organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ethyl-5-iodo­indoline-2,3-dione

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bState Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: fangqi@sdu.edu.cn

(Received 6 December 2013; accepted 11 December 2013; online 14 December 2013)

There are two independent mol­ecules in the asymmetric unit of the title compound, C10H8INO2, which differ in the degree of planarity. The iodo­indoline-2,3-dione skeleton of mol­ecule 1 is essentially planar [mean deviation = 0.003 (2) Å for the nine non-H atoms of the indoline core, with a maximum deviation of 0.033 (1) Å for the I atom]. The I atom and O atom in the 3-position of mol­ecule 2 deviate by 0.195 (1) and 0.120 (2) Å, respectively, from the least-squares plane through the nine non-H atoms of the indoline core. Mol­ecules 1 and 2 are roughly coplanar, the mean planes through their cores making a dihedral angle of 6.84 (1)°. This coplanarity results in a layer-like structure parallel to (6,11,17) in the crystal, the distance between adjacent least-squares planes through the cores of mol­ecules 1 and 2 being 3.37 (1) Å. In such a layer, mol­ecules 1 and 2 are linked by C—H⋯O hydrogen bonds, forming chains along [11-1]. The chains are further coupled to construct a kind of double-chain structure via I⋯O inter­actions [3.270 (2) Å].

Related literature

For applications of indoline-2,3-dione in drug design, see: Silva et al. (2001[Silva, J. F., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]). For the synthesis of the title compound, see: Ji et al. (2010[Ji, L., Fang, Q., Yuan, M. S., Liu, Z. Q., Shen, Y. X. & Chen, H. F. (2010). Org. Lett. 12, 5192-5195.]). For related structures, see: Garden et al. (2006[Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321-o323.]); Abid et al. (2008[Abid, O.-R., Qadeer, G., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2223.]); Kurkin et al. (2008[Kurkin, A. V., Bernovskaya, A. A., Yurovskaya, M. A. & Rybakov, V. B. (2008). Acta Cryst. E64, o1448.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8INO2

  • Mr = 301.07

  • Triclinic, [P \overline 1]

  • a = 9.9658 (2) Å

  • b = 10.1453 (2) Å

  • c = 11.3007 (2) Å

  • α = 71.188 (1)°

  • β = 72.599 (1)°

  • γ = 84.434 (1)°

  • V = 1032.04 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 295 K

  • 0.27 × 0.21 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.490, Tmax = 0.746

  • 13515 measured reflections

  • 5091 independent reflections

  • 4358 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.066

  • S = 1.01

  • 5091 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29A⋯O2i 0.97 2.57 3.399 (3) 144
C27—H27⋯O2i 0.93 (3) 2.48 (3) 3.407 (3) 174 (3)
C9—H9A⋯O4 0.97 2.56 3.366 (3) 140
Symmetry code: (i) x+1, y+1, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

To date, isatin and its derivatives have received much attention due to their potential applications in biomedicine and agrochemical industries (Silva et al., 2001). In this paper, we report the synthesis and structure of a new isatin derivative, namely 1-ethyl-5-iodoindoline-2,3-dione.

There are two molecules in the asymmetric unit of the unit cell as depicted in Fig. 1. The two molecules are essentially planar. All non-hydrogen atoms, except the terminal methyl C atom, are in a same plane. The iodoindoline-2,3-dione skeleton of molecule 1 has a perfect planarity (mean deviation is 0.003 (2) Å, maximum deviation is 0.033 (1) Å for I1 for the least-squares plane through the 9 non-hydrogen atoms of the indoline core). In molecule 2, two large deviations exist [0.195 (1) (I2) and 0.120 (2) Å (O3)], and the mean deviation is relatively larger [0.022 (2) Å]. Molecules 1 and 2 are virtually co-planar with a small dihedral angle of 6.84 (1) ° between both best planes. This co-planarity results in a layer-like structure of the crystal (Figs. 2 and 3). Considering this co-planarity, the least-squares plane through the 18 non-hydrogen atoms of the two indoline cores of the two molecules shows a mean deviation of 0.064 (3) Å. The distance between two such adjacent best planes or layers is 3.37 (1) Å.

Several intermolecular interactions can be found in a layer. The C—H···O hydrogen bonds (Table 1) help to build one-dimensional chains and the I1···O3 [-x, 1 - y, 1 - z] [3.270 (2) Å] short contact helps to construct a kind of double-chain structure.

Related literature top

For applications of indoline-2,3-dione in drug design, see: Silva et al. (2001). For the synthesis of the title compound, see: Ji et al. (2010). For related structures, see: Garden et al. (2006); Abid et al. (2008); Kurkin et al. (2008).

Experimental top

We synthesized the title compound by the similar method reported by Ji et al. (2010). KI (1.27 g), hexadecyl trimethyl ammonium bromide (0.410 g) and 5-iodoisatin (3.75 g) were dissolved in 20 ml DMSO, and the mixture was stirred in N2 atmosphere while 2.7 ml iodoethane was quickly added via a syringe. Then 5 ml aqueous KOH solution (17.8 mol/L) was dropwise added into the brown solution at 30 °C and the colour rapidly became black. After another 3 ml iodoethane was added, the heating temperature was raised to 45 °C. The mixture was stirred for 5 h, then 1.6 ml iodoethane was added. The reaction continued for 1 h at 45°C. The mixture was then poured into water, and extracted with dichloromethane. The organic phase was seperated and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure, the crude product was purified by column chromatography [V (dichloromethane)/ V (petroleum ether) = 1:1] obtaining 47.4% yield. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a dichloromethane solution of the compound.

Refinement top

H atoms bound to aromatic C atoms were located in difference maps and freely refined leading to C—H distances from 0.88 (3) to 0.99 (3) Å. Other H atoms were placed at calculated positions and treated by the riding model with C—H distances = 0.97 (methylene C) or 0.96 Å (methyl C) and Uiso(H) = 1.2 Ueq (methylene C) or 1.5 Ueq (methyl C).

Structure description top

To date, isatin and its derivatives have received much attention due to their potential applications in biomedicine and agrochemical industries (Silva et al., 2001). In this paper, we report the synthesis and structure of a new isatin derivative, namely 1-ethyl-5-iodoindoline-2,3-dione.

There are two molecules in the asymmetric unit of the unit cell as depicted in Fig. 1. The two molecules are essentially planar. All non-hydrogen atoms, except the terminal methyl C atom, are in a same plane. The iodoindoline-2,3-dione skeleton of molecule 1 has a perfect planarity (mean deviation is 0.003 (2) Å, maximum deviation is 0.033 (1) Å for I1 for the least-squares plane through the 9 non-hydrogen atoms of the indoline core). In molecule 2, two large deviations exist [0.195 (1) (I2) and 0.120 (2) Å (O3)], and the mean deviation is relatively larger [0.022 (2) Å]. Molecules 1 and 2 are virtually co-planar with a small dihedral angle of 6.84 (1) ° between both best planes. This co-planarity results in a layer-like structure of the crystal (Figs. 2 and 3). Considering this co-planarity, the least-squares plane through the 18 non-hydrogen atoms of the two indoline cores of the two molecules shows a mean deviation of 0.064 (3) Å. The distance between two such adjacent best planes or layers is 3.37 (1) Å.

Several intermolecular interactions can be found in a layer. The C—H···O hydrogen bonds (Table 1) help to build one-dimensional chains and the I1···O3 [-x, 1 - y, 1 - z] [3.270 (2) Å] short contact helps to construct a kind of double-chain structure.

For applications of indoline-2,3-dione in drug design, see: Silva et al. (2001). For the synthesis of the title compound, see: Ji et al. (2010). For related structures, see: Garden et al. (2006); Abid et al. (2008); Kurkin et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two molecules in the asymmetric unit. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. A view of a molecular layer, showing the double-chain structure connected by C—H···O intermolecular hydrogen bonds and I1···O3 intermolecular contacts.
[Figure 3] Fig. 3. A view of the uniform layered structure, the spacing between neighboring layers is 3.37 (1) Å.
1-Ethyl-5-iodoindoline-2,3-dione top
Crystal data top
C10H8INO2Z = 4
Mr = 301.07F(000) = 576
Triclinic, P1Dx = 1.938 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9658 (2) ÅCell parameters from 7943 reflections
b = 10.1453 (2) Åθ = 2.4–28.7°
c = 11.3007 (2) ŵ = 3.08 mm1
α = 71.188 (1)°T = 295 K
β = 72.599 (1)°Plank, orange
γ = 84.434 (1)°0.27 × 0.21 × 0.10 mm
V = 1032.04 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5091 independent reflections
Radiation source: fine-focus sealed tube4358 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.3 pixels mm-1θmax = 28.3°, θmin = 2.0°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.490, Tmax = 0.746l = 1513
13515 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.529P]
where P = (Fo2 + 2Fc2)/3
5091 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C10H8INO2γ = 84.434 (1)°
Mr = 301.07V = 1032.04 (3) Å3
Triclinic, P1Z = 4
a = 9.9658 (2) ÅMo Kα radiation
b = 10.1453 (2) ŵ = 3.08 mm1
c = 11.3007 (2) ÅT = 295 K
α = 71.188 (1)°0.27 × 0.21 × 0.10 mm
β = 72.599 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5091 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4358 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 0.746Rint = 0.017
13515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.74 e Å3
5091 reflectionsΔρmin = 0.44 e Å3
279 parameters
Special details top

Experimental. Scan width 0.5° ω and φ, Crystal to detector distance 5.964 cm, exposure time 20 s, 19 h for data collection

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.188160 (18)0.385210 (17)0.659889 (17)0.05692 (6)
I21.215992 (18)0.17083 (2)0.320573 (19)0.06423 (7)
O10.1685 (2)0.30982 (18)0.98576 (18)0.0606 (5)
O20.12166 (19)0.20187 (18)1.00153 (18)0.0587 (4)
O40.5791 (2)0.1463 (2)0.5519 (2)0.0810 (7)
O30.41994 (19)0.3947 (2)0.4463 (2)0.0673 (5)
N10.22397 (19)0.09288 (18)0.83363 (18)0.0448 (4)
C290.6039 (3)0.5967 (3)0.2206 (3)0.0574 (6)
H29A0.67990.66220.19500.069*
H29B0.52000.63370.26930.069*
C50.0444 (2)0.2289 (2)0.7122 (2)0.0451 (5)
C60.0995 (3)0.2509 (2)0.6564 (2)0.0492 (5)
C70.1973 (2)0.1495 (2)0.6900 (2)0.0476 (5)
C80.1470 (2)0.0250 (2)0.7828 (2)0.0408 (4)
C90.3765 (2)0.1004 (3)0.8019 (3)0.0521 (5)
H9A0.41650.05570.70920.063*
H9B0.40540.19730.82160.063*
C100.4329 (3)0.0314 (4)0.8766 (3)0.0731 (8)
H10A0.39860.06250.86250.110*
H10B0.53380.03060.84700.110*
H10C0.40230.08200.96790.110*
C10.1354 (3)0.1967 (2)0.9239 (2)0.0453 (5)
C20.0166 (2)0.1390 (2)0.9316 (2)0.0444 (5)
C30.0021 (2)0.0023 (2)0.8392 (2)0.0409 (4)
C40.0948 (2)0.1026 (2)0.8047 (2)0.0441 (5)
C251.0250 (2)0.2682 (2)0.3052 (2)0.0456 (5)
C240.9007 (3)0.2058 (2)0.3914 (2)0.0492 (5)
C230.7765 (2)0.2774 (2)0.3829 (2)0.0439 (5)
C280.7764 (2)0.4083 (2)0.2908 (2)0.0404 (4)
N20.63970 (19)0.4636 (2)0.30430 (19)0.0467 (4)
C300.5792 (4)0.5831 (4)0.1017 (3)0.0877 (11)
H30A0.66290.54890.05190.132*
H30B0.55530.67240.04980.132*
H30C0.50340.51910.12650.132*
C220.6307 (3)0.2473 (3)0.4615 (2)0.0536 (6)
C210.5455 (2)0.3764 (3)0.4059 (2)0.0514 (5)
C270.9001 (2)0.4696 (2)0.2032 (2)0.0461 (5)
C261.0245 (2)0.3975 (2)0.2122 (2)0.0468 (5)
H40.189 (3)0.089 (3)0.843 (2)0.046 (6)*
H60.132 (3)0.339 (3)0.596 (3)0.055 (7)*
H70.299 (3)0.166 (3)0.650 (3)0.050 (7)*
H261.110 (3)0.439 (3)0.149 (3)0.055 (7)*
H270.897 (3)0.557 (3)0.142 (3)0.052 (7)*
H240.903 (3)0.124 (3)0.449 (3)0.055 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05293 (10)0.05269 (10)0.06295 (11)0.00741 (7)0.02024 (8)0.01363 (8)
I20.04713 (10)0.07268 (13)0.07074 (12)0.01030 (8)0.01917 (8)0.02004 (9)
O10.0694 (12)0.0412 (9)0.0596 (10)0.0013 (8)0.0147 (9)0.0037 (8)
O20.0541 (10)0.0492 (9)0.0564 (10)0.0162 (8)0.0007 (8)0.0034 (8)
O40.0520 (11)0.0725 (13)0.0778 (14)0.0168 (10)0.0029 (10)0.0214 (11)
O30.0382 (9)0.0733 (13)0.0721 (12)0.0045 (8)0.0035 (8)0.0080 (10)
N10.0424 (10)0.0391 (9)0.0449 (10)0.0014 (7)0.0058 (8)0.0079 (8)
C290.0451 (13)0.0429 (12)0.0678 (16)0.0045 (10)0.0062 (11)0.0056 (11)
C50.0458 (12)0.0415 (11)0.0449 (11)0.0021 (9)0.0113 (9)0.0113 (9)
C60.0475 (12)0.0407 (11)0.0457 (12)0.0062 (9)0.0040 (9)0.0016 (9)
C70.0402 (11)0.0448 (11)0.0442 (11)0.0079 (9)0.0003 (9)0.0040 (9)
C80.0409 (10)0.0389 (10)0.0373 (10)0.0038 (8)0.0053 (8)0.0093 (8)
C90.0407 (11)0.0510 (12)0.0557 (13)0.0068 (10)0.0043 (10)0.0152 (11)
C100.0457 (14)0.097 (2)0.086 (2)0.0070 (14)0.0178 (14)0.0434 (18)
C10.0527 (13)0.0380 (10)0.0417 (11)0.0038 (9)0.0080 (9)0.0115 (9)
C20.0485 (12)0.0391 (10)0.0400 (10)0.0090 (9)0.0041 (9)0.0097 (9)
C30.0411 (11)0.0373 (10)0.0394 (10)0.0070 (8)0.0045 (8)0.0098 (8)
C40.0380 (11)0.0454 (11)0.0442 (11)0.0059 (9)0.0036 (9)0.0136 (9)
C250.0407 (11)0.0471 (11)0.0472 (11)0.0010 (9)0.0094 (9)0.0151 (9)
C240.0499 (13)0.0404 (11)0.0476 (12)0.0034 (9)0.0104 (10)0.0027 (10)
C230.0414 (11)0.0421 (11)0.0403 (10)0.0076 (8)0.0052 (8)0.0058 (9)
C280.0401 (11)0.0375 (10)0.0388 (10)0.0039 (8)0.0059 (8)0.0094 (8)
N20.0378 (9)0.0440 (9)0.0481 (10)0.0031 (7)0.0045 (8)0.0067 (8)
C300.087 (2)0.101 (3)0.0606 (18)0.025 (2)0.0243 (16)0.0097 (18)
C220.0448 (12)0.0535 (13)0.0496 (13)0.0112 (10)0.0068 (10)0.0017 (10)
C210.0404 (12)0.0558 (13)0.0505 (12)0.0079 (10)0.0050 (9)0.0115 (11)
C270.0435 (12)0.0392 (11)0.0445 (11)0.0066 (9)0.0032 (9)0.0047 (9)
C260.0394 (11)0.0457 (11)0.0464 (11)0.0057 (9)0.0011 (9)0.0108 (9)
Geometric parameters (Å, º) top
I1—C52.092 (2)C10—H10A0.9600
I2—C252.086 (2)C10—H10B0.9600
O1—C11.209 (3)C10—H10C0.9600
O2—C21.198 (3)C1—C21.558 (3)
O4—C221.213 (3)C2—C31.467 (3)
O3—C211.215 (3)C3—C41.378 (3)
N1—C11.371 (3)C4—H40.91 (3)
N1—C81.411 (3)C25—C241.384 (3)
N1—C91.454 (3)C25—C261.392 (3)
C29—N21.459 (3)C24—C231.386 (3)
C29—C301.486 (5)C24—H240.88 (3)
C29—H29A0.9700C23—C281.399 (3)
C29—H29B0.9700C23—C221.460 (3)
C5—C41.391 (3)C28—C271.381 (3)
C5—C61.391 (3)C28—N21.406 (3)
C6—C71.388 (3)N2—C211.358 (3)
C6—H60.95 (3)C30—H30A0.9600
C7—C81.378 (3)C30—H30B0.9600
C7—H70.99 (3)C30—H30C0.9600
C8—C31.401 (3)C22—C211.551 (4)
C9—C101.503 (4)C27—C261.391 (3)
C9—H9A0.9700C27—H270.93 (3)
C9—H9B0.9700C26—H260.96 (3)
C1—N1—C8110.78 (18)C4—C3—C8121.64 (19)
C1—N1—C9124.24 (19)C4—C3—C2131.1 (2)
C8—N1—C9124.86 (18)C8—C3—C2107.30 (19)
N2—C29—C30112.1 (2)C3—C4—C5117.8 (2)
N2—C29—H29A109.2C3—C4—H4121.8 (16)
C30—C29—H29A109.2C5—C4—H4120.4 (16)
N2—C29—H29B109.2C24—C25—C26121.0 (2)
C30—C29—H29B109.2C24—C25—I2119.38 (17)
H29A—C29—H29B107.9C26—C25—I2119.59 (17)
C4—C5—C6120.3 (2)C25—C24—C23117.7 (2)
C4—C5—I1118.94 (17)C25—C24—H24119.6 (18)
C6—C5—I1120.75 (16)C23—C24—H24122.7 (18)
C7—C6—C5122.0 (2)C24—C23—C28121.3 (2)
C7—C6—H6118.8 (17)C24—C23—C22132.1 (2)
C5—C6—H6119.2 (17)C28—C23—C22106.5 (2)
C8—C7—C6117.6 (2)C27—C28—C23121.1 (2)
C8—C7—H7121.0 (16)C27—C28—N2127.6 (2)
C6—C7—H7121.5 (16)C23—C28—N2111.23 (18)
C7—C8—C3120.7 (2)C21—N2—C28110.83 (18)
C7—C8—N1128.4 (2)C21—N2—C29124.6 (2)
C3—C8—N1110.93 (18)C28—N2—C29124.59 (18)
N1—C9—C10112.0 (2)C29—C30—H30A109.5
N1—C9—H9A109.2C29—C30—H30B109.5
C10—C9—H9A109.2H30A—C30—H30B109.5
N1—C9—H9B109.2C29—C30—H30C109.5
C10—C9—H9B109.2H30A—C30—H30C109.5
H9A—C9—H9B107.9H30B—C30—H30C109.5
C9—C10—H10A109.5O4—C22—C23130.6 (3)
C9—C10—H10B109.5O4—C22—C21124.0 (2)
H10A—C10—H10B109.5C23—C22—C21105.38 (19)
C9—C10—H10C109.5O3—C21—N2127.6 (2)
H10A—C10—H10C109.5O3—C21—C22126.4 (2)
H10B—C10—H10C109.5N2—C21—C22105.98 (19)
O1—C1—N1126.9 (2)C28—C27—C26117.4 (2)
O1—C1—C2127.0 (2)C28—C27—H27119.1 (17)
N1—C1—C2106.10 (18)C26—C27—H27123.5 (17)
O2—C2—C3130.5 (2)C27—C26—C25121.5 (2)
O2—C2—C1124.6 (2)C27—C26—H26116.9 (17)
C3—C2—C1104.89 (18)C25—C26—H26121.6 (17)
C4—C5—C6—C70.1 (4)C26—C25—C24—C230.8 (4)
I1—C5—C6—C7179.48 (19)I2—C25—C24—C23176.44 (18)
C5—C6—C7—C80.7 (4)C25—C24—C23—C280.2 (4)
C6—C7—C8—C30.7 (4)C25—C24—C23—C22175.8 (3)
C6—C7—C8—N1179.6 (2)C24—C23—C28—C271.4 (4)
C1—N1—C8—C7179.6 (2)C22—C23—C28—C27177.9 (2)
C9—N1—C8—C74.4 (4)C24—C23—C28—N2177.2 (2)
C1—N1—C8—C30.1 (3)C22—C23—C28—N20.6 (3)
C9—N1—C8—C3175.9 (2)C27—C28—N2—C21176.6 (2)
C1—N1—C9—C1095.9 (3)C23—C28—N2—C211.9 (3)
C8—N1—C9—C1079.5 (3)C27—C28—N2—C293.4 (4)
C8—N1—C1—O1179.3 (2)C23—C28—N2—C29178.2 (2)
C9—N1—C1—O13.2 (4)C30—C29—N2—C2193.7 (3)
C8—N1—C1—C20.2 (2)C30—C29—N2—C2886.3 (3)
C9—N1—C1—C2176.3 (2)C24—C23—C22—O44.6 (5)
O1—C1—C2—O20.2 (4)C28—C23—C22—O4179.4 (3)
N1—C1—C2—O2179.7 (2)C24—C23—C22—C21175.4 (3)
O1—C1—C2—C3179.0 (2)C28—C23—C22—C210.7 (3)
N1—C1—C2—C30.5 (2)C28—N2—C21—O3177.6 (3)
C7—C8—C3—C40.1 (3)C29—N2—C21—O32.3 (4)
N1—C8—C3—C4179.8 (2)C28—N2—C21—C222.2 (3)
C7—C8—C3—C2179.3 (2)C29—N2—C21—C22177.9 (2)
N1—C8—C3—C20.4 (2)O4—C22—C21—O31.9 (5)
O2—C2—C3—C40.9 (4)C23—C22—C21—O3178.0 (3)
C1—C2—C3—C4179.9 (2)O4—C22—C21—N2178.3 (3)
O2—C2—C3—C8179.7 (3)C23—C22—C21—N21.7 (3)
C1—C2—C3—C80.5 (2)C23—C28—C27—C261.4 (3)
C8—C3—C4—C50.6 (3)N2—C28—C27—C26176.9 (2)
C2—C3—C4—C5179.9 (2)C28—C27—C26—C250.4 (4)
C6—C5—C4—C30.7 (3)C24—C25—C26—C270.8 (4)
I1—C5—C4—C3178.87 (16)I2—C25—C26—C27176.51 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29A···O2i0.972.573.399 (3)144
C27—H27···O2i0.93 (3)2.48 (3)3.407 (3)174 (3)
C9—H9A···O40.972.563.366 (3)140
Symmetry code: (i) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29A···O2i0.972.573.399 (3)144
C27—H27···O2i0.93 (3)2.48 (3)3.407 (3)174 (3)
C9—H9A···O40.972.563.366 (3)140
Symmetry code: (i) x+1, y+1, z1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20972089) and by a grant from the State Key Laboratory of Crystal Materials.

References

First citationAbid, O.-R., Qadeer, G., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2223.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJi, L., Fang, Q., Yuan, M. S., Liu, Z. Q., Shen, Y. X. & Chen, H. F. (2010). Org. Lett. 12, 5192–5195.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKurkin, A. V., Bernovskaya, A. A., Yurovskaya, M. A. & Rybakov, V. B. (2008). Acta Cryst. E64, o1448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F., Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds