (5)0.0011 (5)
C150.0270 (6)0.0305 (6)0.0304 (6)0.0021 (5)0.0042 (5)0.0070 (5)
C160.0330 (7)0.0417 (8)0.0468 (8)0.0096 (6)0.0113 (6)0.0080 (6)
C170.0382 (8)0.0556 (9)0.0357 (7)0.0015 (7)0.0133 (6)0.0039 (6)
C180.0328 (7)0.0446 (8)0.0371 (7)0.0108 (6)0.0061 (5)0.0035 (6)
C190.0253 (6)0.0287 (6)0.0310 (6)0.0019 (5)0.0063 (5)0.0067 (5)
C200.0362 (7)0.0478 (8)0.0323 (7)0.0109 (6)0.0055 (5)0.0094 (6)
C220.0260 (6)0.0264 (6)0.0264 (6)0.0010 (5)0.0054 (4)0.0036 (4)
C230.0305 (6)0.0244 (6)0.0265 (6)0.0049 (5)0.0042 (5)0.0029 (4)
C240.0248 (6)0.0285 (6)0.0286 (6)0.0061 (5)0.0056 (4)0.0020 (5)
C250.0264 (6)0.0261 (6)0.0255 (5)0.0010 (5)0.0052 (4)0.0025 (4)
C260.0308 (6)0.0238 (6)0.0345 (6)0.0025 (5)0.0082 (5)0.0073 (5)
C270.0268 (6)0.0304 (6)0.0359 (6)0.0027 (5)0.0089 (5)0.0073 (5)
C280.0367 (7)0.0256 (6)0.0469 (7)0.0059 (5)0.0066 (6)0.0071 (5)
C290.0282 (6)0.0295 (6)0.0377 (7)0.0003 (5)0.0079 (5)0.0040 (5)
C300.0308 (7)0.0409 (8)0.0721 (10)0.0038 (6)0.0158 (7)0.0187 (7)
Geometric parameters (Å, º) top
N1—C21.3403 (15)C16—H16C0.9800
N1—C61.3382 (15)C17—H17A0.9800
N9—C71.2721 (15)C17—H17B0.9800
N9—C101.4247 (15)C17—H17C0.9800
N21—C191.2724 (16)C18—H18A0.9800
N21—C221.4252 (15)C18—H18B0.9800
C2—C31.3916 (17)C18—H18C0.9800
C2—C71.5011 (16)C19—C201.5034 (17)
C3—H30.9500C20—H20A0.9800
C3—C41.3806 (17)C20—H20B0.9800
C4—H40.9500C20—H20C0.9800
C4—C51.3797 (17)C22—C231.3989 (17)
C5—H50.9500C22—C271.3999 (17)
C5—C61.3936 (17)C23—C241.3864 (16)
C6—C191.4969 (16)C23—C281.5055 (17)
C7—C81.5016 (17)C24—H240.9500
C8—H8A0.9800C24—C251.3954 (17)
C8—H8B0.9800C25—C261.3861 (17)
C8—H8C0.9800C25—C291.5089 (16)
C10—C111.3969 (17)C26—H260.9500
C10—C151.4009 (17)C26—C271.3958 (17)
C11—C121.3943 (17)C27—C301.5082 (18)
C11—C161.5045 (18)C28—H28A0.9800
C12—H120.9500C28—H28B0.9800
C12—C131.3862 (18)C28—H28C0.9800
C13—C141.3893 (19)C29—H29A0.9800
C13—C171.5099 (17)C29—H29B0.9800
C14—H140.9500C29—H29C0.9800
C14—C151.3934 (17)C30—H30A0.9800
C15—C181.5068 (18)C30—H30B0.9800
C16—H16A0.9800C30—H30C0.9800
C16—H16B0.9800
C6—N1—C2118.11 (10)H17A—C17—H17B109.5
C7—N9—C10121.06 (10)H17A—C17—H17C109.5
C19—N21—C22120.38 (10)H17B—C17—H17C109.5
N1—C2—C3122.74 (11)C15—C18—H18A109.5
N1—C2—C7116.51 (10)C15—C18—H18B109.5
C3—C2—C7120.75 (10)C15—C18—H18C109.5
C2—C3—H3120.8H18A—C18—H18B109.5
C4—C3—C2118.45 (11)H18A—C18—H18C109.5
C4—C3—H3120.8H18B—C18—H18C109.5
C3—C4—H4120.2N21—C19—C6117.14 (11)
C5—C4—C3119.53 (11)N21—C19—C20125.45 (11)
C5—C4—H4120.2C6—C19—C20117.39 (10)
C4—C5—H5120.8C19—C20—H20A109.5
C4—C5—C6118.41 (11)C19—C20—H20B109.5
C6—C5—H5120.8C19—C20—H20C109.5
N1—C6—C5122.75 (11)H20A—C20—H20B109.5
N1—C6—C19116.71 (10)H20A—C20—H20C109.5
C5—C6—C19120.51 (11)H20B—C20—H20C109.5
N9—C7—C2116.71 (10)C23—C22—N21118.40 (11)
N9—C7—C8126.19 (11)C23—C22—C27120.87 (11)
C2—C7—C8117.11 (10)C27—C22—N21120.51 (11)
C7—C8—H8A109.5C22—C23—C28120.32 (11)
C7—C8—H8B109.5C24—C23—C22118.95 (11)
C7—C8—H8C109.5C24—C23—C28120.73 (11)
H8A—C8—H8B109.5C23—C24—H24119.2
H8A—C8—H8C109.5C23—C24—C25121.62 (11)
H8B—C8—H8C109.5C25—C24—H24119.2
C11—C10—N9119.09 (11)C24—C25—C29120.58 (11)
C11—C10—C15120.84 (11)C26—C25—C24118.22 (11)
C15—C10—N9119.80 (11)C26—C25—C29121.20 (11)
C10—C11—C16120.41 (11)C25—C26—H26118.9
C12—C11—C10118.55 (11)C25—C26—C27122.12 (11)
C12—C11—C16121.04 (11)C27—C26—H26118.9
C11—C12—H12119.0C22—C27—C30121.65 (11)
C13—C12—C11122.01 (12)C26—C27—C22118.21 (11)
C13—C12—H12119.0C26—C27—C30120.13 (11)
C12—C13—C14118.10 (11)C23—C28—H28A109.5
C12—C13—C17121.00 (12)C23—C28—H28B109.5
C14—C13—C17120.90 (12)C23—C28—H28C109.5
C13—C14—H14119.0H28A—C28—H28B109.5
C13—C14—C15122.05 (11)H28A—C28—H28C109.5
C15—C14—H14119.0H28B—C28—H28C109.5
C10—C15—C18120.44 (11)C25—C29—H29A109.5
C14—C15—C10118.38 (11)C25—C29—H29B109.5
C14—C15—C18121.18 (11)C25—C29—H29C109.5
C11—C16—H16A109.5H29A—C29—H29B109.5
C11—C16—H16B109.5H29A—C29—H29C109.5
C11—C16—H16C109.5H29B—C29—H29C109.5
H16A—C16—H16B109.5C27—C30—H30A109.5
H16A—C16—H16C109.5C27—C30—H30B109.5
H16B—C16—H16C109.5C27—C30—H30C109.5
C13—C17—H17A109.5H30A—C30—H30B109.5
C13—C17—H17B109.5H30A—C30—H30C109.5
C13—C17—H17C109.5H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (N1,C2–C6) ring.
D—H···AD—HH···AD···AD—H···A
C26—H26···N9i0.952.643.5522 (18)162
C28—H28B···Cg1ii0.982.913.6715 (16)135
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (N1,C2–C6) ring.
D—H···AD—HH···AD···AD—H···A
C26—H26···N9i0.952.643.5522 (18)162
C28—H28B···Cg1ii0.982.913.6715 (16)135
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support from the Royal Society (ABC) and the University of Warwick.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBritovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728–8740.  Web of Science CSD CrossRef CAS Google Scholar
First citationDarmon, J. M., Stieber, S. C. E., Sylvester, K. T., Fernández, I., Lobkovsky, E., Semproni, S. P., Bill, E., Wieghardt, K., DeBeer, S. & Chirik, P. J. (2012). J. Am. Chem. Soc. 134, 17125–17137.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDias, E. L., Brookhart, M. & White, P. S. (2001). Chem. Commun. pp. 423–424.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, P., Zhou, L., Li, X. & He, R. (2009). J. Organomet. Chem. 694, 2290–2294.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieder, N. L., Carroll, P. J. & Berry, D. H. (2011). Organometallics, 30, 2125–2136.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds