organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(1-Benzo­furan-2-yl)ethanone O-(2,6-di­fluoro­benz­yl)oxime

aDepartment of Organic Chemistry, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. A. Jurasza 2, 85-089 Bydgoszcz, Poland, and bDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 22 November 2013; accepted 17 December 2013; online 24 December 2013)

In the title compound, C17H13F2NO2, the 2,2-di­fluoro­benz­yloxy residue assumes an E configuration with respect to the benzo­furan system. The benzene ring makes a dihedral angle of 61.70 (4)° with the fused ring system (r.m.s. deviation = 0.008 Å). In the crystal, mol­ecules are connected by weak C—H⋯F hydrogen bonds into chains extending parallel to the b-axis direction.

Related literature

For background to anti­fungal agents, see: Benedetti & Bani (1999[Benedetti, M. S. & Bani, M. (1999). Drug Metab. Rev. 31, 665-717.]); Sheehan et al. (1999[Sheehan, D. J., Hitchcock, Ch. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40-79.]). For the biological activity of oximes and their ethers, see: Attia et al. (2013[Attia, M. I., Zakaria, A. S., Almutairi, M. S. & Ghoneim, S. W. (2013). Molecules, 18, 12208-12221.]); De Luca (2006[De Luca, L. (2006). Curr. Med. Chem. 69, 21-28.]); Emami et al. (2004[Emami, S., Falahati, M., Banifetami, A. & Shafiee, A. (2004). Bioorg. Med. Chem. 12, 5881-5889.]); Karakurt et al. (2001[Karakurt, A., Dalkara, S., Özalp, M., Özbey, S., Kendi, E. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 421-433.]); Massolini et al. (1993[Massolini, G., Carmellino, M. L., Kitsos, M. & Baruffini, A. (1993). Il Farmaco, 48, 503-514.]); Mixich & Thiele (1985[Mixich, G. & Thiele, K. (1985). US Patent 4 550 175.]). For the synthesis of the title compound, see: Demirayak et al. (2002[Demirayak, S., Uçucu, Ü., Benkli, K., Gündoğdu-Karaburun, N., Karaburun, A., Akar, D., Karabacak, M. & Kiraz, N. (2002). Il Farmaco, 57, 609-612.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13F2NO2

  • Mr = 301.28

  • Monoclinic, P 21 /n

  • a = 7.36652 (17) Å

  • b = 17.0314 (4) Å

  • c = 11.2047 (2) Å

  • β = 90.020 (2)°

  • V = 1405.76 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 130 K

  • 0.35 × 0.15 × 0.12 mm

Data collection
  • Agilent Xcalibur Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.992, Tmax = 1.000

  • 24335 measured reflections

  • 3548 independent reflections

  • 2887 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.099

  • S = 1.03

  • 3548 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯F22i 0.93 2.54 3.3537 (16) 147
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The increase in fungal infections and the gained resistance to the currently used drugs in recent years directed the studies on obtaining new antifungal drugs (Benedetti & Bani, 1999). After the discovery of oxiconazole (Sheehan et al., 1999), ether oximes became of interest and a number of oximes were synthesized and found to be active against fungi (Attia et al., 2013; De Luca, 2006; Emami et al., 2004; Karakurt et al., 2001; Massolini et al., 1993; Mixich & Thiele, 1985). The crystal structure investigation of the title compound was undertaken to confirm the E configuration of the molecule, proposed on the basis of spectroscopic data.

The molecular structure of the title compound and the atom-labelling scheme is illustrated in Fig. 1. In this compound, the nine-membered benzofuran system is planar with an r.m.s. deviation of 0.0083 Å. The 2,6-difluorobenzyloxy moiety is in the E configuration with respect to the benzofuran system [torsion angle C2—C10—N12—O13: 178.89 (9)°]. The C10—N12 bond is antiperiplanar in relation to the O13—C14 bond [torsion angle C10—N12—O13—C14: 176.13 (10)°]. A similar observation has been made for bonds N12—O13 and C14—C15 [torsion angle N12—O13—C14—C15: 170.08 (10)°]. The planar benzofuran system and the phenyl ring form a dihedral angle of 61.70 (4)°.

The molecular packing in the crystal lattice is stabilized by possible C7—H7···F22i non-classical intermolecular hydrogen bonds (Table 1) which link molecules into chains lying parallel to the b axis (Fig. 2).

Related literature top

For background to antifungal agents, see: Benedetti & Bani (1999); Sheehan et al. (1999). For the biological activity of oximes and their ethers, see: Attia et al. (2013); De Luca (2006); Emami et al. (2004); Karakurt et al. (2001); Massolini et al. (1993); Mixich & Thiele (1985). For the synthesis of the title compound, see: Demirayak et al. (2002).

Experimental top

1-(1-Benzofuran-2-yl)ethanone O-(2,6-difluorobenzyl)oxime was synthesized from 1-(benzofuran-2-yl)ethanone oxime and 2,6-difluorobenzyl bromide, according to the literature procedure of Demirayak et al. (2002). Crystals were obtained after crystallization from ethanol.

Refinement top

All H atoms were placed in idealized positions and were refined within the riding model approximation: Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å, C(sp2)—H = 0.93 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The methyl group was refined as a rigid group which was allowed to rotate.

Structure description top

The increase in fungal infections and the gained resistance to the currently used drugs in recent years directed the studies on obtaining new antifungal drugs (Benedetti & Bani, 1999). After the discovery of oxiconazole (Sheehan et al., 1999), ether oximes became of interest and a number of oximes were synthesized and found to be active against fungi (Attia et al., 2013; De Luca, 2006; Emami et al., 2004; Karakurt et al., 2001; Massolini et al., 1993; Mixich & Thiele, 1985). The crystal structure investigation of the title compound was undertaken to confirm the E configuration of the molecule, proposed on the basis of spectroscopic data.

The molecular structure of the title compound and the atom-labelling scheme is illustrated in Fig. 1. In this compound, the nine-membered benzofuran system is planar with an r.m.s. deviation of 0.0083 Å. The 2,6-difluorobenzyloxy moiety is in the E configuration with respect to the benzofuran system [torsion angle C2—C10—N12—O13: 178.89 (9)°]. The C10—N12 bond is antiperiplanar in relation to the O13—C14 bond [torsion angle C10—N12—O13—C14: 176.13 (10)°]. A similar observation has been made for bonds N12—O13 and C14—C15 [torsion angle N12—O13—C14—C15: 170.08 (10)°]. The planar benzofuran system and the phenyl ring form a dihedral angle of 61.70 (4)°.

The molecular packing in the crystal lattice is stabilized by possible C7—H7···F22i non-classical intermolecular hydrogen bonds (Table 1) which link molecules into chains lying parallel to the b axis (Fig. 2).

For background to antifungal agents, see: Benedetti & Bani (1999); Sheehan et al. (1999). For the biological activity of oximes and their ethers, see: Attia et al. (2013); De Luca (2006); Emami et al. (2004); Karakurt et al. (2001); Massolini et al. (1993); Mixich & Thiele (1985). For the synthesis of the title compound, see: Demirayak et al. (2002).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labelling scheme. Non-H atoms are drawn as 30% probability displacement ellipsoids and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The hydrogen bonding (dotted lines) in the title structure. For symmetry code (i), see Table 1. H atoms not involved in hydrogen-bonding have been omitted for clarity.
1-(1-Benzofuran-2-yl)ethanone O-(2,6-difluorobenzyl)oxime top
Crystal data top
C17H13F2NO2F(000) = 624
Mr = 301.28Dx = 1.424 Mg m3
Monoclinic, P21/nMelting point = 346–348 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.36652 (17) ÅCell parameters from 10469 reflections
b = 17.0314 (4) Åθ = 2.2–29.1°
c = 11.2047 (2) ŵ = 0.11 mm1
β = 90.020 (2)°T = 130 K
V = 1405.76 (5) Å3Indefinite, colourless
Z = 40.35 × 0.15 × 0.12 mm
Data collection top
Agilent Xcalibur Atlas
diffractometer
3548 independent reflections
Radiation source: Enhance (Mo) X-ray Source2887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.3088 pixels mm-1θmax = 29.1°, θmin = 2.2°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 2322
Tmin = 0.992, Tmax = 1.000l = 1415
24335 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.5216P]
where P = (Fo2 + 2Fc2)/3
3548 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H13F2NO2V = 1405.76 (5) Å3
Mr = 301.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.36652 (17) ŵ = 0.11 mm1
b = 17.0314 (4) ÅT = 130 K
c = 11.2047 (2) Å0.35 × 0.15 × 0.12 mm
β = 90.020 (2)°
Data collection top
Agilent Xcalibur Atlas
diffractometer
3548 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2887 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 1.000Rint = 0.033
24335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3548 reflectionsΔρmin = 0.24 e Å3
200 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16108 (11)0.14365 (5)0.55614 (7)0.0225 (2)
C20.01949 (16)0.13157 (7)0.47691 (11)0.0202 (2)
C30.05125 (18)0.16689 (7)0.37076 (11)0.0246 (3)
H30.02450.16670.30440.030*
C40.22538 (17)0.20490 (7)0.38062 (11)0.0228 (3)
C50.3345 (2)0.25081 (8)0.30607 (12)0.0292 (3)
H50.29640.26390.22950.035*
C60.50053 (19)0.27631 (8)0.34892 (13)0.0302 (3)
H60.57500.30650.30010.036*
C70.55844 (18)0.25753 (8)0.46421 (13)0.0294 (3)
H70.67110.27530.49020.035*
C80.45207 (18)0.21312 (8)0.54084 (13)0.0268 (3)
H80.48930.20090.61790.032*
C90.28652 (16)0.18797 (7)0.49543 (11)0.0208 (3)
C100.13574 (16)0.08676 (7)0.52060 (11)0.0199 (2)
C110.27542 (17)0.05873 (8)0.43335 (11)0.0246 (3)
H11A0.24680.00620.40880.037*
H11B0.27610.09260.36490.037*
H11C0.39290.05940.47040.037*
N120.13799 (14)0.07490 (6)0.63388 (9)0.0226 (2)
O130.29434 (11)0.03251 (5)0.66817 (8)0.0240 (2)
C140.28904 (17)0.02743 (9)0.79613 (11)0.0275 (3)
H14A0.26830.07890.83050.033*
H14B0.19170.00720.82130.033*
C150.46849 (16)0.00434 (7)0.83627 (10)0.0200 (2)
C160.62337 (17)0.04170 (7)0.83715 (11)0.0222 (3)
C170.79223 (18)0.01540 (9)0.87023 (12)0.0287 (3)
H170.89240.04860.86870.034*
C180.80877 (19)0.06188 (9)0.90588 (12)0.0316 (3)
H180.92220.08130.92720.038*
C190.6595 (2)0.11065 (8)0.91027 (12)0.0332 (3)
H190.67040.16240.93580.040*
C200.49296 (19)0.08056 (7)0.87563 (11)0.0252 (3)
F210.60530 (12)0.11776 (5)0.80385 (8)0.0363 (2)
F220.34453 (13)0.12699 (5)0.88276 (8)0.0428 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0189 (4)0.0270 (5)0.0216 (4)0.0037 (3)0.0001 (3)0.0006 (3)
C20.0188 (6)0.0209 (6)0.0209 (6)0.0000 (4)0.0008 (5)0.0047 (4)
C30.0256 (6)0.0270 (6)0.0211 (6)0.0050 (5)0.0012 (5)0.0009 (5)
C40.0255 (6)0.0196 (6)0.0234 (6)0.0031 (5)0.0016 (5)0.0029 (4)
C50.0362 (8)0.0257 (6)0.0257 (7)0.0078 (6)0.0016 (6)0.0011 (5)
C60.0326 (7)0.0229 (6)0.0350 (7)0.0088 (5)0.0080 (6)0.0012 (5)
C70.0219 (6)0.0255 (6)0.0407 (8)0.0061 (5)0.0002 (6)0.0051 (5)
C80.0231 (6)0.0277 (7)0.0295 (7)0.0016 (5)0.0023 (5)0.0006 (5)
C90.0207 (6)0.0174 (5)0.0244 (6)0.0004 (4)0.0041 (5)0.0018 (4)
C100.0188 (6)0.0203 (6)0.0206 (6)0.0013 (4)0.0020 (5)0.0028 (4)
C110.0253 (6)0.0271 (6)0.0213 (6)0.0052 (5)0.0005 (5)0.0023 (5)
N120.0160 (5)0.0292 (6)0.0225 (5)0.0043 (4)0.0033 (4)0.0012 (4)
O130.0174 (4)0.0369 (5)0.0178 (4)0.0076 (4)0.0023 (3)0.0005 (4)
C140.0184 (6)0.0468 (8)0.0173 (6)0.0052 (5)0.0012 (5)0.0029 (5)
C150.0181 (6)0.0286 (6)0.0134 (5)0.0020 (5)0.0008 (4)0.0004 (4)
C160.0231 (6)0.0243 (6)0.0194 (6)0.0022 (5)0.0023 (5)0.0030 (4)
C170.0185 (6)0.0426 (8)0.0249 (7)0.0001 (5)0.0006 (5)0.0031 (6)
C180.0271 (7)0.0467 (8)0.0209 (6)0.0161 (6)0.0027 (5)0.0005 (6)
C190.0520 (9)0.0264 (7)0.0212 (6)0.0149 (6)0.0030 (6)0.0039 (5)
C200.0317 (7)0.0261 (6)0.0179 (6)0.0044 (5)0.0037 (5)0.0015 (5)
F210.0375 (5)0.0264 (4)0.0449 (5)0.0016 (3)0.0033 (4)0.0099 (3)
F220.0504 (6)0.0360 (5)0.0421 (5)0.0204 (4)0.0081 (4)0.0012 (4)
Geometric parameters (Å, º) top
O1—C91.3736 (14)C11—H11B0.9600
O1—C21.3848 (15)C11—H11C0.9600
C2—C31.3534 (17)N12—O131.4127 (13)
C2—C101.4594 (17)O13—C141.4369 (15)
C3—C41.4410 (18)C14—C151.4977 (17)
C3—H30.9300C14—H14A0.9700
C4—C91.3929 (18)C14—H14B0.9700
C4—C51.3986 (18)C15—C201.3828 (18)
C5—C61.384 (2)C15—C161.3844 (17)
C5—H50.9300C16—F211.3547 (14)
C6—C71.397 (2)C16—C171.3732 (18)
C6—H60.9300C17—C181.381 (2)
C7—C81.3870 (19)C17—H170.9300
C7—H70.9300C18—C191.379 (2)
C8—C91.3890 (18)C18—H180.9300
C8—H80.9300C19—C201.385 (2)
C10—N121.2853 (16)C19—H190.9300
C10—C111.4972 (17)C20—F221.3517 (15)
C11—H11A0.9600
C9—O1—C2105.72 (9)H11A—C11—H11B109.5
C3—C2—O1111.52 (11)C10—C11—H11C109.5
C3—C2—C10131.52 (11)H11A—C11—H11C109.5
O1—C2—C10116.92 (10)H11B—C11—H11C109.5
C2—C3—C4106.64 (11)C10—N12—O13111.08 (10)
C2—C3—H3126.7N12—O13—C14106.28 (9)
C4—C3—H3126.7O13—C14—C15107.32 (10)
C9—C4—C5118.79 (12)O13—C14—H14A110.3
C9—C4—C3105.39 (11)C15—C14—H14A110.3
C5—C4—C3135.82 (13)O13—C14—H14B110.3
C6—C5—C4118.45 (13)C15—C14—H14B110.3
C6—C5—H5120.8H14A—C14—H14B108.5
C4—C5—H5120.8C20—C15—C16114.96 (11)
C5—C6—C7121.23 (12)C20—C15—C14123.38 (12)
C5—C6—H6119.4C16—C15—C14121.67 (11)
C7—C6—H6119.4F21—C16—C17118.38 (12)
C8—C7—C6121.65 (12)F21—C16—C15117.30 (11)
C8—C7—H7119.2C17—C16—C15124.32 (12)
C6—C7—H7119.2C16—C17—C18117.97 (13)
C7—C8—C9115.95 (13)C16—C17—H17121.0
C7—C8—H8122.0C18—C17—H17121.0
C9—C8—H8122.0C19—C18—C17120.94 (12)
O1—C9—C8125.36 (12)C19—C18—H18119.5
O1—C9—C4110.72 (10)C17—C18—H18119.5
C8—C9—C4123.92 (12)C18—C19—C20118.26 (12)
N12—C10—C2115.07 (11)C18—C19—H19120.9
N12—C10—C11125.85 (11)C20—C19—H19120.9
C2—C10—C11119.08 (11)F22—C20—C15117.55 (12)
C10—C11—H11A109.5F22—C20—C19118.92 (12)
C10—C11—H11B109.5C15—C20—C19123.51 (12)
C9—O1—C2—C30.51 (13)O1—C2—C10—C11168.36 (10)
C9—O1—C2—C10178.77 (10)C2—C10—N12—O13178.89 (9)
O1—C2—C3—C40.06 (14)C11—C10—N12—O131.33 (17)
C10—C2—C3—C4177.86 (12)C10—N12—O13—C14176.13 (10)
C2—C3—C4—C90.60 (14)N12—O13—C14—C15170.08 (10)
C2—C3—C4—C5179.29 (15)O13—C14—C15—C20105.09 (13)
C9—C4—C5—C61.18 (19)O13—C14—C15—C1675.36 (15)
C3—C4—C5—C6178.95 (14)C20—C15—C16—F21177.47 (11)
C4—C5—C6—C70.5 (2)C14—C15—C16—F212.12 (17)
C5—C6—C7—C80.4 (2)C20—C15—C16—C172.02 (18)
C6—C7—C8—C90.70 (19)C14—C15—C16—C17178.39 (12)
C2—O1—C9—C8179.21 (12)F21—C16—C17—C18178.97 (11)
C2—O1—C9—C40.91 (13)C15—C16—C17—C180.5 (2)
C7—C8—C9—O1179.90 (11)C16—C17—C18—C191.2 (2)
C7—C8—C9—C40.03 (19)C17—C18—C19—C201.3 (2)
C5—C4—C9—O1178.96 (11)C16—C15—C20—F22176.55 (11)
C3—C4—C9—O10.95 (13)C14—C15—C20—F223.03 (18)
C5—C4—C9—C80.92 (19)C16—C15—C20—C191.93 (18)
C3—C4—C9—C8179.17 (12)C14—C15—C20—C19178.49 (12)
C3—C2—C10—N12166.39 (13)C18—C19—C20—F22178.09 (12)
O1—C2—C10—N1211.44 (16)C18—C19—C20—C150.4 (2)
C3—C2—C10—C1113.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F22i0.932.543.3537 (16)147
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F22i0.932.543.3537 (16)147
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

References

First citationAgilent (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationAttia, M. I., Zakaria, A. S., Almutairi, M. S. & Ghoneim, S. W. (2013). Molecules, 18, 12208–12221.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBenedetti, M. S. & Bani, M. (1999). Drug Metab. Rev. 31, 665–717.  Web of Science CrossRef PubMed Google Scholar
First citationDe Luca, L. (2006). Curr. Med. Chem. 69, 21–28.  Google Scholar
First citationDemirayak, S., Uçucu, Ü., Benkli, K., Gündoğdu-Karaburun, N., Karaburun, A., Akar, D., Karabacak, M. & Kiraz, N. (2002). Il Farmaco, 57, 609–612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEmami, S., Falahati, M., Banifetami, A. & Shafiee, A. (2004). Bioorg. Med. Chem. 12, 5881–5889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarakurt, A., Dalkara, S., Özalp, M., Özbey, S., Kendi, E. & Stables, J. P. (2001). Eur. J. Med. Chem. 36, 421–433.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMassolini, G., Carmellino, M. L., Kitsos, M. & Baruffini, A. (1993). Il Farmaco, 48, 503–514.  CAS PubMed Web of Science Google Scholar
First citationMixich, G. & Thiele, K. (1985). US Patent 4 550 175.  Google Scholar
First citationSheehan, D. J., Hitchcock, Ch. A. & Sibley, C. M. (1999). Clin. Microbiol. Rev. 12, 40–79.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds