organic compounds
2,6-Bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine
aDepartment of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
*Correspondence e-mail: a.b.chaplin@warwick.ac.uk
In the title molecule, C27H31N3, the imine C=N groups are orientated anti to the pyridine N atom, with N—C—C—N torsion angles of −164.91 (11) and −170.53 (10)°. In the crystal, molecules are connected by weak C—H⋯N and C—H⋯π interactions parallel to the b axis.
CCDC reference: 977008
Related literature
For representative examples of the organometallic and catalytic chemistry of diminopyridine complexes, see: Britovsek et al. (1999); Dias et al. (2001); Liu et al. (2009); Wieder et al. (2011); Darmon et al. (2012). For the synthesis of 2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine, see: Britovsek et al. (1999).
Experimental
Crystal data
|
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Supporting information
CCDC reference: 977008
https://doi.org/10.1107/S1600536813033801/tk5280sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813033801/tk5280Isup2.hkl
Ligands based on tridentate diimino pyridines, containing bulky aryl substituents, find widespread application in organometallic chemistry and catalysis (Britovsek et al., 1999; Dias et al., 2001; Liu et al., 2009; Wieder et al., 2011; Darmon et al., 2012). As part of our work using these ligands, we have determined the structure of the title compound (I).
Compound (I) adopts a conformation with the donor imine and pyridine groups orientated in opposing directions, with N—C—C—N dihedral angles of -164.91 (11)° and -170.53 (10)° (Fig. 1). This conformation contrasts with that observed on coordination of (I) to transitions metals (Britovsek et al., 1999; Wieder et al., 2011).
In the crystal the molecules are connected by weak C—H···N and C—H···π interactions, Table 1, parallel to the b axis (Fig. 2).
The title compound (I) was prepared as previously described (Britovsek et al., 1999). Crystallization from CH2Cl2—diethylether at -20 °C afforded single crystals suitable for the crystallographic study.
Ligands based on tridentate diimino pyridines, containing bulky aryl substituents, find widespread application in organometallic chemistry and catalysis (Britovsek et al., 1999; Dias et al., 2001; Liu et al., 2009; Wieder et al., 2011; Darmon et al., 2012). As part of our work using these ligands, we have determined the structure of the title compound (I).
Compound (I) adopts a conformation with the donor imine and pyridine groups orientated in opposing directions, with N—C—C—N dihedral angles of -164.91 (11)° and -170.53 (10)° (Fig. 1). This conformation contrasts with that observed on coordination of (I) to transitions metals (Britovsek et al., 1999; Wieder et al., 2011).
In the crystal the molecules are connected by weak C—H···N and C—H···π interactions, Table 1, parallel to the b axis (Fig. 2).
For representative examples of the organometallic and catalytic chemistry of diminopyridine complexes, see: Britovsek et al. (1999); Dias et al. (2001); Liu et al. (2009); Wieder et al. (2011); Darmon et al. (2012). For the synthesis of 2,6-bis[1-(2,4,6-trimethylphenylimino)ethyl]pyridine, see: Britovsek et al. (1999).
The title compound (I) was prepared as previously described (Britovsek et al., 1999). Crystallization from CH2Cl2—diethylether at -20 °C afforded single crystals suitable for the crystallographic study.
detailsAll aromatic-H atoms were placed in geometrically idealized positions (C—H = 0.95 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The methyl-H atoms were located in SHELXL with an ideal geometry (C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C27H31N3 | F(000) = 428 |
Mr = 397.55 | Dx = 1.149 Mg m−3 |
Triclinic, P1 | Melting point: not measured K |
a = 8.2098 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.4125 (4) Å | Cell parameters from 9488 reflections |
c = 13.0619 (4) Å | θ = 3.5–78.0° |
α = 79.224 (3)° | µ = 0.52 mm−1 |
β = 77.066 (3)° | T = 150 K |
γ = 76.645 (3)° | Block, yellow |
V = 1148.65 (7) Å3 | 0.5 × 0.4 × 0.3 mm |
Z = 2 |
Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer | 4330 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 4028 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 10.2833 pixels mm-1 | θmax = 70.1°, θmin = 7.0° |
ω scans | h = −10→8 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −13→13 |
Tmin = 0.679, Tmax = 1.000 | l = −15→15 |
12720 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0686P)2 + 0.3065P] where P = (Fo2 + 2Fc2)/3 |
4330 reflections | (Δ/σ)max = 0.001 |
279 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C27H31N3 | γ = 76.645 (3)° |
Mr = 397.55 | V = 1148.65 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.2098 (3) Å | Cu Kα radiation |
b = 11.4125 (4) Å | µ = 0.52 mm−1 |
c = 13.0619 (4) Å | T = 150 K |
α = 79.224 (3)° | 0.5 × 0.4 × 0.3 mm |
β = 77.066 (3)° |
Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer | 4330 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 4028 reflections with I > 2σ(I) |
Tmin = 0.679, Tmax = 1.000 | Rint = 0.021 |
12720 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.22 e Å−3 |
4330 reflections | Δρmin = −0.20 e Å−3 |
279 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.86531 (12) | 0.40162 (9) | 0.76760 (8) | 0.0266 (2) | |
N9 | 0.51220 (13) | 0.63576 (9) | 0.71925 (8) | 0.0274 (2) | |
N21 | 1.17638 (13) | 0.18893 (9) | 0.89040 (8) | 0.0303 (2) | |
C2 | 0.72569 (15) | 0.48715 (10) | 0.79075 (9) | 0.0253 (3) | |
C3 | 0.67074 (15) | 0.52439 (11) | 0.89048 (10) | 0.0286 (3) | |
H3 | 0.5721 | 0.5861 | 0.9042 | 0.034* | |
C4 | 0.76288 (17) | 0.46953 (12) | 0.96906 (10) | 0.0338 (3) | |
H4 | 0.7280 | 0.4929 | 1.0380 | 0.041* | |
C5 | 0.90604 (16) | 0.38054 (12) | 0.94679 (10) | 0.0316 (3) | |
H5 | 0.9706 | 0.3412 | 0.9999 | 0.038* | |
C6 | 0.95368 (15) | 0.34966 (10) | 0.84446 (9) | 0.0266 (3) | |
C7 | 0.63022 (15) | 0.54337 (11) | 0.70241 (9) | 0.0278 (3) | |
C8 | 0.6824 (2) | 0.48530 (15) | 0.60287 (12) | 0.0484 (4) | |
H8A | 0.6122 | 0.5304 | 0.5512 | 0.073* | |
H8B | 0.6664 | 0.4009 | 0.6195 | 0.073* | |
H8C | 0.8027 | 0.4867 | 0.5729 | 0.073* | |
C10 | 0.41917 (15) | 0.69900 (10) | 0.63879 (9) | 0.0264 (3) | |
C11 | 0.25355 (15) | 0.68233 (11) | 0.64568 (10) | 0.0290 (3) | |
C12 | 0.16078 (15) | 0.74925 (12) | 0.56935 (10) | 0.0310 (3) | |
H12 | 0.0484 | 0.7379 | 0.5732 | 0.037* | |
C13 | 0.22751 (16) | 0.83187 (12) | 0.48800 (10) | 0.0320 (3) | |
C14 | 0.39057 (16) | 0.84921 (12) | 0.48517 (10) | 0.0325 (3) | |
H14 | 0.4371 | 0.9066 | 0.4306 | 0.039* | |
C15 | 0.48803 (16) | 0.78501 (11) | 0.55990 (10) | 0.0298 (3) | |
C16 | 0.17720 (18) | 0.59491 (13) | 0.73443 (12) | 0.0415 (3) | |
H16A | 0.2493 | 0.5136 | 0.7331 | 0.062* | |
H16B | 0.0628 | 0.5923 | 0.7254 | 0.062* | |
H16C | 0.1697 | 0.6220 | 0.8026 | 0.062* | |
C17 | 0.12676 (19) | 0.90007 (15) | 0.40411 (11) | 0.0448 (4) | |
H17A | 0.1538 | 0.8543 | 0.3440 | 0.067* | |
H17B | 0.1565 | 0.9804 | 0.3798 | 0.067* | |
H17C | 0.0046 | 0.9098 | 0.4341 | 0.067* | |
C18 | 0.66253 (17) | 0.80796 (13) | 0.55733 (11) | 0.0381 (3) | |
H18A | 0.6678 | 0.8265 | 0.6267 | 0.057* | |
H18B | 0.6847 | 0.8770 | 0.5027 | 0.057* | |
H18C | 0.7486 | 0.7353 | 0.5409 | 0.057* | |
C19 | 1.11231 (15) | 0.25776 (11) | 0.81485 (9) | 0.0284 (3) | |
C20 | 1.18436 (18) | 0.25592 (14) | 0.69860 (11) | 0.0416 (3) | |
H20A | 1.2946 | 0.1993 | 0.6898 | 0.062* | |
H20B | 1.2000 | 0.3378 | 0.6646 | 0.062* | |
H20C | 1.1055 | 0.2295 | 0.6655 | 0.062* | |
C22 | 1.32972 (15) | 0.10129 (11) | 0.86847 (9) | 0.0272 (3) | |
C23 | 1.48311 (16) | 0.12957 (11) | 0.87619 (9) | 0.0275 (3) | |
C24 | 1.63104 (15) | 0.04141 (11) | 0.86368 (9) | 0.0274 (3) | |
H24 | 1.7353 | 0.0600 | 0.8696 | 0.033* | |
C25 | 1.63063 (15) | −0.07396 (11) | 0.84263 (9) | 0.0268 (3) | |
C26 | 1.47697 (16) | −0.09938 (11) | 0.83505 (10) | 0.0295 (3) | |
H26 | 1.4753 | −0.1774 | 0.8202 | 0.035* | |
C27 | 1.32457 (16) | −0.01400 (11) | 0.84853 (10) | 0.0307 (3) | |
C28 | 1.48668 (18) | 0.25374 (11) | 0.89815 (11) | 0.0364 (3) | |
H28A | 1.4610 | 0.3145 | 0.8372 | 0.055* | |
H28B | 1.6001 | 0.2545 | 0.9101 | 0.055* | |
H28C | 1.4013 | 0.2730 | 0.9614 | 0.055* | |
C29 | 1.79323 (16) | −0.16854 (12) | 0.83000 (10) | 0.0326 (3) | |
H29A | 1.8755 | −0.1391 | 0.7695 | 0.049* | |
H29B | 1.7687 | −0.2443 | 0.8177 | 0.049* | |
H29C | 1.8411 | −0.1836 | 0.8947 | 0.049* | |
C30 | 1.15968 (18) | −0.04735 (14) | 0.84300 (14) | 0.0461 (4) | |
H30A | 1.0783 | −0.0358 | 0.9095 | 0.069* | |
H30B | 1.1813 | −0.1327 | 0.8322 | 0.069* | |
H30C | 1.1123 | 0.0048 | 0.7837 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0237 (5) | 0.0260 (5) | 0.0295 (5) | −0.0025 (4) | −0.0054 (4) | −0.0051 (4) |
N9 | 0.0255 (5) | 0.0265 (5) | 0.0298 (5) | −0.0014 (4) | −0.0078 (4) | −0.0046 (4) |
N21 | 0.0271 (5) | 0.0291 (5) | 0.0324 (5) | 0.0015 (4) | −0.0064 (4) | −0.0062 (4) |
C2 | 0.0238 (6) | 0.0221 (5) | 0.0301 (6) | −0.0038 (4) | −0.0058 (4) | −0.0039 (4) |
C3 | 0.0254 (6) | 0.0257 (6) | 0.0325 (6) | 0.0007 (5) | −0.0051 (5) | −0.0065 (5) |
C4 | 0.0365 (7) | 0.0347 (7) | 0.0275 (6) | 0.0023 (5) | −0.0065 (5) | −0.0088 (5) |
C5 | 0.0316 (7) | 0.0323 (6) | 0.0291 (6) | 0.0020 (5) | −0.0101 (5) | −0.0045 (5) |
C6 | 0.0249 (6) | 0.0246 (6) | 0.0295 (6) | −0.0031 (5) | −0.0051 (5) | −0.0040 (4) |
C7 | 0.0261 (6) | 0.0268 (6) | 0.0306 (6) | −0.0022 (5) | −0.0070 (5) | −0.0060 (5) |
C8 | 0.0552 (9) | 0.0479 (9) | 0.0398 (8) | 0.0190 (7) | −0.0235 (7) | −0.0196 (6) |
C10 | 0.0263 (6) | 0.0247 (6) | 0.0273 (6) | 0.0015 (4) | −0.0068 (5) | −0.0074 (4) |
C11 | 0.0273 (6) | 0.0268 (6) | 0.0313 (6) | −0.0013 (5) | −0.0060 (5) | −0.0050 (5) |
C12 | 0.0234 (6) | 0.0351 (7) | 0.0340 (6) | −0.0017 (5) | −0.0073 (5) | −0.0062 (5) |
C13 | 0.0303 (6) | 0.0344 (7) | 0.0281 (6) | 0.0024 (5) | −0.0076 (5) | −0.0049 (5) |
C14 | 0.0330 (7) | 0.0315 (6) | 0.0289 (6) | −0.0033 (5) | −0.0032 (5) | −0.0011 (5) |
C15 | 0.0270 (6) | 0.0305 (6) | 0.0304 (6) | −0.0021 (5) | −0.0042 (5) | −0.0070 (5) |
C16 | 0.0330 (7) | 0.0417 (8) | 0.0468 (8) | −0.0096 (6) | −0.0113 (6) | 0.0080 (6) |
C17 | 0.0382 (8) | 0.0556 (9) | 0.0357 (7) | −0.0015 (7) | −0.0133 (6) | 0.0039 (6) |
C18 | 0.0328 (7) | 0.0446 (8) | 0.0371 (7) | −0.0108 (6) | −0.0061 (5) | −0.0035 (6) |
C19 | 0.0253 (6) | 0.0287 (6) | 0.0310 (6) | −0.0019 (5) | −0.0063 (5) | −0.0067 (5) |
C20 | 0.0362 (7) | 0.0478 (8) | 0.0323 (7) | 0.0109 (6) | −0.0055 (5) | −0.0094 (6) |
C22 | 0.0260 (6) | 0.0264 (6) | 0.0264 (6) | 0.0010 (5) | −0.0054 (4) | −0.0036 (4) |
C23 | 0.0305 (6) | 0.0244 (6) | 0.0265 (6) | −0.0049 (5) | −0.0042 (5) | −0.0029 (4) |
C24 | 0.0248 (6) | 0.0285 (6) | 0.0286 (6) | −0.0061 (5) | −0.0056 (4) | −0.0020 (5) |
C25 | 0.0264 (6) | 0.0261 (6) | 0.0255 (5) | −0.0010 (5) | −0.0052 (4) | −0.0025 (4) |
C26 | 0.0308 (6) | 0.0238 (6) | 0.0345 (6) | −0.0025 (5) | −0.0082 (5) | −0.0073 (5) |
C27 | 0.0268 (6) | 0.0304 (6) | 0.0359 (6) | −0.0027 (5) | −0.0089 (5) | −0.0073 (5) |
C28 | 0.0367 (7) | 0.0256 (6) | 0.0469 (7) | −0.0059 (5) | −0.0066 (6) | −0.0071 (5) |
C29 | 0.0282 (6) | 0.0295 (6) | 0.0377 (7) | 0.0003 (5) | −0.0079 (5) | −0.0040 (5) |
C30 | 0.0308 (7) | 0.0409 (8) | 0.0721 (10) | −0.0038 (6) | −0.0158 (7) | −0.0187 (7) |
N1—C2 | 1.3403 (15) | C16—H16C | 0.9800 |
N1—C6 | 1.3382 (15) | C17—H17A | 0.9800 |
N9—C7 | 1.2721 (15) | C17—H17B | 0.9800 |
N9—C10 | 1.4247 (15) | C17—H17C | 0.9800 |
N21—C19 | 1.2724 (16) | C18—H18A | 0.9800 |
N21—C22 | 1.4252 (15) | C18—H18B | 0.9800 |
C2—C3 | 1.3916 (17) | C18—H18C | 0.9800 |
C2—C7 | 1.5011 (16) | C19—C20 | 1.5034 (17) |
C3—H3 | 0.9500 | C20—H20A | 0.9800 |
C3—C4 | 1.3806 (17) | C20—H20B | 0.9800 |
C4—H4 | 0.9500 | C20—H20C | 0.9800 |
C4—C5 | 1.3797 (17) | C22—C23 | 1.3989 (17) |
C5—H5 | 0.9500 | C22—C27 | 1.3999 (17) |
C5—C6 | 1.3936 (17) | C23—C24 | 1.3864 (16) |
C6—C19 | 1.4969 (16) | C23—C28 | 1.5055 (17) |
C7—C8 | 1.5016 (17) | C24—H24 | 0.9500 |
C8—H8A | 0.9800 | C24—C25 | 1.3954 (17) |
C8—H8B | 0.9800 | C25—C26 | 1.3861 (17) |
C8—H8C | 0.9800 | C25—C29 | 1.5089 (16) |
C10—C11 | 1.3969 (17) | C26—H26 | 0.9500 |
C10—C15 | 1.4009 (17) | C26—C27 | 1.3958 (17) |
C11—C12 | 1.3943 (17) | C27—C30 | 1.5082 (18) |
C11—C16 | 1.5045 (18) | C28—H28A | 0.9800 |
C12—H12 | 0.9500 | C28—H28B | 0.9800 |
C12—C13 | 1.3862 (18) | C28—H28C | 0.9800 |
C13—C14 | 1.3893 (19) | C29—H29A | 0.9800 |
C13—C17 | 1.5099 (17) | C29—H29B | 0.9800 |
C14—H14 | 0.9500 | C29—H29C | 0.9800 |
C14—C15 | 1.3934 (17) | C30—H30A | 0.9800 |
C15—C18 | 1.5068 (18) | C30—H30B | 0.9800 |
C16—H16A | 0.9800 | C30—H30C | 0.9800 |
C16—H16B | 0.9800 | ||
C6—N1—C2 | 118.11 (10) | H17A—C17—H17B | 109.5 |
C7—N9—C10 | 121.06 (10) | H17A—C17—H17C | 109.5 |
C19—N21—C22 | 120.38 (10) | H17B—C17—H17C | 109.5 |
N1—C2—C3 | 122.74 (11) | C15—C18—H18A | 109.5 |
N1—C2—C7 | 116.51 (10) | C15—C18—H18B | 109.5 |
C3—C2—C7 | 120.75 (10) | C15—C18—H18C | 109.5 |
C2—C3—H3 | 120.8 | H18A—C18—H18B | 109.5 |
C4—C3—C2 | 118.45 (11) | H18A—C18—H18C | 109.5 |
C4—C3—H3 | 120.8 | H18B—C18—H18C | 109.5 |
C3—C4—H4 | 120.2 | N21—C19—C6 | 117.14 (11) |
C5—C4—C3 | 119.53 (11) | N21—C19—C20 | 125.45 (11) |
C5—C4—H4 | 120.2 | C6—C19—C20 | 117.39 (10) |
C4—C5—H5 | 120.8 | C19—C20—H20A | 109.5 |
C4—C5—C6 | 118.41 (11) | C19—C20—H20B | 109.5 |
C6—C5—H5 | 120.8 | C19—C20—H20C | 109.5 |
N1—C6—C5 | 122.75 (11) | H20A—C20—H20B | 109.5 |
N1—C6—C19 | 116.71 (10) | H20A—C20—H20C | 109.5 |
C5—C6—C19 | 120.51 (11) | H20B—C20—H20C | 109.5 |
N9—C7—C2 | 116.71 (10) | C23—C22—N21 | 118.40 (11) |
N9—C7—C8 | 126.19 (11) | C23—C22—C27 | 120.87 (11) |
C2—C7—C8 | 117.11 (10) | C27—C22—N21 | 120.51 (11) |
C7—C8—H8A | 109.5 | C22—C23—C28 | 120.32 (11) |
C7—C8—H8B | 109.5 | C24—C23—C22 | 118.95 (11) |
C7—C8—H8C | 109.5 | C24—C23—C28 | 120.73 (11) |
H8A—C8—H8B | 109.5 | C23—C24—H24 | 119.2 |
H8A—C8—H8C | 109.5 | C23—C24—C25 | 121.62 (11) |
H8B—C8—H8C | 109.5 | C25—C24—H24 | 119.2 |
C11—C10—N9 | 119.09 (11) | C24—C25—C29 | 120.58 (11) |
C11—C10—C15 | 120.84 (11) | C26—C25—C24 | 118.22 (11) |
C15—C10—N9 | 119.80 (11) | C26—C25—C29 | 121.20 (11) |
C10—C11—C16 | 120.41 (11) | C25—C26—H26 | 118.9 |
C12—C11—C10 | 118.55 (11) | C25—C26—C27 | 122.12 (11) |
C12—C11—C16 | 121.04 (11) | C27—C26—H26 | 118.9 |
C11—C12—H12 | 119.0 | C22—C27—C30 | 121.65 (11) |
C13—C12—C11 | 122.01 (12) | C26—C27—C22 | 118.21 (11) |
C13—C12—H12 | 119.0 | C26—C27—C30 | 120.13 (11) |
C12—C13—C14 | 118.10 (11) | C23—C28—H28A | 109.5 |
C12—C13—C17 | 121.00 (12) | C23—C28—H28B | 109.5 |
C14—C13—C17 | 120.90 (12) | C23—C28—H28C | 109.5 |
C13—C14—H14 | 119.0 | H28A—C28—H28B | 109.5 |
C13—C14—C15 | 122.05 (11) | H28A—C28—H28C | 109.5 |
C15—C14—H14 | 119.0 | H28B—C28—H28C | 109.5 |
C10—C15—C18 | 120.44 (11) | C25—C29—H29A | 109.5 |
C14—C15—C10 | 118.38 (11) | C25—C29—H29B | 109.5 |
C14—C15—C18 | 121.18 (11) | C25—C29—H29C | 109.5 |
C11—C16—H16A | 109.5 | H29A—C29—H29B | 109.5 |
C11—C16—H16B | 109.5 | H29A—C29—H29C | 109.5 |
C11—C16—H16C | 109.5 | H29B—C29—H29C | 109.5 |
H16A—C16—H16B | 109.5 | C27—C30—H30A | 109.5 |
H16A—C16—H16C | 109.5 | C27—C30—H30B | 109.5 |
H16B—C16—H16C | 109.5 | C27—C30—H30C | 109.5 |
C13—C17—H17A | 109.5 | H30A—C30—H30B | 109.5 |
C13—C17—H17B | 109.5 | H30A—C30—H30C | 109.5 |
C13—C17—H17C | 109.5 | H30B—C30—H30C | 109.5 |
Cg1 is the centroid of the (N1,C2–C6) ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C26—H26···N9i | 0.95 | 2.64 | 3.5522 (18) | 162 |
C28—H28B···Cg1ii | 0.98 | 2.91 | 3.6715 (16) | 135 |
Symmetry codes: (i) x+1, y−1, z; (ii) x+1, y, z. |
Cg1 is the centroid of the (N1,C2–C6) ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C26—H26···N9i | 0.95 | 2.64 | 3.5522 (18) | 162 |
C28—H28B···Cg1ii | 0.98 | 2.91 | 3.6715 (16) | 135 |
Symmetry codes: (i) x+1, y−1, z; (ii) x+1, y, z. |
Acknowledgements
We gratefully acknowledge financial support from the Royal Society (ABC) and the University of Warwick.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728–8740. Web of Science CSD CrossRef CAS Google Scholar
Darmon, J. M., Stieber, S. C. E., Sylvester, K. T., Fernández, I., Lobkovsky, E., Semproni, S. P., Bill, E., Wieghardt, K., DeBeer, S. & Chirik, P. J. (2012). J. Am. Chem. Soc. 134, 17125–17137. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dias, E. L., Brookhart, M. & White, P. S. (2001). Chem. Commun. pp. 423–424. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Liu, P., Zhou, L., Li, X. & He, R. (2009). J. Organomet. Chem. 694, 2290–2294. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wieder, N. L., Carroll, P. J. & Berry, D. H. (2011). Organometallics, 30, 2125–2136. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.