metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Tri­aqua­[1,1′-(propane-1,3-di­yl)bis­­(pyridin-1-ium-4-carboxyl­ato)-κO]bis­­(thio­cyanato-κN)manganese(II) dihydrate

aCollege of Chemistry and Chemical Engineering, Department of Chemistry, Inner Mongolia University, Huhhot 010021, People's Republic of China
*Correspondence e-mail: yqwang_chem@imu.edu.cn

(Received 8 January 2014; accepted 11 January 2014; online 18 January 2014)

In the title compound, [Mn(NCS)2(C15H14N2O4)(H2O)3]·2H2O, the metal ion is octa­hedrally coordinated by three water mol­ecules, one carboxyl­ate O atom from a 1,1′-(propane-1,3-di­yl)bis­(pyridinium-4-carboxyl­ate) ligand and two N atoms from two thio­cyanate anions in cis positions, forming a mononuclear complex mol­ecule. In the crystal, mol­ecules are connected into a three-dimensional architecture through O—H⋯O hydrogen bonds involving water mol­ecules and carboxyl­ate groups.

Related literature

For related literature concerning the ligand, see: Jiang & Li (2006[Jiang, N.-Y. & Li, S.-L. (2006). Chin. J. Struct. Chem. 25, 957-964.]); Li et al. (2007[Li, Y., Li, G.-Q., Zou, W.-Q., Zheng, F.-K., Zou, J.-P., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2007). J. Mol. Struct. 837, 231-236.]); Wu et al. (2006[Wu, A.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Cryst. Growth Des. 6, 444-450.]); Zhang et al. (2002[Zhang, X., Guo, G.-C., Zheng, F.-K., Zhou, G.-W., Mao, J.-G., Dong, Z.-C., Huang, J.-S. & Mak, T. C. W. (2002). J. Chem. Soc. Dalton Trans. pp. 1344-1349.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NCS)2(C15H14N2O4)(H2O)3]·2H2O

  • Mr = 547.46

  • Monoclinic, P 21 /c

  • a = 17.056 (2) Å

  • b = 11.7514 (16) Å

  • c = 11.8962 (16) Å

  • β = 92.984 (2)°

  • V = 2381.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 273 K

  • 0.10 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.962

  • 14572 measured reflections

  • 5451 independent reflections

  • 3409 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.104

  • S = 1.04

  • 5451 reflections

  • 328 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5WA⋯O3i 0.89 (4) 1.84 (4) 2.707 (3) 164 (4)
O5—H5WB⋯O3ii 0.81 (4) 1.88 (4) 2.682 (3) 174 (4)
O6—H6WA⋯O9iii 0.78 (3) 2.09 (3) 2.862 (3) 168 (4)
O6—H6WB⋯O8iv 0.82 (3) 2.02 (3) 2.837 (3) 179 (4)
O7—H7WA⋯O1iii 0.88 (3) 1.91 (3) 2.780 (3) 169 (3)
O7—H7WB⋯O8 0.82 (3) 1.90 (3) 2.710 (3) 169 (3)
O8—H8WA⋯O9v 0.84 (2) 1.93 (2) 2.767 (3) 175 (3)
O8—H8WB⋯O4vi 0.87 (2) 1.91 (2) 2.755 (3) 164 (3)
O9—H9WA⋯O2 0.85 (2) 2.05 (2) 2.830 (3) 152 (3)
O9—H9WB⋯O4ii 0.83 (2) 2.03 (2) 2.862 (3) 174 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y+1, -z+1; (vi) x-1, y, z-1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The double betaine 1,3-bis(pyridinium-4-carboxylato)propane is a neutral dicarboxylate ligand. In recent years, an increasing number of coordination compounds with this ligand have been reported (Jiang et al., 2006; Li et al., 2007; Wu et al., 2006; Zhang et al., 2002). The structure of the title compound consists of the mononuclear complex molecules [Mn(C15O4N2H14)(NCS)2(H2O)3] and lattice water molecules. The metal ion adopts an octahedral coordination geometry completed by three water molecules (O5, O6 and O7), a carboxylato O atom (O1) from the betaine ligand, and two N atoms (N1 and N2) from two thiocyanato anions in cis position (Fig. 1). There is a lot of intermolecular O—H···O hydrogen bonds involving the carboxylate groups and water molecules. The O5 water molecule forms two hydrogen bonds with uncoordinated carboxylate oxygen atoms (O3) from different complex molecules, the O6 water molecule contributes its hydrogen atoms to two lattice water molecules (O8 and O9), and the O6 water molecule forms two hydrogen bonds with the coordinated O1 atom and a lattice water molecule (O8). The lattice water molecules are four-coordinated: they accept hydrogen atoms from coordinated water molecules and contribute their hydrogen atoms to carboxylate oxygen atoms (O4 and O2) or water molecules. These hydrogen bonds lead to a three-dimensional architecture (Fig. 2). In addition, there is a short S···S contact [S1···S2(1 - x, 1 - y, 1 - z), 3.625 (1) Å] between the thiocyanato ions from neighboring complex molecules.

Related literature top

For related literature concerning the ligand, see: Jiang & Li (2006); Li et al. (2007); Wu et al. (2006); Zhang et al. (2002).

Experimental top

The preparation of the compound: 1,3-bis(pyridinium-4-carboxylato)propane (0.029 g, 0.10 mmol) and Potassium thiocyanate (0.039 g, 0.40 mmol) dissolved in ethanol (3 ml) and water (5 ml) were added into the ethanol solution of manganese(II) dichloride hexahydrate (0.040 g, 0.2 mmol),and the resulting light yellow solution was stirred for several minutes, filtered. The filtrate was kept at room temprature, and a few days later,light yellow single crystals suitable for X-ray diffraction was obtained.

Refinement top

All hydrogen atoms attached to carbon atoms were placed geometrically at calculated positions and refined using the riding model with secondary C—H = 0.97 Å and aromatic C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms have been refined isotropically with Uiso(H) = 1.5Ueq(O). In the two non-coordinating water molecules the O-H distances were restrained to 0.85 (2)Å and the H···H distances to 1.38 (2)Å.

Structure description top

The double betaine 1,3-bis(pyridinium-4-carboxylato)propane is a neutral dicarboxylate ligand. In recent years, an increasing number of coordination compounds with this ligand have been reported (Jiang et al., 2006; Li et al., 2007; Wu et al., 2006; Zhang et al., 2002). The structure of the title compound consists of the mononuclear complex molecules [Mn(C15O4N2H14)(NCS)2(H2O)3] and lattice water molecules. The metal ion adopts an octahedral coordination geometry completed by three water molecules (O5, O6 and O7), a carboxylato O atom (O1) from the betaine ligand, and two N atoms (N1 and N2) from two thiocyanato anions in cis position (Fig. 1). There is a lot of intermolecular O—H···O hydrogen bonds involving the carboxylate groups and water molecules. The O5 water molecule forms two hydrogen bonds with uncoordinated carboxylate oxygen atoms (O3) from different complex molecules, the O6 water molecule contributes its hydrogen atoms to two lattice water molecules (O8 and O9), and the O6 water molecule forms two hydrogen bonds with the coordinated O1 atom and a lattice water molecule (O8). The lattice water molecules are four-coordinated: they accept hydrogen atoms from coordinated water molecules and contribute their hydrogen atoms to carboxylate oxygen atoms (O4 and O2) or water molecules. These hydrogen bonds lead to a three-dimensional architecture (Fig. 2). In addition, there is a short S···S contact [S1···S2(1 - x, 1 - y, 1 - z), 3.625 (1) Å] between the thiocyanato ions from neighboring complex molecules.

For related literature concerning the ligand, see: Jiang & Li (2006); Li et al. (2007); Wu et al. (2006); Zhang et al. (2002).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted.
[Figure 2] Fig. 2. View of the intermolecular interactions in the title compound. Hydrogen bonds and S···S contacts are drawn with dashed lines. Hydrogen atoms attached to C atoms are omitted.
cis-Triaqua[1,1'-(propane-1,3-diyl)bis(pyridin-1-ium-4-carboxylato)-κO]bis(thiocyanato-κN)manganese(II) dihydrate top
Crystal data top
[Mn(NCS)2(C15H14N2O4)(H2O)3]·2H2OF(000) = 1132
Mr = 547.46Dx = 1.527 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.056 (2) ÅCell parameters from 2306 reflections
b = 11.7514 (16) Åθ = 2.4–23.7°
c = 11.8962 (16) ŵ = 0.78 mm1
β = 92.984 (2)°T = 273 K
V = 2381.1 (6) Å3Rectangular, yellow
Z = 40.10 × 0.08 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5451 independent reflections
Radiation source: fine-focus sealed tube3409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
phi and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2022
Tmin = 0.926, Tmax = 0.962k = 915
14572 measured reflectionsl = 1215
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0366P)2]
where P = (Fo2 + 2Fc2)/3
5451 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 0.34 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Mn(NCS)2(C15H14N2O4)(H2O)3]·2H2OV = 2381.1 (6) Å3
Mr = 547.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.056 (2) ŵ = 0.78 mm1
b = 11.7514 (16) ÅT = 273 K
c = 11.8962 (16) Å0.10 × 0.08 × 0.05 mm
β = 92.984 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5451 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3409 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.962Rint = 0.049
14572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0456 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.34 e Å3
5451 reflectionsΔρmin = 0.33 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.19350 (2)0.66835 (4)0.46440 (3)0.02899 (13)
C10.91446 (16)0.7847 (3)1.0248 (3)0.0356 (7)
C20.85603 (15)0.6997 (2)0.9725 (2)0.0307 (6)
C30.83380 (19)0.7061 (3)0.8598 (3)0.0515 (9)
H3A0.85370.76340.81550.062*
C40.82470 (16)0.6147 (2)1.0353 (2)0.0344 (7)
H4A0.83810.60941.11190.041*
C50.78248 (19)0.6283 (3)0.8131 (3)0.0547 (10)
H5A0.76800.63270.73680.066*
C60.77363 (15)0.5376 (2)0.9852 (2)0.0348 (7)
H6A0.75340.47921.02780.042*
C70.69666 (14)0.4628 (2)0.8224 (2)0.0332 (7)
H7B0.69620.39430.86780.040*
H7A0.71410.44230.74880.040*
C80.61420 (14)0.5110 (2)0.8099 (2)0.0346 (7)
H8B0.61530.58650.77720.042*
H8A0.59180.51650.88300.042*
C90.56506 (15)0.4320 (3)0.7341 (2)0.0374 (7)
H9B0.58630.43060.66000.045*
H9A0.56810.35540.76440.045*
C100.46197 (16)0.5602 (3)0.6618 (2)0.0376 (7)
H10A0.50030.59870.62390.045*
C110.42645 (16)0.4099 (3)0.7759 (2)0.0374 (7)
H11A0.44050.34590.81830.045*
C120.38622 (15)0.5987 (2)0.6539 (2)0.0338 (7)
H12A0.37360.66390.61260.041*
C130.34983 (16)0.4439 (2)0.7678 (2)0.0349 (7)
H13A0.31190.40190.80290.042*
C140.32846 (15)0.5407 (2)0.7073 (2)0.0278 (6)
C150.24337 (16)0.5814 (3)0.6987 (2)0.0324 (7)
C160.36520 (17)0.7912 (2)0.4339 (2)0.0315 (6)
C170.29664 (16)0.4229 (3)0.4638 (2)0.0319 (6)
N10.25535 (14)0.5006 (2)0.45556 (19)0.0418 (6)
N20.29939 (14)0.7665 (2)0.4249 (2)0.0422 (6)
N30.75267 (12)0.5455 (2)0.87586 (18)0.0312 (5)
N40.48197 (12)0.4677 (2)0.72342 (18)0.0322 (5)
O10.23085 (10)0.67351 (16)0.64340 (14)0.0335 (5)
O20.19488 (11)0.52474 (19)0.74602 (17)0.0492 (6)
O30.93988 (12)0.85658 (18)0.95846 (18)0.0455 (5)
O40.93195 (12)0.7747 (2)1.12736 (17)0.0525 (6)
O50.08954 (12)0.5776 (2)0.4957 (2)0.0585 (7)
H5WB0.046 (2)0.600 (3)0.480 (3)0.088*
H5WA0.089 (2)0.503 (4)0.508 (3)0.088*
O60.11913 (13)0.82309 (19)0.47446 (18)0.0421 (6)
H6WB0.095 (2)0.846 (3)0.527 (3)0.063*
H6WA0.095 (2)0.835 (3)0.418 (3)0.063*
O70.16305 (12)0.67069 (19)0.28495 (16)0.0372 (5)
H7WB0.1212 (19)0.651 (3)0.255 (3)0.056*
H7WA0.1806 (18)0.727 (3)0.244 (3)0.056*
O80.03603 (12)0.5969 (2)0.15924 (19)0.0514 (6)
H8WB0.0005 (17)0.648 (2)0.161 (3)0.077*
H8WA0.0157 (18)0.5357 (17)0.181 (3)0.077*
O90.03881 (12)0.5981 (2)0.77207 (17)0.0453 (6)
H9WB0.0092 (15)0.633 (3)0.726 (2)0.068*
H9WA0.0805 (13)0.578 (3)0.741 (2)0.068*
S10.35705 (5)0.31522 (7)0.47422 (7)0.0519 (2)
S20.45791 (5)0.82371 (8)0.45024 (7)0.0530 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0255 (2)0.0327 (3)0.0285 (2)0.00140 (18)0.00004 (17)0.00147 (19)
C10.0278 (15)0.0328 (17)0.0461 (19)0.0018 (13)0.0012 (14)0.0026 (14)
C20.0262 (15)0.0340 (17)0.0316 (16)0.0023 (12)0.0011 (12)0.0016 (12)
C30.058 (2)0.061 (2)0.0353 (18)0.0301 (18)0.0047 (15)0.0120 (16)
C40.0382 (16)0.0374 (17)0.0271 (15)0.0058 (13)0.0035 (12)0.0000 (13)
C50.060 (2)0.075 (3)0.0286 (17)0.0327 (19)0.0078 (15)0.0132 (17)
C60.0377 (16)0.0349 (18)0.0318 (16)0.0026 (13)0.0002 (13)0.0072 (13)
C70.0270 (14)0.0346 (17)0.0378 (16)0.0027 (12)0.0001 (12)0.0048 (13)
C80.0278 (15)0.0332 (17)0.0427 (17)0.0001 (13)0.0005 (13)0.0046 (14)
C90.0258 (15)0.0373 (18)0.0484 (18)0.0022 (13)0.0039 (13)0.0076 (14)
C100.0310 (16)0.0431 (19)0.0388 (17)0.0070 (14)0.0003 (13)0.0057 (15)
C110.0383 (17)0.0330 (18)0.0401 (17)0.0016 (14)0.0050 (13)0.0041 (14)
C120.0321 (15)0.0382 (18)0.0307 (15)0.0030 (13)0.0013 (12)0.0089 (13)
C130.0309 (15)0.0367 (18)0.0371 (17)0.0036 (13)0.0019 (13)0.0064 (14)
C140.0291 (14)0.0335 (16)0.0203 (13)0.0009 (12)0.0037 (11)0.0013 (12)
C150.0331 (15)0.0409 (19)0.0232 (15)0.0017 (13)0.0007 (12)0.0001 (13)
C160.0367 (17)0.0302 (16)0.0277 (15)0.0013 (13)0.0023 (13)0.0057 (12)
C170.0336 (15)0.0372 (18)0.0245 (15)0.0003 (13)0.0006 (12)0.0033 (13)
N10.0423 (15)0.0457 (17)0.0366 (14)0.0102 (13)0.0048 (12)0.0057 (12)
N20.0329 (14)0.0525 (18)0.0411 (15)0.0043 (12)0.0002 (12)0.0073 (13)
N30.0279 (12)0.0370 (15)0.0285 (13)0.0037 (10)0.0008 (10)0.0009 (11)
N40.0281 (12)0.0339 (14)0.0341 (13)0.0001 (11)0.0037 (10)0.0039 (11)
O10.0367 (11)0.0362 (12)0.0275 (10)0.0079 (9)0.0001 (8)0.0023 (9)
O20.0328 (11)0.0633 (16)0.0522 (13)0.0026 (11)0.0087 (10)0.0228 (12)
O30.0421 (12)0.0357 (13)0.0583 (14)0.0128 (10)0.0005 (10)0.0030 (11)
O40.0566 (14)0.0599 (16)0.0394 (13)0.0165 (12)0.0121 (11)0.0053 (11)
O50.0266 (11)0.0391 (14)0.110 (2)0.0006 (11)0.0038 (13)0.0183 (14)
O60.0475 (14)0.0417 (13)0.0371 (13)0.0119 (11)0.0029 (10)0.0027 (11)
O70.0348 (12)0.0452 (14)0.0307 (12)0.0068 (10)0.0047 (9)0.0059 (10)
O80.0427 (13)0.0564 (17)0.0543 (14)0.0137 (11)0.0044 (11)0.0116 (13)
O90.0388 (13)0.0530 (15)0.0442 (13)0.0006 (11)0.0019 (10)0.0046 (11)
S10.0514 (5)0.0444 (5)0.0606 (6)0.0178 (4)0.0094 (4)0.0025 (4)
S20.0334 (4)0.0735 (7)0.0513 (5)0.0135 (4)0.0067 (4)0.0118 (5)
Geometric parameters (Å, º) top
Mn1—O52.118 (2)C10—N41.345 (3)
Mn1—O72.171 (2)C10—C121.367 (4)
Mn1—O12.1914 (18)C10—H10A0.9300
Mn1—N22.214 (2)C11—N41.346 (3)
Mn1—O62.224 (2)C11—C131.365 (4)
Mn1—N12.241 (3)C11—H11A0.9300
C1—O41.246 (3)C12—C141.379 (3)
C1—O31.249 (3)C12—H12A0.9300
C1—C21.521 (4)C13—C141.385 (4)
C2—C41.373 (4)C13—H13A0.9300
C2—C31.375 (4)C14—C151.526 (4)
C3—C51.364 (4)C15—O21.222 (3)
C3—H3A0.9300C15—O11.278 (3)
C4—C61.372 (4)C16—N21.159 (3)
C4—H4A0.9300C16—S21.628 (3)
C5—N31.342 (4)C17—N11.154 (3)
C5—H5A0.9300C17—S11.632 (3)
C6—N31.334 (3)O5—H5WB0.81 (4)
C6—H6A0.9300O5—H5WA0.89 (4)
C7—N31.482 (3)O6—H6WB0.82 (3)
C7—C81.516 (3)O6—H6WA0.78 (3)
C7—H7B0.9700O7—H7WB0.82 (3)
C7—H7A0.9700O7—H7WA0.88 (3)
C8—C91.516 (4)O8—H8WB0.867 (17)
C8—H8B0.9700O8—H8WA0.844 (17)
C8—H8A0.9700O9—H9WB0.834 (16)
C9—N41.477 (3)O9—H9WA0.854 (16)
C9—H9B0.9700S1—S2i3.6247 (12)
C9—H9A0.9700
O5—Mn1—O791.13 (9)N4—C9—H9B109.2
O5—Mn1—O192.68 (9)C8—C9—H9B109.2
O7—Mn1—O1176.17 (8)N4—C9—H9A109.2
O5—Mn1—N2177.44 (9)C8—C9—H9A109.2
O7—Mn1—N286.61 (8)H9B—C9—H9A107.9
O1—Mn1—N289.57 (8)N4—C10—C12121.1 (3)
O5—Mn1—O685.24 (9)N4—C10—H10A119.5
O7—Mn1—O686.25 (8)C12—C10—H10A119.5
O1—Mn1—O693.60 (7)N4—C11—C13120.9 (3)
N2—Mn1—O693.40 (9)N4—C11—H11A119.6
O5—Mn1—N188.05 (9)C13—C11—H11A119.6
O7—Mn1—N193.10 (8)C10—C12—C14120.0 (3)
O1—Mn1—N187.49 (8)C10—C12—H12A120.0
N2—Mn1—N193.28 (9)C14—C12—H12A120.0
O6—Mn1—N1173.24 (9)C11—C13—C14120.2 (3)
O4—C1—O3127.5 (3)C11—C13—H13A119.9
O4—C1—C2117.2 (3)C14—C13—H13A119.9
O3—C1—C2115.3 (3)C12—C14—C13118.0 (3)
C4—C2—C3118.4 (3)C12—C14—C15120.9 (2)
C4—C2—C1121.3 (3)C13—C14—C15121.1 (2)
C3—C2—C1120.3 (3)O2—C15—O1126.8 (3)
C5—C3—C2119.9 (3)O2—C15—C14117.5 (3)
C5—C3—H3A120.0O1—C15—C14115.6 (2)
C2—C3—H3A120.0N2—C16—S2178.2 (3)
C6—C4—C2120.0 (3)N1—C17—S1178.4 (3)
C6—C4—H4A120.0C17—N1—Mn1168.1 (2)
C2—C4—H4A120.0C16—N2—Mn1155.2 (2)
N3—C5—C3120.9 (3)C6—N3—C5120.2 (2)
N3—C5—H5A119.6C6—N3—C7120.4 (2)
C3—C5—H5A119.6C5—N3—C7119.4 (2)
N3—C6—C4120.6 (3)C10—N4—C11119.8 (2)
N3—C6—H6A119.7C10—N4—C9119.4 (2)
C4—C6—H6A119.7C11—N4—C9120.8 (2)
N3—C7—C8111.8 (2)C15—O1—Mn1120.58 (17)
N3—C7—H7B109.3Mn1—O5—H5WB125 (3)
C8—C7—H7B109.3Mn1—O5—H5WA123 (2)
N3—C7—H7A109.3H5WB—O5—H5WA110 (3)
C8—C7—H7A109.3Mn1—O6—H6WB128 (2)
H7B—C7—H7A107.9Mn1—O6—H6WA113 (3)
C7—C8—C9108.1 (2)H6WB—O6—H6WA109 (4)
C7—C8—H8B110.1Mn1—O7—H7WB126 (2)
C9—C8—H8B110.1Mn1—O7—H7WA119 (2)
C7—C8—H8A110.1H7WB—O7—H7WA107 (3)
C9—C8—H8A110.1H8WB—O8—H8WA106 (2)
H8B—C8—H8A108.4H9WB—O9—H9WA110 (2)
N4—C9—C8112.0 (2)C17—S1—S2i154.96 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5WA···O3ii0.89 (4)1.84 (4)2.707 (3)164 (4)
O5—H5WB···O3iii0.81 (4)1.88 (4)2.682 (3)174 (4)
O6—H6WA···O9iv0.78 (3)2.09 (3)2.862 (3)168 (4)
O6—H6WB···O8v0.82 (3)2.02 (3)2.837 (3)179 (4)
O7—H7WA···O1iv0.88 (3)1.91 (3)2.780 (3)169 (3)
O7—H7WB···O80.82 (3)1.90 (3)2.710 (3)169 (3)
O8—H8WA···O9vi0.84 (2)1.93 (2)2.767 (3)175 (3)
O8—H8WB···O4vii0.87 (2)1.91 (2)2.755 (3)164 (3)
O9—H9WA···O20.85 (2)2.05 (2)2.830 (3)152 (3)
O9—H9WB···O4iii0.83 (2)2.03 (2)2.862 (3)174 (3)
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1, z+1; (vii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5WA···O3i0.89 (4)1.84 (4)2.707 (3)164 (4)
O5—H5WB···O3ii0.81 (4)1.88 (4)2.682 (3)174 (4)
O6—H6WA···O9iii0.78 (3)2.09 (3)2.862 (3)168 (4)
O6—H6WB···O8iv0.82 (3)2.02 (3)2.837 (3)179 (4)
O7—H7WA···O1iii0.88 (3)1.91 (3)2.780 (3)169 (3)
O7—H7WB···O80.82 (3)1.90 (3)2.710 (3)169 (3)
O8—H8WA···O9v0.844 (17)1.925 (18)2.767 (3)175 (3)
O8—H8WB···O4vi0.867 (17)1.912 (18)2.755 (3)164 (3)
O9—H9WA···O20.854 (16)2.047 (18)2.830 (3)152 (3)
O9—H9WB···O4ii0.834 (16)2.031 (17)2.862 (3)174 (3)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x1, y+3/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1, z+1; (vi) x1, y, z1.
 

Acknowledgements

We are thankful for financial support from the NSFC (21301087), SPH-IMU-30105–125135, and the Inner Mongolia autonomous region Natural Science Fund project (2013MS0206).

References

First citationBruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, N.-Y. & Li, S.-L. (2006). Chin. J. Struct. Chem. 25, 957–964.  CAS Google Scholar
First citationLi, Y., Li, G.-Q., Zou, W.-Q., Zheng, F.-K., Zou, J.-P., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2007). J. Mol. Struct. 837, 231–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, A.-Q., Li, Y., Zheng, F.-K., Guo, G.-C. & Huang, J.-S. (2006). Cryst. Growth Des. 6, 444–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X., Guo, G.-C., Zheng, F.-K., Zhou, G.-W., Mao, J.-G., Dong, Z.-C., Huang, J.-S. & Mak, T. C. W. (2002). J. Chem. Soc. Dalton Trans. pp. 1344–1349.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds