organic compounds
5,5,7,12,12,14-Hexamethyl-1,8-bis(4-nitrobenzyl)-1,4,8,11-tetraazacyclotetradecane
aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Inorganic Chemistry, University of Madras, Maraimalai Campus, Chennai-25, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com
The 30H46N6O4, contains one half-molecule. The C(benzene)—C(CH2)—N—C(—Me) torsion angle is −79.89 (13)° suggesting a synclinal orientation of the nitrobenzene ring with respect to the macrocycle. The conformation of the macrocycle is stabilized by intramolecular N—H⋯N hydrogen bonds.
of the title compound, CCCDC reference: 972725
Related literature
For the biological activity of cyclam derivatives, see: Cronin et al. (1999); Fzerov et al. (2005). For related structures, see: Xie et al. (2008); Feng et al. (2009).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 972725
https://doi.org/10.1107/S1600536813031164/vm2199sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536813031164/vm2199Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536813031164/vm2199Isup3.cml
The ligand 1,8-bi(para-nitro benzyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L) (0.57 g, 2 mmol) was dissolved in 20 ml of methanol, and then sodium carbonate (0.636 g, 6 mmol) dissolved in 2 ml of water and potassium iodide (1 g, 6 mmol) were added to the above solution. Para-nitrobenzyl bromide (0.95 g, 4.4 mmol) in methanol was slowly added to the reaction mixture and refluxed for 12 h. The resulting yellow color product was washed with water, methanol and diethyl ether and it was recrystallized from a mixture of chloroform-methanol (75:25). Yield 0.83 g (75%).
H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H distances of 0.93–0.98 Å and Uiso(H)= 1.5Ueq(C-methyl) or Uiso(H)= 1.2Ueq(N,C) for other H atoms. H3A was found in a difference Fourier map.
Cyclam based complexes have been used in a wide range of studies from bioinorganic systems to catalytic systems and as sensors (Cronin et al., 1999). Cyclam based anti-HIV agents are more active in vivo in the form of metal ion complexes. Macrocyclic ligands are also commonly used as carriers of metal radioisotopes in targeted radiopharmaceuticals. For utilization in nuclear medicine, macrocyclic ligands are generally preferred to open-chain ligands due to the higher thermodynamic and mainly kinetic stabilities of their complexes (Fzerov et al., 2005).
As part of our studies to examine the cyclam derivatives,we report the structure of the title compound (Fig. 1). The C–C bond lengths of the methyl groups attached to the macrocycle [C12—C13 = 1.535 (2) Å, C12—C14 = 1.532 (2) Å and C1—C8 = 1.533 (3) Å] are in good agreement with the literature values [C6—C7=1.53 (5) Å, C6—C8=1.541 (5) Å and C3—C5=1.535 (4) Å in Xie et al., 2008]. The bond angle C11—N3—C12 in the cyclam ring is 115.96 (1)° which agrees with the value 115.4 (3)° of the related reported structure (Feng et al., 2009). The sum of the angles around N1 atom [360 °], N2 atom [339.44°] and N3 atom [333.76 °] is an indication of sp2, sp3 and sp3hybridization, respectively. The conformation of the macrocycle is stabilized by intramolecular N—H···N hydrogen bonds (Table 1).
For the biological activity of cyclam derivatives, see: Cronin et al. (1999); Fzerov et al. (2005). For a related structure, see: Xie et al. (2008); Feng et al. (2009).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level and hydrogen bonds shown as broken lines. [Symmetry code: (1) -x, -y + 1, -z] |
C30H46N6O4 | V = 758.45 (6) Å3 |
Mr = 554.73 | Z = 1 |
Triclinic, P1 | F(000) = 300 |
Hall symbol: -P 1 | Dx = 1.215 Mg m−3 |
a = 8.6407 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1433 (3) Å | θ = 1.0–31.1° |
c = 11.0008 (5) Å | µ = 0.08 mm−1 |
α = 107.742 (2)° | T = 273 K |
β = 104.898 (2)° | Block, colourless |
γ = 102.372 (2)° | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 4819 independent reflections |
Radiation source: fine-focus sealed tube | 3340 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω and φ scan | θmax = 31.1°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.972, Tmax = 0.980 | k = −13→11 |
18201 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.185 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.96 | w = 1/[σ2(Fo2) + (0.1167P)2 + 0.0862P] where P = (Fo2 + 2Fc2)/3 |
4819 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C30H46N6O4 | γ = 102.372 (2)° |
Mr = 554.73 | V = 758.45 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.6407 (4) Å | Mo Kα radiation |
b = 9.1433 (3) Å | µ = 0.08 mm−1 |
c = 11.0008 (5) Å | T = 273 K |
α = 107.742 (2)° | 0.35 × 0.30 × 0.25 mm |
β = 104.898 (2)° |
Bruker Kappa APEXII CCD diffractometer | 4819 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3340 reflections with I > 2σ(I) |
Tmin = 0.972, Tmax = 0.980 | Rint = 0.028 |
18201 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.185 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.96 | Δρmax = 0.22 e Å−3 |
4819 reflections | Δρmin = −0.22 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.17573 (15) | 0.33128 (15) | 0.19940 (12) | 0.0405 (3) | |
H1 | 0.1959 | 0.3975 | 0.2942 | 0.049* | |
C2 | 0.26370 (18) | 0.93648 (14) | 0.50435 (14) | 0.0469 (3) | |
C3 | 0.19243 (17) | 0.89974 (15) | 0.36661 (14) | 0.0466 (3) | |
H3 | 0.1203 | 0.9525 | 0.3346 | 0.056* | |
C4 | 0.23154 (16) | 0.78245 (15) | 0.27817 (13) | 0.0431 (3) | |
H4 | 0.1849 | 0.7554 | 0.1850 | 0.052* | |
C5 | 0.33941 (14) | 0.70422 (13) | 0.32604 (12) | 0.0384 (3) | |
C6 | 0.40708 (17) | 0.74400 (16) | 0.46470 (13) | 0.0469 (3) | |
H6 | 0.4791 | 0.6915 | 0.4974 | 0.056* | |
C7 | 0.37823 (15) | 0.57761 (15) | 0.22457 (13) | 0.0441 (3) | |
H7A | 0.4292 | 0.6259 | 0.1712 | 0.053* | |
H7B | 0.4584 | 0.5366 | 0.2724 | 0.053* | |
C8 | 0.2822 (2) | 0.2174 (2) | 0.20329 (19) | 0.0615 (4) | |
H8A | 0.3998 | 0.2799 | 0.2438 | 0.092* | |
H8B | 0.2596 | 0.1444 | 0.1123 | 0.092* | |
H8C | 0.2537 | 0.1565 | 0.2562 | 0.092* | |
C9 | −0.01195 (16) | 0.23196 (14) | 0.13605 (14) | 0.0427 (3) | |
H9A | −0.0295 | 0.1501 | 0.1746 | 0.051* | |
H9B | −0.0366 | 0.1755 | 0.0396 | 0.051* | |
C10 | 0.22706 (16) | 0.36646 (14) | −0.00178 (12) | 0.0395 (3) | |
H10A | 0.1226 | 0.2776 | −0.0545 | 0.047* | |
H10B | 0.3190 | 0.3208 | 0.0056 | 0.047* | |
C11 | 0.24794 (16) | 0.47711 (16) | −0.07869 (14) | 0.0439 (3) | |
H11A | 0.3646 | 0.5463 | −0.0422 | 0.053* | |
H11B | 0.2231 | 0.4118 | −0.1735 | 0.053* | |
C12 | 0.14282 (15) | 0.68065 (14) | −0.15082 (13) | 0.0403 (3) | |
C13 | 0.31661 (18) | 0.81153 (19) | −0.08704 (18) | 0.0604 (4) | |
H13A | 0.4025 | 0.7614 | −0.0944 | 0.091* | |
H13B | 0.3368 | 0.8705 | 0.0072 | 0.091* | |
H13C | 0.3193 | 0.8845 | −0.1339 | 0.091* | |
C14 | 0.1105 (2) | 0.5867 (2) | −0.30121 (15) | 0.0606 (4) | |
H14A | 0.0017 | 0.5051 | −0.3412 | 0.091* | |
H14B | 0.1962 | 0.5363 | −0.3088 | 0.091* | |
H14C | 0.1135 | 0.6599 | −0.3479 | 0.091* | |
C15 | 0.36900 (19) | 0.86074 (17) | 0.55532 (13) | 0.0512 (3) | |
H15 | 0.4139 | 0.8870 | 0.6485 | 0.061* | |
N1 | 0.2281 (2) | 1.06532 (16) | 0.59985 (15) | 0.0653 (4) | |
N2 | 0.22416 (11) | 0.44428 (11) | 0.13438 (9) | 0.0347 (2) | |
N3 | 0.13852 (12) | 0.57798 (12) | −0.07040 (10) | 0.0348 (2) | |
O1 | 0.1657 (2) | 1.15487 (16) | 0.55712 (16) | 0.0867 (4) | |
O2 | 0.2633 (3) | 1.0778 (2) | 0.71694 (15) | 0.1117 (6) | |
H3A | 0.0333 (19) | 0.5159 (18) | −0.0954 (14) | 0.044 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0390 (6) | 0.0426 (6) | 0.0402 (6) | 0.0128 (5) | 0.0113 (5) | 0.0180 (5) |
C2 | 0.0518 (7) | 0.0350 (6) | 0.0468 (7) | 0.0052 (5) | 0.0239 (6) | 0.0065 (5) |
C3 | 0.0470 (7) | 0.0391 (6) | 0.0524 (7) | 0.0137 (5) | 0.0168 (6) | 0.0159 (5) |
C4 | 0.0444 (7) | 0.0404 (6) | 0.0378 (6) | 0.0096 (5) | 0.0113 (5) | 0.0112 (5) |
C5 | 0.0322 (5) | 0.0337 (5) | 0.0386 (6) | 0.0031 (4) | 0.0095 (4) | 0.0070 (4) |
C6 | 0.0462 (7) | 0.0452 (6) | 0.0417 (6) | 0.0120 (5) | 0.0087 (5) | 0.0134 (5) |
C7 | 0.0316 (5) | 0.0425 (6) | 0.0463 (7) | 0.0077 (5) | 0.0113 (5) | 0.0059 (5) |
C8 | 0.0553 (9) | 0.0637 (9) | 0.0778 (11) | 0.0282 (7) | 0.0172 (8) | 0.0418 (8) |
C9 | 0.0419 (6) | 0.0371 (5) | 0.0501 (7) | 0.0102 (5) | 0.0157 (5) | 0.0198 (5) |
C10 | 0.0407 (6) | 0.0396 (6) | 0.0391 (6) | 0.0187 (5) | 0.0156 (5) | 0.0107 (5) |
C11 | 0.0428 (6) | 0.0531 (7) | 0.0473 (7) | 0.0237 (5) | 0.0248 (5) | 0.0209 (5) |
C12 | 0.0388 (6) | 0.0420 (6) | 0.0438 (6) | 0.0101 (5) | 0.0189 (5) | 0.0194 (5) |
C13 | 0.0415 (7) | 0.0556 (8) | 0.0866 (11) | 0.0069 (6) | 0.0256 (7) | 0.0333 (8) |
C14 | 0.0729 (10) | 0.0772 (10) | 0.0474 (8) | 0.0301 (8) | 0.0322 (7) | 0.0305 (7) |
C15 | 0.0579 (8) | 0.0488 (7) | 0.0362 (6) | 0.0087 (6) | 0.0126 (6) | 0.0107 (5) |
N1 | 0.0779 (9) | 0.0465 (6) | 0.0655 (8) | 0.0149 (6) | 0.0370 (7) | 0.0067 (6) |
N2 | 0.0322 (4) | 0.0321 (4) | 0.0349 (5) | 0.0084 (3) | 0.0110 (4) | 0.0082 (3) |
N3 | 0.0325 (5) | 0.0385 (5) | 0.0371 (5) | 0.0123 (4) | 0.0163 (4) | 0.0152 (4) |
O1 | 0.1035 (11) | 0.0574 (7) | 0.0994 (10) | 0.0386 (7) | 0.0451 (9) | 0.0127 (7) |
O2 | 0.1857 (18) | 0.0998 (11) | 0.0652 (9) | 0.0661 (12) | 0.0679 (10) | 0.0175 (8) |
C1—N2 | 1.4742 (15) | C9—H9B | 0.9700 |
C1—C9 | 1.5305 (17) | C10—N2 | 1.4588 (15) |
C1—C8 | 1.5328 (19) | C10—C11 | 1.5145 (17) |
C1—H1 | 0.9800 | C10—H10A | 0.9700 |
C2—C15 | 1.366 (2) | C10—H10B | 0.9700 |
C2—C3 | 1.382 (2) | C11—N3 | 1.4559 (16) |
C2—N1 | 1.4675 (18) | C11—H11A | 0.9700 |
C3—C4 | 1.3781 (18) | C11—H11B | 0.9700 |
C3—H3 | 0.9300 | C12—N3 | 1.4743 (15) |
C4—C5 | 1.3859 (18) | C12—C9i | 1.5317 (18) |
C4—H4 | 0.9300 | C12—C14 | 1.5318 (19) |
C5—C6 | 1.3831 (17) | C12—C13 | 1.5349 (18) |
C5—C7 | 1.5067 (17) | C13—H13A | 0.9600 |
C6—C15 | 1.383 (2) | C13—H13B | 0.9600 |
C6—H6 | 0.9300 | C13—H13C | 0.9600 |
C7—N2 | 1.4598 (14) | C14—H14A | 0.9600 |
C7—H7A | 0.9700 | C14—H14B | 0.9600 |
C7—H7B | 0.9700 | C14—H14C | 0.9600 |
C8—H8A | 0.9600 | C15—H15 | 0.9300 |
C8—H8B | 0.9600 | N1—O2 | 1.208 (2) |
C8—H8C | 0.9600 | N1—O1 | 1.214 (2) |
C9—C12i | 1.5317 (18) | N3—H3A | 0.883 (15) |
C9—H9A | 0.9700 | ||
N2—C1—C9 | 112.95 (9) | C11—C10—H10A | 108.6 |
N2—C1—C8 | 113.69 (11) | N2—C10—H10B | 108.6 |
C9—C1—C8 | 109.55 (11) | C11—C10—H10B | 108.6 |
N2—C1—H1 | 106.7 | H10A—C10—H10B | 107.5 |
C9—C1—H1 | 106.7 | N3—C11—C10 | 112.80 (10) |
C8—C1—H1 | 106.7 | N3—C11—H11A | 109.0 |
C15—C2—C3 | 122.80 (12) | C10—C11—H11A | 109.0 |
C15—C2—N1 | 118.71 (13) | N3—C11—H11B | 109.0 |
C3—C2—N1 | 118.47 (14) | C10—C11—H11B | 109.0 |
C4—C3—C2 | 117.93 (13) | H11A—C11—H11B | 107.8 |
C4—C3—H3 | 121.0 | N3—C12—C9i | 107.94 (9) |
C2—C3—H3 | 121.0 | N3—C12—C14 | 113.61 (11) |
C3—C4—C5 | 120.98 (12) | C9i—C12—C14 | 110.55 (11) |
C3—C4—H4 | 119.5 | N3—C12—C13 | 108.11 (11) |
C5—C4—H4 | 119.5 | C9i—C12—C13 | 106.91 (11) |
C6—C5—C4 | 119.18 (11) | C14—C12—C13 | 109.47 (11) |
C6—C5—C7 | 122.20 (12) | C12—C13—H13A | 109.5 |
C4—C5—C7 | 118.62 (11) | C12—C13—H13B | 109.5 |
C15—C6—C5 | 120.86 (13) | H13A—C13—H13B | 109.5 |
C15—C6—H6 | 119.6 | C12—C13—H13C | 109.5 |
C5—C6—H6 | 119.6 | H13A—C13—H13C | 109.5 |
N2—C7—C5 | 110.45 (9) | H13B—C13—H13C | 109.5 |
N2—C7—H7A | 109.6 | C12—C14—H14A | 109.5 |
C5—C7—H7A | 109.6 | C12—C14—H14B | 109.5 |
N2—C7—H7B | 109.6 | H14A—C14—H14B | 109.5 |
C5—C7—H7B | 109.6 | C12—C14—H14C | 109.5 |
H7A—C7—H7B | 108.1 | H14A—C14—H14C | 109.5 |
C1—C8—H8A | 109.5 | H14B—C14—H14C | 109.5 |
C1—C8—H8B | 109.5 | C2—C15—C6 | 118.25 (12) |
H8A—C8—H8B | 109.5 | C2—C15—H15 | 120.9 |
C1—C8—H8C | 109.5 | C6—C15—H15 | 120.9 |
H8A—C8—H8C | 109.5 | O2—N1—O1 | 123.36 (15) |
H8B—C8—H8C | 109.5 | O2—N1—C2 | 118.46 (16) |
C1—C9—C12i | 118.88 (10) | O1—N1—C2 | 118.18 (15) |
C1—C9—H9A | 107.6 | C10—N2—C7 | 113.41 (9) |
C12i—C9—H9A | 107.6 | C10—N2—C1 | 114.37 (9) |
C1—C9—H9B | 107.6 | C7—N2—C1 | 111.66 (10) |
C12i—C9—H9B | 107.6 | C11—N3—C12 | 115.96 (9) |
H9A—C9—H9B | 107.0 | C11—N3—H3A | 109.2 (10) |
N2—C10—C11 | 114.82 (10) | C12—N3—H3A | 108.6 (9) |
N2—C10—H10A | 108.6 | ||
C15—C2—C3—C4 | −0.6 (2) | C3—C2—N1—O2 | 166.54 (16) |
N1—C2—C3—C4 | 177.77 (11) | C15—C2—N1—O1 | 164.41 (15) |
C2—C3—C4—C5 | −0.19 (19) | C3—C2—N1—O1 | −14.0 (2) |
C3—C4—C5—C6 | 0.62 (18) | C11—C10—N2—C7 | −60.07 (13) |
C3—C4—C5—C7 | −179.70 (11) | C11—C10—N2—C1 | 170.32 (10) |
C4—C5—C6—C15 | −0.30 (19) | C5—C7—N2—C10 | 149.14 (10) |
C7—C5—C6—C15 | −179.97 (12) | C5—C7—N2—C1 | −79.89 (13) |
C6—C5—C7—N2 | 118.14 (13) | C9—C1—N2—C10 | −71.93 (13) |
C4—C5—C7—N2 | −61.53 (15) | C8—C1—N2—C10 | 53.70 (14) |
N2—C1—C9—C12i | −66.10 (14) | C9—C1—N2—C7 | 157.59 (10) |
C8—C1—C9—C12i | 166.07 (12) | C8—C1—N2—C7 | −76.78 (13) |
N2—C10—C11—N3 | −45.97 (15) | C10—C11—N3—C12 | −175.81 (10) |
C3—C2—C15—C6 | 0.9 (2) | C9i—C12—N3—C11 | 176.37 (10) |
N1—C2—C15—C6 | −177.46 (12) | C14—C12—N3—C11 | 53.40 (15) |
C5—C6—C15—C2 | −0.4 (2) | C13—C12—N3—C11 | −68.32 (14) |
C15—C2—N1—O2 | −15.0 (2) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.883 (17) | 2.284 (17) | 2.9770 (15) | 135.3 (15) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···N2i | 0.883 (17) | 2.284 (17) | 2.9770 (15) | 135.3 (15) |
Symmetry code: (i) −x, −y+1, −z. |
Acknowledgements
The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cronin, L., Mount, A. R., Parsons, S. & Robertson, N. (1999). J. Chem. Soc. Dalton Trans. pp. 1925–1927. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fzerov, S., Kotek, J., Csaov, I., Hermann, P., Koen Binnemans, K. & Luke, I. (2005). Dalton Trans. pp. 2908–2915. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, B., Zou, L.-K., He, Y.-G., Feng, J.-S. & Zhang, X.-L. (2008). Acta Cryst. E64, m622. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cyclam based complexes have been used in a wide range of studies from bioinorganic systems to catalytic systems and as sensors (Cronin et al., 1999). Cyclam based anti-HIV agents are more active in vivo in the form of metal ion complexes. Macrocyclic ligands are also commonly used as carriers of metal radioisotopes in targeted radiopharmaceuticals. For utilization in nuclear medicine, macrocyclic ligands are generally preferred to open-chain ligands due to the higher thermodynamic and mainly kinetic stabilities of their complexes (Fzerov et al., 2005).
As part of our studies to examine the cyclam derivatives,we report the structure of the title compound (Fig. 1). The C–C bond lengths of the methyl groups attached to the macrocycle [C12—C13 = 1.535 (2) Å, C12—C14 = 1.532 (2) Å and C1—C8 = 1.533 (3) Å] are in good agreement with the literature values [C6—C7=1.53 (5) Å, C6—C8=1.541 (5) Å and C3—C5=1.535 (4) Å in Xie et al., 2008]. The bond angle C11—N3—C12 in the cyclam ring is 115.96 (1)° which agrees with the value 115.4 (3)° of the related reported structure (Feng et al., 2009). The sum of the angles around N1 atom [360 °], N2 atom [339.44°] and N3 atom [333.76 °] is an indication of sp2, sp3 and sp3hybridization, respectively. The conformation of the macrocycle is stabilized by intramolecular N—H···N hydrogen bonds (Table 1).