organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,4,7,7-Penta­methyl­di­ethylenetri­ammonium trinitrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: houda_marouani@voila.fr

(Received 7 January 2014; accepted 21 January 2014; online 25 January 2014)

In the title compound, C9H26N33+·3NO3, the triprotonated 1,1,4,7,7-penta­methyl­diethylenetri­amine mol­ecules are linked to the nitrate anions by multiple bifurcated N—H⋯(O,O) and weak C—H⋯O hydrogen bonds. The organic cation is characterized by N—C—C—N torsion angles of −176.2 (2) and 176.6 (2)°.

Related literature

For related structures, see: Marouani et al. (2012[Marouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772-779.]); Gatfaoui et al. (2013[Gatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.]); Kefi et al. (2013[Kefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475.]); Ben Slimane & Smirani (2008[Ben Slimane, A. & Smirani, W. (2008). Z. Kristallogr. New Cryst. Struct. 223, 521-522.]); Morawitz et al. (2005[Morawitz, T., Lerner, H.-W., Bru Roig, M. & Bolte, M. (2005). Acta Cryst. E61, o4367-o4368.]). For a discussion on hydrogen bonding, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]).

[Scheme 1]

Experimental

Crystal data
  • C9H26N33+·3NO3

  • Mr = 362.36

  • Triclinic, [P \overline 1]

  • a = 5.964 (2) Å

  • b = 7.018 (1) Å

  • c = 21.688 (2) Å

  • α = 91.90 (2)°

  • β = 90.60 (2)°

  • γ = 102.45 (3)°

  • V = 885.8 (3) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Enraf–Nonius CAD4 diffractometer

  • 3582 measured reflections

  • 3128 independent reflections

  • 2125 reflections with I > 2σ(I)

  • Rint = 0.030

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.184

  • S = 1.05

  • 3128 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O9i 0.90 (3) 2.04 (3) 2.868 (4) 153 (3)
N1—H1⋯O7i 0.90 (3) 2.14 (3) 2.937 (4) 147 (3)
N2—H2⋯O5 0.87 (3) 1.90 (3) 2.749 (3) 162 (3)
N2—H2⋯O4 0.87 (3) 2.42 (3) 3.134 (4) 139 (2)
N3—H3⋯O1i 0.87 (3) 2.00 (3) 2.789 (4) 149 (3)
N3—H3⋯O3i 0.87 (3) 2.28 (3) 3.073 (4) 152 (3)
C1—H1A⋯O7ii 0.97 2.38 3.293 (4) 156
C1—H1B⋯O4 0.97 2.45 3.232 (4) 137
C2—H2B⋯O5iii 0.97 2.52 3.386 (4) 149
C3—H3B⋯O1ii 0.97 2.44 3.308 (4) 148
C4—H4A⋯O5iii 0.97 2.40 3.301 (4) 155
C5—H5C⋯O8iv 0.96 2.40 3.305 (5) 156
C7—H7A⋯O6v 0.96 2.42 3.295 (4) 152
C8—H8A⋯O2iv 0.96 2.50 3.355 (5) 149
C9—H9A⋯O2iv 0.96 2.53 3.377 (5) 148
Symmetry codes: (i) x, y-1, z; (ii) x+1, y-1, z; (iii) x-1, y, z; (iv) x+1, y, z; (v) x-1, y-1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

1,1,4,7,7-Pentamethyldiethylenetriamine is an amine catalyst primarily used in the production of spray polyurethane foam (SPF). It is classified as tertiary and has basic and nucleophilic properties. In this work, we report the preparation and the structural investigation of a new organic nitrate, C9H26N3(NO3)3.

The asymmetric unit of the title salt consists of three nitrate anions and one 1,1,4,7,7-pentamethylethylenetriammonium trication (Fig. 1). The organic cations are connected to the nitrate anions through multiple bifurcated N—H···O and weak C—H···O hydrogen bonds, with donor-acceptor distances varying between 2.749 (3) and 3.386 (4) Å [d (O···O) > 2.73 Å; Brown, 1976; Blessing, 1986. See Table 1 and Fig. 2).

Nitrate anions are distributed in the (b,c) plane and are interconnected through the organic cations which extend in the direction of the c axis. Geometrical characteristics of the three independent nitrate anions are slightly different. The distance N5—O6 is notably the shortest, 1.204 (3) Å, because O6 is applied in only one hydrogen bond (Table 1) at the same time as N5—O5 distance is much larger, 1.248 (3) Å, because O5 is involved in three hydrogen bonds. These geometrical features have also been noticed in other crystal structures (Marouani et al., 2012; Gatfaoui et al., 2013; Kefi et al., 2013).

Each organic entity is bounded to six different nitrate anions through fifteen N—H···O and C—H···O hydrogen bonds forming a two dimensional network. Examination of the 1,1,4,7,7-pentamethylethylenetriammonium cation shows that the bond distances and angles show no significant difference from those obtained in other structures involving the same organic groups (Morawitz et al., 2005; Ben Slimane & Smirani, 2008). The crystal cohesion and stability are ensured by electrostatic and van der Waals interactions which, together with N—H···O and C—H···O hydrogen bonds, build up a two-dimensional network.

Related literature top

For related structures, see: Marouani et al. (2012); Gatfaoui et al. (2013); Kefi et al. (2013); Ben Slimane & Smirani (2008); Morawitz et al. (2005). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986).

Experimental top

An aqueous solution containing 3 mmol of HNO3 in 10 ml of water was added to 1 mmol of 1,1,4,7,7-pentamethylethylenetriamine in 10 ml of water. The resulting solution was stirred for 15 min. and then left to stand at room temperature. Colourless single crystals of the title compound were obtained after some days.

Refinement top

The hydrogen atoms bonded to N1, N2 and N3 were located in a difference map and were allowed to refine (coordinates and isotropic displacement parameters). The rest of the H atoms were treated as riding, with C—H = 0.97 Å (methylene) or 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C).

Structure description top

1,1,4,7,7-Pentamethyldiethylenetriamine is an amine catalyst primarily used in the production of spray polyurethane foam (SPF). It is classified as tertiary and has basic and nucleophilic properties. In this work, we report the preparation and the structural investigation of a new organic nitrate, C9H26N3(NO3)3.

The asymmetric unit of the title salt consists of three nitrate anions and one 1,1,4,7,7-pentamethylethylenetriammonium trication (Fig. 1). The organic cations are connected to the nitrate anions through multiple bifurcated N—H···O and weak C—H···O hydrogen bonds, with donor-acceptor distances varying between 2.749 (3) and 3.386 (4) Å [d (O···O) > 2.73 Å; Brown, 1976; Blessing, 1986. See Table 1 and Fig. 2).

Nitrate anions are distributed in the (b,c) plane and are interconnected through the organic cations which extend in the direction of the c axis. Geometrical characteristics of the three independent nitrate anions are slightly different. The distance N5—O6 is notably the shortest, 1.204 (3) Å, because O6 is applied in only one hydrogen bond (Table 1) at the same time as N5—O5 distance is much larger, 1.248 (3) Å, because O5 is involved in three hydrogen bonds. These geometrical features have also been noticed in other crystal structures (Marouani et al., 2012; Gatfaoui et al., 2013; Kefi et al., 2013).

Each organic entity is bounded to six different nitrate anions through fifteen N—H···O and C—H···O hydrogen bonds forming a two dimensional network. Examination of the 1,1,4,7,7-pentamethylethylenetriammonium cation shows that the bond distances and angles show no significant difference from those obtained in other structures involving the same organic groups (Morawitz et al., 2005; Ben Slimane & Smirani, 2008). The crystal cohesion and stability are ensured by electrostatic and van der Waals interactions which, together with N—H···O and C—H···O hydrogen bonds, build up a two-dimensional network.

For related structures, see: Marouani et al. (2012); Gatfaoui et al. (2013); Kefi et al. (2013); Ben Slimane & Smirani (2008); Morawitz et al. (2005). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. Projection of the title compound along the a axis. The H atoms not involved in H-bonding are omitted.
Bis[2-(dimethylazaniumyl)ethyl](methyl)azanium trinitrate top
Crystal data top
C9H26N6O9Z = 2
Mr = 362.36F(000) = 388
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56083 Å
a = 5.964 (2) ÅCell parameters from 25 reflections
b = 7.018 (1) Åθ = 9–11°
c = 21.688 (2) ŵ = 0.07 mm1
α = 91.90 (2)°T = 293 K
β = 90.60 (2)°Prism, colourless
γ = 102.45 (3)°0.40 × 0.35 × 0.30 mm
V = 885.8 (3) Å3
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.030
Radiation source: fine-focus sealed tubeθmax = 19.5°, θmin = 2.2°
Graphite monochromatorh = 77
non–profiled ω scansk = 88
3582 measured reflectionsl = 225
3128 independent reflections2 standard reflections every 120 min
2125 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.6513P]
where P = (Fo2 + 2Fc2)/3
3128 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
0 constraints
Crystal data top
C9H26N6O9γ = 102.45 (3)°
Mr = 362.36V = 885.8 (3) Å3
Triclinic, P1Z = 2
a = 5.964 (2) ÅAg Kα radiation, λ = 0.56083 Å
b = 7.018 (1) ŵ = 0.07 mm1
c = 21.688 (2) ÅT = 293 K
α = 91.90 (2)°0.40 × 0.35 × 0.30 mm
β = 90.60 (2)°
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.030
3582 measured reflections2 standard reflections every 120 min
3128 independent reflections intensity decay: 2%
2125 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.184H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
3128 reflectionsΔρmin = 0.24 e Å3
234 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4083 (4)0.2269 (4)0.40433 (11)0.0411 (6)
N20.5838 (4)0.0897 (3)0.24407 (10)0.0344 (5)
N30.3516 (4)0.2565 (4)0.09611 (11)0.0388 (6)
N40.0530 (5)0.8384 (4)0.08493 (13)0.0548 (7)
N50.9855 (5)0.5138 (4)0.24709 (13)0.0519 (7)
N60.0036 (5)0.8141 (4)0.41497 (14)0.0601 (7)
O10.0634 (4)0.9934 (4)0.11371 (13)0.0711 (7)
O20.2111 (5)0.6968 (5)0.08600 (17)0.1129 (12)
O30.1225 (5)0.8341 (4)0.05677 (15)0.0926 (10)
O40.7958 (5)0.5372 (4)0.26319 (15)0.0839 (9)
O51.0059 (4)0.3412 (3)0.23999 (13)0.0675 (7)
O61.1418 (5)0.6488 (5)0.23730 (18)0.1128 (12)
O70.0504 (5)0.9697 (5)0.40675 (18)0.1064 (11)
O80.1275 (6)0.6643 (5)0.4269 (2)0.1306 (15)
O90.2109 (4)0.8175 (4)0.41010 (15)0.0816 (8)
C10.5618 (5)0.1954 (4)0.35333 (13)0.0433 (7)
H1A0.64330.09550.36440.052*
H1B0.67460.31520.34740.052*
C20.4284 (4)0.1337 (4)0.29386 (13)0.0411 (7)
H2A0.30900.01860.30030.049*
H2B0.35530.23730.28120.049*
C30.4709 (5)0.0753 (4)0.18173 (13)0.0395 (7)
H3A0.31870.00810.18340.047*
H3B0.55930.01570.15240.047*
C40.4516 (5)0.2739 (4)0.15978 (13)0.0424 (7)
H4A0.35500.33040.18750.051*
H4B0.60260.36000.16030.051*
C50.5362 (6)0.2467 (5)0.46408 (14)0.0561 (8)
H5A0.60400.13570.46880.084*
H5B0.43260.25370.49720.084*
H5C0.65480.36360.46490.084*
C60.3009 (7)0.3951 (6)0.39551 (19)0.0763 (12)
H6A0.41840.51040.39030.114*
H6B0.21200.41340.43100.114*
H6C0.20270.37080.35950.114*
C70.6704 (5)0.0917 (4)0.25532 (15)0.0485 (8)
H7A0.54320.20190.25530.073*
H7B0.74940.07830.29450.073*
H7C0.77400.11090.22330.073*
C80.2505 (6)0.4277 (5)0.08285 (16)0.0559 (8)
H8A0.36960.54430.08430.084*
H8B0.13760.43930.11310.084*
H8C0.17940.40990.04260.084*
C90.5213 (6)0.2317 (5)0.04887 (15)0.0597 (9)
H9A0.64390.34570.04960.090*
H9B0.44790.21420.00890.090*
H9C0.58210.11930.05750.090*
H10.304 (6)0.114 (5)0.4038 (14)0.051 (9)*
H20.701 (5)0.188 (4)0.2414 (12)0.036 (8)*
H30.247 (6)0.148 (5)0.0925 (14)0.051 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0408 (13)0.0376 (13)0.0435 (14)0.0050 (11)0.0083 (11)0.0007 (10)
N20.0270 (11)0.0358 (13)0.0420 (13)0.0093 (10)0.0055 (10)0.0069 (10)
N30.0332 (12)0.0402 (14)0.0420 (14)0.0044 (10)0.0009 (10)0.0080 (10)
N40.0470 (16)0.0527 (17)0.0597 (17)0.0003 (13)0.0091 (14)0.0049 (13)
N50.0464 (16)0.0452 (16)0.0606 (17)0.0017 (13)0.0009 (13)0.0042 (12)
N60.0506 (17)0.0542 (18)0.073 (2)0.0052 (14)0.0031 (14)0.0033 (14)
O10.0511 (14)0.0646 (16)0.097 (2)0.0111 (12)0.0169 (13)0.0059 (14)
O20.088 (2)0.092 (2)0.129 (3)0.0453 (18)0.0175 (19)0.0045 (19)
O30.083 (2)0.087 (2)0.110 (2)0.0251 (16)0.0385 (18)0.0092 (17)
O40.0724 (18)0.0576 (16)0.131 (2)0.0310 (13)0.0247 (17)0.0134 (15)
O50.0396 (12)0.0509 (14)0.114 (2)0.0139 (10)0.0117 (12)0.0000 (13)
O60.084 (2)0.074 (2)0.158 (3)0.0324 (17)0.019 (2)0.003 (2)
O70.083 (2)0.082 (2)0.166 (3)0.0474 (17)0.029 (2)0.004 (2)
O80.099 (2)0.079 (2)0.192 (4)0.0311 (19)0.061 (3)0.003 (2)
O90.0541 (16)0.0658 (17)0.127 (2)0.0163 (12)0.0059 (15)0.0145 (16)
C10.0335 (14)0.0544 (18)0.0443 (17)0.0141 (13)0.0033 (12)0.0036 (13)
C20.0303 (14)0.0530 (17)0.0434 (16)0.0157 (12)0.0070 (12)0.0056 (13)
C30.0363 (14)0.0413 (16)0.0421 (16)0.0109 (12)0.0004 (12)0.0031 (12)
C40.0443 (16)0.0460 (16)0.0398 (16)0.0161 (13)0.0021 (13)0.0025 (12)
C50.072 (2)0.0535 (19)0.0418 (18)0.0111 (16)0.0008 (16)0.0014 (14)
C60.078 (3)0.086 (3)0.078 (3)0.052 (2)0.011 (2)0.019 (2)
C70.0501 (17)0.0454 (17)0.0566 (19)0.0240 (14)0.0011 (14)0.0076 (14)
C80.0538 (19)0.062 (2)0.059 (2)0.0257 (16)0.0027 (16)0.0186 (16)
C90.067 (2)0.070 (2)0.0472 (19)0.0258 (18)0.0158 (16)0.0065 (16)
Geometric parameters (Å, º) top
N1—C61.475 (4)C1—H1B0.9700
N1—C51.484 (4)C2—H2A0.9700
N1—C11.484 (3)C2—H2B0.9700
N1—H10.90 (3)C3—C41.515 (4)
N2—C31.495 (3)C3—H3A0.9700
N2—C21.498 (3)C3—H3B0.9700
N2—C71.499 (3)C4—H4A0.9700
N2—H20.87 (3)C4—H4B0.9700
N3—C91.479 (4)C5—H5A0.9600
N3—C41.489 (4)C5—H5B0.9600
N3—C81.491 (4)C5—H5C0.9600
N3—H30.87 (3)C6—H6A0.9600
N4—O21.214 (4)C6—H6B0.9600
N4—O31.223 (4)C6—H6C0.9600
N4—O11.249 (4)C7—H7A0.9600
N5—O61.204 (3)C7—H7B0.9600
N5—O41.230 (3)C7—H7C0.9600
N5—O51.248 (3)C8—H8A0.9600
N6—O81.205 (4)C8—H8B0.9600
N6—O71.221 (4)C8—H8C0.9600
N6—O91.237 (4)C9—H9A0.9600
C1—C21.509 (4)C9—H9B0.9600
C1—H1A0.9700C9—H9C0.9600
C6—N1—C5111.1 (3)C4—C3—H3A109.3
C6—N1—C1113.2 (3)N2—C3—H3B109.3
C5—N1—C1109.8 (2)C4—C3—H3B109.3
C6—N1—H1112 (2)H3A—C3—H3B107.9
C5—N1—H1108 (2)N3—C4—C3110.5 (2)
C1—N1—H1102 (2)N3—C4—H4A109.6
C3—N2—C2111.8 (2)C3—C4—H4A109.6
C3—N2—C7110.1 (2)N3—C4—H4B109.6
C2—N2—C7112.4 (2)C3—C4—H4B109.6
C3—N2—H2103.5 (18)H4A—C4—H4B108.1
C2—N2—H2109.4 (18)N1—C5—H5A109.5
C7—N2—H2109.2 (18)N1—C5—H5B109.5
C9—N3—C4112.2 (2)H5A—C5—H5B109.5
C9—N3—C8110.5 (2)N1—C5—H5C109.5
C4—N3—C8110.9 (2)H5A—C5—H5C109.5
C9—N3—H3104 (2)H5B—C5—H5C109.5
C4—N3—H3109 (2)N1—C6—H6A109.5
C8—N3—H3111 (2)N1—C6—H6B109.5
O2—N4—O3121.6 (3)H6A—C6—H6B109.5
O2—N4—O1120.7 (3)N1—C6—H6C109.5
O3—N4—O1117.7 (3)H6A—C6—H6C109.5
O6—N5—O4122.3 (3)H6B—C6—H6C109.5
O6—N5—O5121.5 (3)N2—C7—H7A109.5
O4—N5—O5116.2 (3)N2—C7—H7B109.5
O8—N6—O7125.1 (4)H7A—C7—H7B109.5
O8—N6—O9119.9 (3)N2—C7—H7C109.5
O7—N6—O9114.9 (3)H7A—C7—H7C109.5
N1—C1—C2111.4 (2)H7B—C7—H7C109.5
N1—C1—H1A109.3N3—C8—H8A109.5
C2—C1—H1A109.3N3—C8—H8B109.5
N1—C1—H1B109.3H8A—C8—H8B109.5
C2—C1—H1B109.3N3—C8—H8C109.5
H1A—C1—H1B108.0H8A—C8—H8C109.5
N2—C2—C1110.6 (2)H8B—C8—H8C109.5
N2—C2—H2A109.5N3—C9—H9A109.5
C1—C2—H2A109.5N3—C9—H9B109.5
N2—C2—H2B109.5H9A—C9—H9B109.5
C1—C2—H2B109.5N3—C9—H9C109.5
H2A—C2—H2B108.1H9A—C9—H9C109.5
N2—C3—C4111.7 (2)H9B—C9—H9C109.5
N2—C3—H3A109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9i0.90 (3)2.04 (3)2.868 (4)153 (3)
N1—H1···O7i0.90 (3)2.14 (3)2.937 (4)147 (3)
N2—H2···O50.87 (3)1.90 (3)2.749 (3)162 (3)
N2—H2···O40.87 (3)2.42 (3)3.134 (4)139 (2)
N3—H3···O1i0.87 (3)2.00 (3)2.789 (4)149 (3)
N3—H3···O3i0.87 (3)2.28 (3)3.073 (4)152 (3)
C1—H1A···O7ii0.972.383.293 (4)156
C1—H1B···O40.972.453.232 (4)137
C2—H2B···O5iii0.972.523.386 (4)149
C3—H3B···O1ii0.972.443.308 (4)148
C4—H4A···O5iii0.972.403.301 (4)155
C5—H5C···O8iv0.962.403.305 (5)156
C7—H7A···O6v0.962.423.295 (4)152
C8—H8A···O2iv0.962.503.355 (5)149
C9—H9A···O2iv0.962.533.377 (5)148
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O9i0.90 (3)2.04 (3)2.868 (4)153 (3)
N1—H1···O7i0.90 (3)2.14 (3)2.937 (4)147 (3)
N2—H2···O50.87 (3)1.90 (3)2.749 (3)162 (3)
N2—H2···O40.87 (3)2.42 (3)3.134 (4)139 (2)
N3—H3···O1i0.87 (3)2.00 (3)2.789 (4)149 (3)
N3—H3···O3i0.87 (3)2.28 (3)3.073 (4)152 (3)
C1—H1A···O7ii0.972.383.293 (4)156.2
C1—H1B···O40.972.453.232 (4)137.2
C2—H2B···O5iii0.972.523.386 (4)149.2
C3—H3B···O1ii0.972.443.308 (4)148.0
C4—H4A···O5iii0.972.403.301 (4)154.9
C5—H5C···O8iv0.962.403.305 (5)156.2
C7—H7A···O6v0.962.423.295 (4)151.6
C8—H8A···O2iv0.962.503.355 (5)148.5
C9—H9A···O2iv0.962.533.377 (5)147.7
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x1, y1, z.
 

Acknowledgements

This work was supported by the Tunisian Ministry of H. E. Sc. R.

References

First citationBen Slimane, A. & Smirani, W. (2008). Z. Kristallogr. New Cryst. Struct. 223, 521–522.  CAS Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.  CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKefi, C., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1475.  CSD CrossRef IUCr Journals Google Scholar
First citationMarouani, H., Raouafi, N., Toumi Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2012). E-J. Chem. 9, 772–779.  CrossRef CAS Google Scholar
First citationMorawitz, T., Lerner, H.-W., Bru Roig, M. & Bolte, M. (2005). Acta Cryst. E61, o4367–o4368.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds