organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3,5-Di­fluoro­phen­yl)-1-(4-fluoro­phen­yl)-3-tri­fluoro­methyl-1H-pyrazole

aDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 25 November 2013; accepted 1 December 2013; online 7 December 2013)

In the title compound, C16H8F6N2, the dihedral angle between the pyrazole and di­fluoro­benzene rings is 50.30 (13)°, while those between the pyrazole and fluoro­benzene rings and between the di­fluoro­benzene and fluoro­benzene rings are 38.56 (13) and 53.50 (11)°, respectively. Aromatic ππ stacking inter­actions between adjacent di­fluoro­benzene rings [centroid–centroid separation = 3.6082 (11) Å] link the mol­ecules into dimers parallel to [21-2].

Related literature

For background to pyrazole derivatives and their uses, see: Ramaiah et al. (1999[Ramaiah, K., Grossert, J. S., Hooper, D. L., Dubey, P. K. & Ramanatham, J. (1999). J. Indian Chem. Soc. 76, 140-144.]). For a similar structure, see: Sreenivasa et al. (2013[Sreenivasa, S., Manojkumar, K. E., Suchetan, P. A., Mohan, N. R., Kumar, V. & Palakshamurthy, B. S. (2013). Acta Cryst. E69, o176.]).

[Scheme 1]

Experimental

Crystal data
  • C16H8F6N2

  • Mr = 342.24

  • Triclinic, [P \overline 1]

  • a = 7.2535 (3) Å

  • b = 8.6686 (4) Å

  • c = 11.7690 (5) Å

  • α = 70.909 (1)°

  • β = 80.139 (1)°

  • γ = 88.077 (1)°

  • V = 688.78 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.39 mm−1

  • T = 293 K

  • 0.39 × 0.35 × 0.29 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.611, Tmax = 0.669

  • 7069 measured reflections

  • 2181 independent reflections

  • 2040 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.181

  • S = 1.11

  • 2181 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The pyrazole entity is an important moiety in numerous natural and synthetic compounds and in medicinal chemistry (see, for example: Ramaiah et al., 1999). As part of our studies in this area, the title compound, C16H8F6N2, was synthesized and its crystal structure determined.

In the title compound, the dihedral angle between the pyrazole and the difluorobenzene rings is 50.30 (13)°, while those between the pyrazole and the fluorobenzene rings and the difluorobenzene and the fluorobenzene rings are, respectively, 38.56 (13)° and 53.50 (11)°. Compared to these values, the dihedral angles between the pyrazole-benzoic acid ring, pyrazole-fluorobenzene ring and fluorobenzene-benzoic acid ring in the structure of the related compound 2-[5-(2-fluorophenyl)-3-isobutyl-1H-pyrazol-1-yl]benzoic acid (Sreenivasa et al., 2013) are 53.1 (1)°, 52.1 (1)° and 62.1 (1)°, respectively. Aromatic ππ stacking interactions between the difluorobenzene rings in the title structure [centroid-to-centroid separation = 3.6082 (11) Å] links the molecules parallel to [212] in the crystal structure (Fig 2).

Related literature top

For background to pyrazole derivatives and their uses, see: Ramaiah et al. (1999). For a similar structure, see: Sreenivasa et al. (2013).

Experimental top

1-(3,5-Difluorophenyl)-4,4,4-trifluorobutane-1,3-dione (0.015 mmol) and (4-fluorophenyl)hydrazine (0.015 mmol) were taken in dry ethanol (14 ml) and the reaction mixture was stirred for 6 h at 348 K under a nitrogen atmosphere. The reaction was monitored by TLC and the excess solvent was removed by vacuum to obtain the crude compound. It was purified by column chromatography using dichloromethane and ethanol (9:1) as eluent.

Yellow prisms suitable for diffraction studies were grown by slow evaporation of the solvent system: dichloromethane and methanol (9:1).

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. The isotropic displacement parameters for all H atoms were set to 1.2 times Ueq of the parent atom.

Structure description top

The pyrazole entity is an important moiety in numerous natural and synthetic compounds and in medicinal chemistry (see, for example: Ramaiah et al., 1999). As part of our studies in this area, the title compound, C16H8F6N2, was synthesized and its crystal structure determined.

In the title compound, the dihedral angle between the pyrazole and the difluorobenzene rings is 50.30 (13)°, while those between the pyrazole and the fluorobenzene rings and the difluorobenzene and the fluorobenzene rings are, respectively, 38.56 (13)° and 53.50 (11)°. Compared to these values, the dihedral angles between the pyrazole-benzoic acid ring, pyrazole-fluorobenzene ring and fluorobenzene-benzoic acid ring in the structure of the related compound 2-[5-(2-fluorophenyl)-3-isobutyl-1H-pyrazol-1-yl]benzoic acid (Sreenivasa et al., 2013) are 53.1 (1)°, 52.1 (1)° and 62.1 (1)°, respectively. Aromatic ππ stacking interactions between the difluorobenzene rings in the title structure [centroid-to-centroid separation = 3.6082 (11) Å] links the molecules parallel to [212] in the crystal structure (Fig 2).

For background to pyrazole derivatives and their uses, see: Ramaiah et al. (1999). For a similar structure, see: Sreenivasa et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Aromatic Cg···Cg stacking interactions observed in the crystal structure of the title compound. [Cg is the centroid of the difluorobenzene ring. H-atoms are omitted for clarity.]
5-(3,5-Difluorophenyl)-1-(4-fluorophenyl)-3-trifluoromethyl-1H-pyrazole top
Crystal data top
C16H8F6N2F(000) = 344
Mr = 342.24Prism
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Melting point: 456 K
a = 7.2535 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.6686 (4) ÅCell parameters from 1234 reflections
c = 11.7690 (5) Åθ = 4.0–64.8°
α = 70.909 (1)°µ = 1.39 mm1
β = 80.139 (1)°T = 293 K
γ = 88.077 (1)°Prism, yellow
V = 688.78 (5) Å30.39 × 0.35 × 0.29 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2181 independent reflections
Radiation source: fine-focus sealed tube2040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 64.8°, θmin = 4.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.611, Tmax = 0.669k = 910
7069 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1212P)2 + 0.5142P]
where P = (Fo2 + 2Fc2)/3
2181 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C16H8F6N2γ = 88.077 (1)°
Mr = 342.24V = 688.78 (5) Å3
Triclinic, P1Z = 2
a = 7.2535 (3) ÅCu Kα radiation
b = 8.6686 (4) ŵ = 1.39 mm1
c = 11.7690 (5) ÅT = 293 K
α = 70.909 (1)°0.39 × 0.35 × 0.29 mm
β = 80.139 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2181 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2040 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 0.669Rint = 0.042
7069 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.11Δρmax = 0.45 e Å3
2181 reflectionsΔρmin = 0.48 e Å3
217 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F50.4695 (2)0.16122 (18)0.61518 (14)0.0259 (4)
F40.0082 (2)0.5540 (2)0.60896 (14)0.0277 (4)
F30.8754 (2)1.09529 (19)0.57955 (14)0.0311 (4)
F20.8448 (2)1.0637 (2)0.77056 (15)0.0338 (5)
F60.7353 (3)0.0365 (2)1.12881 (15)0.0368 (5)
F11.0813 (2)0.9640 (2)0.68380 (16)0.0329 (5)
N20.7064 (3)0.5860 (3)0.80633 (18)0.0181 (5)
C80.7111 (3)0.4265 (3)0.8934 (2)0.0178 (6)
C20.5326 (3)0.3904 (3)0.6683 (2)0.0186 (6)
H20.65100.35200.68150.022*
C100.5548 (4)0.1787 (3)1.0287 (2)0.0231 (6)
H100.44640.11521.06510.028*
C70.6008 (3)0.6408 (3)0.7159 (2)0.0178 (5)
C30.4110 (4)0.3037 (3)0.6324 (2)0.0188 (5)
C140.7893 (3)0.8337 (3)0.7149 (2)0.0191 (6)
C40.2343 (3)0.3540 (3)0.6116 (2)0.0196 (6)
H40.15520.29280.58750.024*
C50.1808 (3)0.5007 (3)0.6286 (2)0.0196 (6)
N10.8244 (3)0.7042 (3)0.80627 (19)0.0197 (5)
C160.8973 (3)0.9877 (3)0.6872 (2)0.0222 (6)
C110.7271 (4)0.1186 (3)1.0535 (2)0.0252 (6)
C60.2943 (3)0.5943 (3)0.6650 (2)0.0191 (6)
H60.25290.69180.67630.023*
C10.4720 (3)0.5386 (3)0.6844 (2)0.0174 (5)
C130.8827 (4)0.3653 (3)0.9218 (2)0.0230 (6)
H130.99140.42880.88600.028*
C150.6500 (3)0.8044 (3)0.6551 (2)0.0187 (6)
H150.60180.87710.59020.022*
C90.5463 (3)0.3358 (3)0.9483 (2)0.0207 (6)
H90.43150.37990.93140.025*
C120.8922 (4)0.2094 (4)1.0036 (2)0.0276 (6)
H121.00600.16721.02430.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F50.0287 (8)0.0245 (8)0.0340 (9)0.0044 (6)0.0110 (6)0.0196 (7)
F40.0148 (7)0.0429 (10)0.0349 (9)0.0067 (6)0.0103 (6)0.0230 (8)
F30.0322 (9)0.0291 (9)0.0316 (9)0.0068 (7)0.0084 (7)0.0073 (7)
F20.0414 (10)0.0309 (9)0.0371 (10)0.0063 (7)0.0009 (7)0.0241 (8)
F60.0465 (10)0.0285 (10)0.0311 (9)0.0012 (8)0.0096 (8)0.0021 (7)
F10.0195 (8)0.0299 (9)0.0533 (11)0.0036 (6)0.0088 (7)0.0169 (8)
N20.0154 (10)0.0240 (12)0.0198 (11)0.0024 (8)0.0037 (8)0.0131 (9)
C80.0225 (12)0.0211 (13)0.0150 (11)0.0015 (10)0.0050 (9)0.0116 (10)
C20.0149 (11)0.0263 (14)0.0191 (12)0.0019 (10)0.0053 (9)0.0125 (10)
C100.0284 (13)0.0241 (14)0.0184 (13)0.0058 (10)0.0013 (10)0.0113 (11)
C70.0135 (11)0.0257 (13)0.0197 (12)0.0001 (9)0.0044 (9)0.0140 (10)
C30.0215 (12)0.0192 (12)0.0195 (12)0.0013 (9)0.0033 (9)0.0116 (10)
C140.0180 (12)0.0240 (13)0.0197 (12)0.0010 (10)0.0027 (9)0.0135 (11)
C40.0178 (12)0.0267 (14)0.0180 (12)0.0040 (10)0.0036 (9)0.0114 (10)
C50.0115 (11)0.0315 (14)0.0173 (12)0.0010 (10)0.0032 (9)0.0098 (10)
N10.0175 (10)0.0232 (12)0.0227 (11)0.0031 (8)0.0043 (8)0.0127 (9)
C160.0202 (12)0.0267 (14)0.0246 (14)0.0011 (10)0.0054 (10)0.0140 (11)
C110.0373 (16)0.0224 (14)0.0167 (12)0.0003 (11)0.0061 (11)0.0067 (10)
C60.0182 (12)0.0235 (13)0.0194 (12)0.0025 (10)0.0047 (9)0.0116 (10)
C10.0157 (11)0.0241 (13)0.0159 (12)0.0018 (9)0.0030 (9)0.0108 (10)
C130.0214 (13)0.0283 (14)0.0219 (13)0.0032 (10)0.0057 (10)0.0103 (11)
C150.0182 (12)0.0215 (13)0.0208 (12)0.0022 (10)0.0059 (9)0.0116 (10)
C90.0180 (12)0.0303 (14)0.0192 (12)0.0001 (10)0.0018 (9)0.0157 (11)
C120.0278 (14)0.0321 (15)0.0258 (14)0.0027 (11)0.0109 (11)0.0105 (12)
Geometric parameters (Å, º) top
F5—C31.359 (3)C7—C151.390 (4)
F4—C51.351 (3)C7—C11.478 (3)
F3—C161.336 (3)C3—C41.376 (4)
F2—C161.349 (3)C14—N11.329 (3)
F6—C111.353 (3)C14—C151.399 (3)
F1—C161.339 (3)C14—C161.483 (3)
N2—N11.357 (3)C4—C51.383 (4)
N2—C71.367 (3)C4—H40.9300
N2—C81.430 (3)C5—C61.383 (3)
C8—C131.388 (4)C11—C121.385 (4)
C8—C91.390 (4)C6—C11.390 (3)
C2—C31.378 (3)C6—H60.9300
C2—C11.404 (4)C13—C121.387 (4)
C2—H20.9300C13—H130.9300
C10—C111.378 (4)C15—H150.9300
C10—C91.387 (4)C9—H90.9300
C10—H100.9300C12—H120.9300
N1—N2—C7112.0 (2)F3—C16—F1107.1 (2)
N1—N2—C8118.73 (19)F3—C16—F2106.1 (2)
C7—N2—C8129.3 (2)F1—C16—F2106.02 (19)
C13—C8—C9121.0 (2)F3—C16—C14111.8 (2)
C13—C8—N2118.7 (2)F1—C16—C14112.6 (2)
C9—C8—N2120.3 (2)F2—C16—C14112.7 (2)
C3—C2—C1117.9 (2)F6—C11—C10118.5 (2)
C3—C2—H2121.1F6—C11—C12118.7 (2)
C1—C2—H2121.1C10—C11—C12122.8 (3)
C11—C10—C9118.7 (2)C5—C6—C1118.2 (2)
C11—C10—H10120.6C5—C6—H6120.9
C9—C10—H10120.6C1—C6—H6120.9
N2—C7—C15106.9 (2)C6—C1—C2120.5 (2)
N2—C7—C1125.3 (2)C6—C1—C7119.4 (2)
C15—C7—C1127.6 (2)C2—C1—C7120.0 (2)
F5—C3—C4118.0 (2)C12—C13—C8120.0 (2)
F5—C3—C2118.2 (2)C12—C13—H13120.0
C4—C3—C2123.8 (2)C8—C13—H13120.0
N1—C14—C15113.4 (2)C7—C15—C14103.6 (2)
N1—C14—C16118.8 (2)C7—C15—H15128.2
C15—C14—C16127.8 (2)C14—C15—H15128.2
C3—C4—C5116.2 (2)C10—C9—C8119.3 (2)
C3—C4—H4121.9C10—C9—H9120.3
C5—C4—H4121.9C8—C9—H9120.3
F4—C5—C4117.9 (2)C11—C12—C13118.0 (2)
F4—C5—C6118.7 (2)C11—C12—H12121.0
C4—C5—C6123.4 (2)C13—C12—H12121.0
C14—N1—N2104.07 (19)
N1—N2—C8—C1337.8 (3)C9—C10—C11—F6177.9 (2)
C7—N2—C8—C13139.9 (2)C9—C10—C11—C121.4 (4)
N1—N2—C8—C9142.0 (2)F4—C5—C6—C1179.7 (2)
C7—N2—C8—C940.3 (3)C4—C5—C6—C10.7 (4)
N1—N2—C7—C151.2 (3)C5—C6—C1—C20.6 (4)
C8—N2—C7—C15179.0 (2)C5—C6—C1—C7176.2 (2)
N1—N2—C7—C1174.1 (2)C3—C2—C1—C60.3 (4)
C8—N2—C7—C13.7 (4)C3—C2—C1—C7176.5 (2)
C1—C2—C3—F5179.2 (2)N2—C7—C1—C6134.5 (2)
C1—C2—C3—C40.0 (4)C15—C7—C1—C651.2 (3)
F5—C3—C4—C5179.2 (2)N2—C7—C1—C248.6 (3)
C2—C3—C4—C50.0 (4)C15—C7—C1—C2125.7 (3)
C3—C4—C5—F4180.0 (2)C9—C8—C13—C121.8 (4)
C3—C4—C5—C60.4 (4)N2—C8—C13—C12178.4 (2)
C15—C14—N1—N20.5 (3)N2—C7—C15—C141.4 (2)
C16—C14—N1—N2179.3 (2)C1—C7—C15—C14173.8 (2)
C7—N2—N1—C140.5 (2)N1—C14—C15—C71.2 (3)
C8—N2—N1—C14178.55 (19)C16—C14—C15—C7178.5 (2)
N1—C14—C16—F3167.2 (2)C11—C10—C9—C81.3 (3)
C15—C14—C16—F312.5 (3)C13—C8—C9—C102.9 (3)
N1—C14—C16—F146.5 (3)N2—C8—C9—C10177.3 (2)
C15—C14—C16—F1133.1 (3)F6—C11—C12—C13176.8 (2)
N1—C14—C16—F273.3 (3)C10—C11—C12—C132.4 (4)
C15—C14—C16—F2107.0 (3)C8—C13—C12—C110.8 (4)

Experimental details

Crystal data
Chemical formulaC16H8F6N2
Mr342.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2535 (3), 8.6686 (4), 11.7690 (5)
α, β, γ (°)70.909 (1), 80.139 (1), 88.077 (1)
V3)688.78 (5)
Z2
Radiation typeCu Kα
µ (mm1)1.39
Crystal size (mm)0.39 × 0.35 × 0.29
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.611, 0.669
No. of measured, independent and
observed [I > 2σ(I)] reflections
7069, 2181, 2040
Rint0.042
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.181, 1.11
No. of reflections2181
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors acknowledge the IOE X-ray diffractometer Facility, University of Mysore, Mysore, for the data collection.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamaiah, K., Grossert, J. S., Hooper, D. L., Dubey, P. K. & Ramanatham, J. (1999). J. Indian Chem. Soc. 76, 140–144.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, S., Manojkumar, K. E., Suchetan, P. A., Mohan, N. R., Kumar, V. & Palakshamurthy, B. S. (2013). Acta Cryst. E69, o176.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds