inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nickel(II) uranium(IV) tris­­ulfide

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 26 November 2013; accepted 12 December 2013; online 21 December 2013)

Crystals of NiUS3 were obtained from the reaction of the elements Ni, U, S, and of GeI2 in a CsCl flux at 1173 K. Nickel(II) uranium(IV) tris­ulfide, NiUS3, has ortho­rhom­bic (Pnma) symmetry and crystallizes in the GdFeO3 structure type. The compound has a perovskite ABQ3-like structure, with U occupying the inter­stitial sites of a NiS6 framework. The U atoms are coordinated by eight S atoms in a distorted bicapped trigonal–prismatic arrangement. The Ni atoms are coordinated by six S atoms in a slightly distorted octa­hedral arrangement. The asymmetric unit comprises one U site (site symmetry .m.), one Ni site (-1), and two S sites (1 and .m.).

Related literature

Uranium chalcogenides of the composition ABQ3 are known for Sc, V–Ni, Pd, Ru, Rh, and Ba (for a review, see: Narducci & Ibers, 1998[Narducci, A. A. & Ibers, J. A. (1998). Chem. Mater. 10, 2811-2823.]). These compounds all have perovskite-type structures with A atoms occupying eight-coordinate inter­stitial sites within a BQ6 framework. There are two subclasses of the ABQ3 structure, viz. GdFeO3 (Pnma) (Marezio et al., 1970[Marezio, M., Remeika, J. P. & Dernier, P. D. (1970). Acta Cryst. B26, 2008-2022.]) and FeUS3 (Cmcm) (Noël & Padiou, 1976[Noël, H. & Padiou, J. (1976). Acta Cryst. B32, 1593-1595.]). Single-crystal refinements have been carried out for BaUS3 (Brochu et al., 1970[Brochu, R., Padiou, J. & Grandjean, D. (1970). C. R. Seances Acad. Sci. Ser. C, 271, 642-643.]), CrUS3 (Noël et al., 1975[Noël, H., Padiou, J. & Prigent, J. (1975). C. R. Seances Acad. Sci. Ser. C, 280, 123-126.]), FeUQ3 (Q = S, Se) (Noël & Padiou, 1976[Noël, H. & Padiou, J. (1976). Acta Cryst. B32, 1593-1595.]; Jin et al., 2010[Jin, G. B., Ringe, E., Long, G. J., Grandjean, F., Sougrati, M. T., Choi, E. S., Wells, D. M., Balasubramanian, M. & Ibers, J. A. (2010). Inorg. Chem. 49, 10455-10467.]), ScUS3 (Julien et al., 1978[Julien, R., Rodier, N. & Tien, V. (1978). Acta Cryst. B34, 2612-2614.]), RhUS3 (Daoudi & Noël, 1987[Daoudi, A. & Noël, H. (1987). Inorg. Chim. Acta, 140, 93-95.]), PdUSe3 (Daoudi & Noël, 1989[Daoudi, A. & Noël, H. (1989). J. Less Common Met. 153, 293-298.]), and MnUSe3 (Ijjaali et al., 2004[Ijjaali, I., Mitchell, K., Huang, F. Q. & Ibers, J. A. (2004). J. Solid State Chem. 177, 257-261.]). The unit cell of NiUS3 was determined previously from powder diffracton experiments (Noël et al., 1971[Noël, H., Padiou, J. & Prigent, J. (1971). C. R. Seances Acad. Sci. Ser. C, 272, 206-208.]). For standardization of structural data, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • NiUS3

  • Mr = 392.92

  • Orthorhombic, P n m a

  • a = 6.8924 (3) Å

  • b = 8.7570 (4) Å

  • c = 6.0758 (2) Å

  • V = 366.72 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 50.68 mm−1

  • T = 100 K

  • 0.09 × 0.09 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.093, Tmax = 0.108

  • 7334 measured reflections

  • 748 independent reflections

  • 728 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.043

  • S = 1.36

  • 748 reflections

  • 29 parameters

  • Δρmax = 2.80 e Å−3

  • Δρmin = −1.15 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2013[Sheldrick, G. M. (2013). SHELX2013. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013[Sheldrick, G. M. (2013). SHELX2013. University of Göttingen, Germany.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

NiUS3 crystallizes in the orthorhombic space group Pnma. Its unit cell was previously determined (Noël et al., 1971), revealing the compound to be isostructral with uranium compounds with analogous compositions. A number of uranium chalcogenides of the composition ABQ3 are known (for a review, see: Narducci & Ibers, 1998) and crystallize in two subclasses, viz. GdFeO3 (Pnma) (Marezio et al., 1970) and FeUS3 (Cmcm) (Noël & Padiou, 1976). Most of the ABQ3 compounds crystallize in the three-dimesional GdFeO3 structure type. However, when B = Sc, Fe, or Mn, they crystallize in the layered FeUS3 structure type. Refinements based on single crystal data have been carried out for BaUS3 (Brochu et al., 1970), CrUS3 (Noël et al., 1975), FeUQ3 (Q = S, Se) (Noël & Padiou, 1976; Jin et al., 2010), ScUS3 (Julien et al., 1978), RhUS3 (Daoudi & Noël, 1987), PdUSe3 (Daoudi & Noël, 1989), and MnUSe3 (Ijjaali et al., 2004).

The structure is composed of one U site, one Ni site, and two S sites. The uranium atoms are coordinated by eight S atoms in a distorted bicapped trigonal-prismatic arrangement. The Ni atoms are coordinated by six S atoms in a slightly distorted octahedral arrangement. The unit cell is shown in Figure 1 and a packing diagram is shown in Figure 2. There is no evidence of S—S bonding and thus formal oxidation states may be assigned as +II,+IV, and –II for Ni, U, and S, respectively. U—S distances range from 2.6666 (13) Å to 3.0088 (8) Å. These distances compare favorably with the U—S distances in the related compound RhUS3 (Daoudi & Noël, 1987). Ni—S distances range from 2.3386 (4) Å to 2.4739 (9) Å.

Related literature top

Uranium chalcogenides of the composition ABQ3 are known for Sc, V—Ni, Pd, Ru, Rh, and Ba (for a review, see: Narducci & Ibers, 1998). These compounds all have perovskite-type structures with A atoms occupying eight-coordinate interstitial sites within a BQ6 framework. There are two subclasses of the ABQ3 structure, viz. GdFeO3 (Pnma) (Marezio et al., 1970) and FeUS3 (Cmcm) (Noël & Padiou, 1976). Single crystal refinements have been carried out for BaUS3 (Brochu et al., 1970), CrUS3 (Noël et al., 1975), FeUQ3 (Q = S, Se) (Noël & Padiou, 1976; Jin et al., 2010), ScUS3 (Julien et al., 1978), RhUS3 (Daoudi & Noël, 1987), PdUSe3 (Daoudi & Noël, 1989), and MnUSe3 (Ijjaali et al., 2004). The unit cell of NiUS3 was previously determined from powder diffracton experiments (Noël et al., 1971). For standardization of structural data, see: Gelato & Parthé (1987).

Experimental top

NiUS3 was obtained from the reaction of U (0.126 mmol), GeI2 (0.063 mmol), Ni (0.126 mmol), and S (0.378 mmol) in a CsCl flux (0.445 mmol). The reactants were loaded into a carbon-coated fused-silica tube under an inert Ar atmosphere that was evacuated to 10 -4 Torr. The tube was then flame sealed. It was placed in a computer-controlled furnace and heated to 1173 K in 12 h, held there for 6 h, cooled to 1073 K in 12 h and then held there for a further 96 h. The tube was next cooled at 5 K/h to 773 K and then to 298 K in 12 h. The reaction yielded black prisms of NiUS3 and black rectangular plates of NiU8S17 (Noël et al., 1971). The crystals were washed with water and dried with acetone to remove excess flux. They are stable to both air and moisture.

Refinement top

Atomic positions were standardized with the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak of 2.8 (3) e-3 is 1.81 Å from atom S2 and the deepest hole of -1.2 (3) e-3 is 0.96 Å from atom U1.

Structure description top

NiUS3 crystallizes in the orthorhombic space group Pnma. Its unit cell was previously determined (Noël et al., 1971), revealing the compound to be isostructral with uranium compounds with analogous compositions. A number of uranium chalcogenides of the composition ABQ3 are known (for a review, see: Narducci & Ibers, 1998) and crystallize in two subclasses, viz. GdFeO3 (Pnma) (Marezio et al., 1970) and FeUS3 (Cmcm) (Noël & Padiou, 1976). Most of the ABQ3 compounds crystallize in the three-dimesional GdFeO3 structure type. However, when B = Sc, Fe, or Mn, they crystallize in the layered FeUS3 structure type. Refinements based on single crystal data have been carried out for BaUS3 (Brochu et al., 1970), CrUS3 (Noël et al., 1975), FeUQ3 (Q = S, Se) (Noël & Padiou, 1976; Jin et al., 2010), ScUS3 (Julien et al., 1978), RhUS3 (Daoudi & Noël, 1987), PdUSe3 (Daoudi & Noël, 1989), and MnUSe3 (Ijjaali et al., 2004).

The structure is composed of one U site, one Ni site, and two S sites. The uranium atoms are coordinated by eight S atoms in a distorted bicapped trigonal-prismatic arrangement. The Ni atoms are coordinated by six S atoms in a slightly distorted octahedral arrangement. The unit cell is shown in Figure 1 and a packing diagram is shown in Figure 2. There is no evidence of S—S bonding and thus formal oxidation states may be assigned as +II,+IV, and –II for Ni, U, and S, respectively. U—S distances range from 2.6666 (13) Å to 3.0088 (8) Å. These distances compare favorably with the U—S distances in the related compound RhUS3 (Daoudi & Noël, 1987). Ni—S distances range from 2.3386 (4) Å to 2.4739 (9) Å.

Uranium chalcogenides of the composition ABQ3 are known for Sc, V—Ni, Pd, Ru, Rh, and Ba (for a review, see: Narducci & Ibers, 1998). These compounds all have perovskite-type structures with A atoms occupying eight-coordinate interstitial sites within a BQ6 framework. There are two subclasses of the ABQ3 structure, viz. GdFeO3 (Pnma) (Marezio et al., 1970) and FeUS3 (Cmcm) (Noël & Padiou, 1976). Single crystal refinements have been carried out for BaUS3 (Brochu et al., 1970), CrUS3 (Noël et al., 1975), FeUQ3 (Q = S, Se) (Noël & Padiou, 1976; Jin et al., 2010), ScUS3 (Julien et al., 1978), RhUS3 (Daoudi & Noël, 1987), PdUSe3 (Daoudi & Noël, 1989), and MnUSe3 (Ijjaali et al., 2004). The unit cell of NiUS3 was previously determined from powder diffracton experiments (Noël et al., 1971). For standardization of structural data, see: Gelato & Parthé (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2013); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2013).

Figures top
[Figure 1] Fig. 1. The unit cell of NiUS3. Displacement ellipsoids at the 95% probability level are shown.
[Figure 2] Fig. 2. A packing diagram of NiUS3 viewed down the a axis. Ni atoms are green, U atoms are black, and S atoms are orange.
Nickel(II) uranium(IV) trisulfide top
Crystal data top
NiUS3Dx = 7.117 Mg m3
Mr = 392.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 3973 reflections
a = 6.8924 (3) Åθ = 4.1–33.2°
b = 8.7570 (4) ŵ = 50.68 mm1
c = 6.0758 (2) ÅT = 100 K
V = 366.72 (3) Å3Prism, black
Z = 40.09 × 0.09 × 0.08 mm
F(000) = 672
Data collection top
Bruker APEXII CCD
diffractometer
728 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
φ and ω scansθmax = 33.2°, θmin = 4.1°
Absorption correction: numerical
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.093, Tmax = 0.108k = 1313
7334 measured reflectionsl = 99
748 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0149Fo2)2]
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max < 0.001
wR(F2) = 0.043Δρmax = 2.80 e Å3
S = 1.36Δρmin = 1.15 e Å3
748 reflectionsExtinction correction: SHELXL2013 (Sheldrick, 2013), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
29 parametersExtinction coefficient: 0.0039 (4)
Crystal data top
NiUS3V = 366.72 (3) Å3
Mr = 392.92Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 6.8924 (3) ŵ = 50.68 mm1
b = 8.7570 (4) ÅT = 100 K
c = 6.0758 (2) Å0.09 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
748 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2009)
728 reflections with I > 2σ(I)
Tmin = 0.093, Tmax = 0.108Rint = 0.047
7334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01829 parameters
wR(F2) = 0.0430 restraints
S = 1.36Δρmax = 2.80 e Å3
748 reflectionsΔρmin = 1.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.38141 (3)0.25000.05064 (3)0.00770 (8)
Ni10.00000.00000.00000.00778 (13)
S10.18039 (14)0.05448 (9)0.33217 (13)0.00731 (15)
S20.52930 (19)0.25000.63121 (19)0.0085 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00525 (11)0.00896 (10)0.00890 (10)0.0000.00069 (5)0.000
Ni10.0069 (3)0.0081 (2)0.0083 (2)0.0009 (2)0.0008 (2)0.0002 (2)
S10.0057 (4)0.0087 (3)0.0075 (3)0.0000 (3)0.0000 (3)0.0004 (3)
S20.0081 (6)0.0079 (4)0.0095 (5)0.0000.0023 (4)0.000
Geometric parameters (Å, º) top
U1—S2i2.6666 (13)Ni1—S1ix2.4180 (8)
U1—S2ii2.7446 (12)Ni1—S12.4180 (8)
U1—S1iii2.7721 (9)Ni1—S1i2.4739 (9)
U1—S1iv2.7721 (9)Ni1—S1vi2.4739 (9)
U1—S1v2.7888 (8)Ni1—U1ix3.4349 (2)
U1—S12.7888 (8)S1—Ni1x2.4739 (9)
U1—S1vi3.0088 (8)S1—U1i2.7722 (9)
U1—S1vii3.0088 (8)S1—U1x3.0088 (8)
U1—Ni13.4349 (2)S2—Ni1x2.3386 (4)
U1—Ni1viii3.4349 (2)S2—Ni1iii2.3386 (4)
Ni1—S2i2.3386 (4)S2—U1iv2.6666 (13)
Ni1—S2vi2.3386 (4)S2—U1xi2.7446 (12)
S2i—U1—S2ii87.32 (2)S2i—Ni1—S2vi180.0
S2i—U1—S1iii141.532 (18)S2i—Ni1—S1ix86.82 (3)
S2ii—U1—S1iii87.85 (3)S2vi—Ni1—S1ix93.18 (3)
S2i—U1—S1iv141.532 (18)S2i—Ni1—S193.18 (3)
S2ii—U1—S1iv87.85 (3)S2vi—Ni1—S186.82 (3)
S1iii—U1—S1iv76.29 (3)S1ix—Ni1—S1180.00 (4)
S2i—U1—S1v78.58 (3)S2i—Ni1—S1i92.11 (4)
S2ii—U1—S1v138.939 (19)S2vi—Ni1—S1i87.89 (4)
S1iii—U1—S1v80.362 (19)S1ix—Ni1—S1i85.654 (14)
S1iv—U1—S1v126.225 (15)S1—Ni1—S1i94.346 (14)
S2i—U1—S178.58 (3)S2i—Ni1—S1vi87.89 (4)
S2ii—U1—S1138.939 (19)S2vi—Ni1—S1vi92.11 (4)
S1iii—U1—S1126.225 (15)S1ix—Ni1—S1vi94.346 (14)
S1iv—U1—S180.362 (19)S1—Ni1—S1vi85.654 (14)
S1v—U1—S175.75 (3)S1i—Ni1—S1vi180.0
S2i—U1—S1vi71.84 (2)S2i—Ni1—U1ix129.21 (3)
S2ii—U1—S1vi69.082 (18)S2vi—Ni1—U1ix50.79 (3)
S1iii—U1—S1vi139.987 (15)S1ix—Ni1—U1ix53.55 (2)
S1iv—U1—S1vi70.81 (3)S1—Ni1—U1ix126.45 (2)
S1v—U1—S1vi138.102 (15)S1i—Ni1—U1ix58.556 (19)
S1—U1—S1vi69.890 (12)S1vi—Ni1—U1ix121.444 (19)
S2i—U1—S1vii71.84 (2)S2i—Ni1—U150.79 (3)
S2ii—U1—S1vii69.082 (18)S2vi—Ni1—U1129.21 (3)
S1iii—U1—S1vii70.81 (3)S1ix—Ni1—U1126.45 (2)
S1iv—U1—S1vii139.987 (15)S1—Ni1—U153.55 (2)
S1v—U1—S1vii69.890 (12)S1i—Ni1—U1121.444 (19)
S1—U1—S1vii138.102 (15)S1vi—Ni1—U158.556 (19)
S1vi—U1—S1vii124.80 (3)U1ix—Ni1—U1180.0
S2i—U1—Ni142.805 (10)Ni1—S1—Ni1x139.81 (4)
S2ii—U1—Ni1101.60 (2)Ni1—S1—U1i87.36 (3)
S1iii—U1—Ni1170.255 (18)Ni1x—S1—U1i132.47 (3)
S1iv—U1—Ni1101.436 (18)Ni1—S1—U182.22 (2)
S1v—U1—Ni193.784 (19)Ni1x—S1—U185.92 (3)
S1—U1—Ni144.224 (18)U1i—S1—U198.49 (2)
S1vi—U1—Ni144.546 (18)Ni1—S1—U1x96.93 (3)
S1vii—U1—Ni1114.642 (18)Ni1x—S1—U1x76.90 (2)
S2i—U1—Ni1viii42.805 (10)U1i—S1—U1x109.19 (3)
S2ii—U1—Ni1viii101.60 (2)U1—S1—U1x152.25 (3)
S1iii—U1—Ni1viii101.436 (18)Ni1x—S2—Ni1iii138.82 (6)
S1iv—U1—Ni1viii170.255 (18)Ni1x—S2—U1iv86.41 (3)
S1v—U1—Ni1viii44.224 (18)Ni1iii—S2—U1iv86.41 (3)
S1—U1—Ni1viii93.784 (19)Ni1x—S2—U1xi106.53 (3)
S1vi—U1—Ni1viii114.642 (18)Ni1iii—S2—U1xi106.53 (3)
S1vii—U1—Ni1viii44.546 (18)U1iv—S2—U1xi136.28 (5)
Ni1—U1—Ni1viii79.190 (5)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x, y, z1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y, z+1/2; (v) x, y+1/2, z; (vi) x+1/2, y, z1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x, y+1/2, z; (ix) x, y, z; (x) x+1/2, y, z+1/2; (xi) x, y, z+1.

Experimental details

Crystal data
Chemical formulaNiUS3
Mr392.92
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)100
a, b, c (Å)6.8924 (3), 8.7570 (4), 6.0758 (2)
V3)366.72 (3)
Z4
Radiation typeMo Kα
µ (mm1)50.68
Crystal size (mm)0.09 × 0.09 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionNumerical
(SADABS; Bruker, 2009)
Tmin, Tmax0.093, 0.108
No. of measured, independent and
observed [I > 2σ(I)] reflections
7334, 748, 728
Rint0.047
(sin θ/λ)max1)0.771
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.043, 1.36
No. of reflections748
No. of parameters29
Δρmax, Δρmin (e Å3)2.80, 1.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2013 (Sheldrick, 2013), SHELXL2013 (Sheldrick, 2013), CrystalMaker (Palmer, 2009).

 

Acknowledgements

Use was made of the IMSERC X-ray facility at Northwestern University, supported by the Inter­national Institute of Nanotechnology.

References

First citationBrochu, R., Padiou, J. & Grandjean, D. (1970). C. R. Seances Acad. Sci. Ser. C, 271, 642–643.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaoudi, A. & Noël, H. (1987). Inorg. Chim. Acta, 140, 93–95.  CrossRef CAS Web of Science Google Scholar
First citationDaoudi, A. & Noël, H. (1989). J. Less Common Met. 153, 293–298.  CrossRef CAS Web of Science Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationIjjaali, I., Mitchell, K., Huang, F. Q. & Ibers, J. A. (2004). J. Solid State Chem. 177, 257–261.  Web of Science CrossRef CAS Google Scholar
First citationJin, G. B., Ringe, E., Long, G. J., Grandjean, F., Sougrati, M. T., Choi, E. S., Wells, D. M., Balasubramanian, M. & Ibers, J. A. (2010). Inorg. Chem. 49, 10455–10467.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJulien, R., Rodier, N. & Tien, V. (1978). Acta Cryst. B34, 2612–2614.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMarezio, M., Remeika, J. P. & Dernier, P. D. (1970). Acta Cryst. B26, 2008–2022.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNarducci, A. A. & Ibers, J. A. (1998). Chem. Mater. 10, 2811–2823.  Web of Science CrossRef CAS Google Scholar
First citationNoël, H. & Padiou, J. (1976). Acta Cryst. B32, 1593–1595.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNoël, H., Padiou, J. & Prigent, J. (1971). C. R. Seances Acad. Sci. Ser. C, 272, 206–208.  Google Scholar
First citationNoël, H., Padiou, J. & Prigent, J. (1975). C. R. Seances Acad. Sci. Ser. C, 280, 123–126.  Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2013). SHELX2013. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds