organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl-2-(1,2,3,4-tetra­hydro­naph­thalen-1-yl­­idene)hydrazinecarbo­thio­amide

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: adriano@daad-alumni.de

(Received 21 January 2014; accepted 22 January 2014; online 25 January 2014)

The conformation of the title mol­ecule, C17H17N3S, is stabilized by an intra­molecular N—H⋯N hydrogen bond involving the azometinic group. The dihedral angle between the two aromatic rings is 36.49 (06)°. The non-aromatic ring of the tetra­lone substituent adopts a sofa conformation. In the crystal, mol­ecules are linked by pairs of N—H⋯S hydrogen bonds related via centres of symmetry, forming dimers.

Related literature

For the synthesis and pharmacological activity of ketone­thio­semicarbazones, see: Thanigaimalai et al. (2011[Thanigaimalai, P., Lee, K.-C., Sharma, V. K., Roh, E., Kim, Y. & Jung, S.-H. (2011). Bioorg. Med. Chem. 21, 3527-3530.]). For one of the first reports of the synthesis of thio­semicarbazone derivatives, see: Freund & Schander (1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). For the synthesis and crystal structure of 2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide, see: de Oliveira et al. (2012[Oliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. & Jess, I. (2012). Acta Cryst. E68, o2581.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3S

  • Mr = 295.40

  • Monoclinic, P 21 /n

  • a = 8.4415 (3) Å

  • b = 18.0256 (7) Å

  • c = 10.0260 (3) Å

  • β = 107.495 (2)°

  • V = 1455.02 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 200 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • 23139 measured reflections

  • 3520 independent reflections

  • 3045 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.05

  • 3520 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S1i 0.88 2.70 3.5793 (11) 176
N3—H2N⋯N2 0.88 2.12 2.5630 (15) 111
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives have a wide range of pharmacological properties. For example, ketonethiosemicarbazones show pharmacological activity against melanogenesis in melanoma B16 cells (Thanigaimalai et al., 2011). As part of our study on synthesis of thiosemicarbazone compounds, we report herein the crystal structure of a derivative of 2-(1,2,3,4-Tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide (Oliveira et al., 2012). The title compound (Figure 1), in which the molecular structure matches the asymmetric unit, is not planar and the dihedral angle between the two aromatic rings is 36.49 (06)°. The maximum deviation from the mean plane of the non-H atoms for the non-aromatic ring of the tetralone substituent amount to 0.5003 (12) Å for C4, which corresponds to a sofa conformation. The molecule shows a trans conformation for the atoms about the N2–N1 bond. Due to an intramolecuar hydrogen bond involving the N—H···N atoms (Figure 1), a cis conformation about the N1–C1 bond is observed. The planarity, atoms distances and angles of the thiosemicarbazone fragment are in agreement with literature data (de Oliveira et al., 2012). The molecules are connected via centrosymmetric pairs of N—H···S, forming dimers (Figure 1, Figure 2 and Table 1).

Related literature top

For the synthesis and pharmacological activity of ketonethiosemicarbazones, see: Thanigaimalai et al. (2011). For one of the first reports of the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902). For the synthesis and crystal structure of 2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide, see: de Oliveira et al. (2012).

Experimental top

Starting materials were commercially available and were used without further purification. The tetralone-thiosemicarbazone derivative synthesis was adapted from a procedure reported previously (Freund & Schander, 1902). The hydrochloric acid catalyzed reaction of tetralone (8,83 mmol) and 4-phenylthiosemicarbazide (8,83 mmol) in ethanol (50 ml) was refluxed for 6 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction of the title compound were obtained in tethahydrofuran by the slow evaporation of solvent.

Refinement top

All H atoms were located in difference map but were positioned with idealized geometry and were refined using a riding model with Uiso(H) = 1.2 Ueq(C and N) with C—H = 0.95 Å for aromatic, C—H = 0.99 Å for methylene and N—H = 0.88 Å for N—H H atoms.

Structure description top

Thiosemicarbazone derivatives have a wide range of pharmacological properties. For example, ketonethiosemicarbazones show pharmacological activity against melanogenesis in melanoma B16 cells (Thanigaimalai et al., 2011). As part of our study on synthesis of thiosemicarbazone compounds, we report herein the crystal structure of a derivative of 2-(1,2,3,4-Tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide (Oliveira et al., 2012). The title compound (Figure 1), in which the molecular structure matches the asymmetric unit, is not planar and the dihedral angle between the two aromatic rings is 36.49 (06)°. The maximum deviation from the mean plane of the non-H atoms for the non-aromatic ring of the tetralone substituent amount to 0.5003 (12) Å for C4, which corresponds to a sofa conformation. The molecule shows a trans conformation for the atoms about the N2–N1 bond. Due to an intramolecuar hydrogen bond involving the N—H···N atoms (Figure 1), a cis conformation about the N1–C1 bond is observed. The planarity, atoms distances and angles of the thiosemicarbazone fragment are in agreement with literature data (de Oliveira et al., 2012). The molecules are connected via centrosymmetric pairs of N—H···S, forming dimers (Figure 1, Figure 2 and Table 1).

For the synthesis and pharmacological activity of ketonethiosemicarbazones, see: Thanigaimalai et al. (2011). For one of the first reports of the synthesis of thiosemicarbazone derivatives, see: Freund & Schander (1902). For the synthesis and crystal structure of 2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide, see: de Oliveira et al. (2012).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level, with intramolecular hydrogen bonding shown as dashed line.
[Figure 2] Fig. 2. : Crystal structure of the title compound with inter- and intramolecular hydrogen bonding shown as dashed lines. Symmetry code: (i) -x + 1, -y, -z + 1.
N-Phenyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide top
Crystal data top
C17H17N3SF(000) = 624
Mr = 295.40Dx = 1.348 Mg m3
Monoclinic, P21/nMelting point: 452 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.4415 (3) ÅCell parameters from 26099 reflections
b = 18.0256 (7) Åθ = 2.3–28.1°
c = 10.0260 (3) ŵ = 0.22 mm1
β = 107.495 (2)°T = 200 K
V = 1455.02 (9) Å3Cubic, yellow
Z = 40.3 × 0.3 × 0.2 mm
Data collection top
Stoe IPDS-1
diffractometer
3045 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Stoe IPDS-1Rint = 0.069
Graphite monochromatorθmax = 28.1°, θmin = 2.3°
φ scansh = 1111
23139 measured reflectionsk = 2323
3520 independent reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.419P]
where P = (Fo2 + 2Fc2)/3
3520 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H17N3SV = 1455.02 (9) Å3
Mr = 295.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4415 (3) ŵ = 0.22 mm1
b = 18.0256 (7) ÅT = 200 K
c = 10.0260 (3) Å0.3 × 0.3 × 0.2 mm
β = 107.495 (2)°
Data collection top
Stoe IPDS-1
diffractometer
3045 reflections with I > 2σ(I)
23139 measured reflectionsRint = 0.069
3520 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
3520 reflectionsΔρmin = 0.24 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37784 (5)0.09351 (2)0.54195 (3)0.03751 (11)
C10.47689 (15)0.07366 (7)0.70981 (13)0.0270 (3)
N10.55649 (13)0.00734 (6)0.74440 (11)0.0284 (2)
H1N0.57030.01950.67540.034*
N20.65846 (13)0.00109 (6)0.88038 (11)0.0278 (2)
C20.74837 (15)0.06010 (7)0.91151 (12)0.0250 (2)
C30.74732 (17)0.12214 (7)0.81071 (13)0.0291 (3)
H3A0.80850.10610.74550.035*
H3B0.63120.13270.75490.035*
C40.82614 (18)0.19283 (7)0.88489 (14)0.0328 (3)
H4A0.75610.21340.93940.039*
H4B0.83370.23030.81490.039*
C50.99852 (18)0.17606 (8)0.98201 (15)0.0363 (3)
H5A1.04830.22201.03110.044*
H5B1.07020.15830.92650.044*
C60.99093 (16)0.11786 (7)1.08793 (14)0.0286 (3)
C71.10660 (17)0.11733 (8)1.22097 (15)0.0351 (3)
H71.19290.15321.24350.042*
C81.09825 (18)0.06577 (8)1.32042 (15)0.0383 (3)
H81.17960.06571.40970.046*
C90.9709 (2)0.01430 (8)1.28947 (14)0.0382 (3)
H90.96270.02031.35850.046*
C100.85514 (18)0.01313 (7)1.15781 (14)0.0332 (3)
H100.76840.02261.13700.040*
C110.86494 (15)0.06406 (7)1.05523 (12)0.0262 (3)
N30.48970 (14)0.11902 (6)0.81878 (11)0.0290 (2)
H2N0.55130.10280.90080.035*
C120.41601 (15)0.18985 (7)0.81780 (12)0.0255 (2)
C130.51258 (16)0.24662 (8)0.89485 (13)0.0303 (3)
H130.62660.23820.94270.036*
C140.44270 (18)0.31549 (8)0.90199 (14)0.0341 (3)
H140.50890.35420.95510.041*
C150.27640 (18)0.32813 (8)0.83178 (14)0.0339 (3)
H150.22840.37540.83620.041*
C160.18101 (16)0.27136 (8)0.75537 (14)0.0323 (3)
H160.06710.27990.70710.039*
C170.24953 (16)0.20221 (7)0.74832 (13)0.0286 (3)
H170.18280.16340.69610.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0426 (2)0.0436 (2)0.02103 (15)0.01742 (15)0.00155 (13)0.00099 (13)
C10.0239 (6)0.0313 (6)0.0248 (6)0.0019 (5)0.0060 (5)0.0000 (5)
N10.0290 (5)0.0306 (6)0.0223 (5)0.0048 (4)0.0029 (4)0.0006 (4)
N20.0277 (5)0.0311 (6)0.0223 (5)0.0017 (4)0.0040 (4)0.0024 (4)
C20.0243 (6)0.0258 (6)0.0246 (6)0.0015 (5)0.0070 (5)0.0022 (4)
C30.0313 (6)0.0284 (6)0.0261 (6)0.0019 (5)0.0066 (5)0.0003 (5)
C40.0397 (7)0.0266 (6)0.0331 (7)0.0021 (5)0.0125 (6)0.0002 (5)
C50.0343 (7)0.0360 (7)0.0395 (7)0.0090 (6)0.0127 (6)0.0045 (6)
C60.0252 (6)0.0289 (6)0.0315 (6)0.0017 (5)0.0082 (5)0.0069 (5)
C70.0254 (6)0.0386 (7)0.0377 (7)0.0014 (5)0.0038 (5)0.0131 (6)
C80.0364 (7)0.0414 (8)0.0292 (6)0.0121 (6)0.0020 (5)0.0101 (6)
C90.0509 (9)0.0318 (7)0.0266 (6)0.0076 (6)0.0037 (6)0.0003 (5)
C100.0405 (7)0.0268 (7)0.0288 (6)0.0009 (5)0.0050 (5)0.0019 (5)
C110.0263 (6)0.0255 (6)0.0254 (6)0.0027 (5)0.0058 (5)0.0044 (4)
N30.0294 (5)0.0337 (6)0.0202 (5)0.0072 (4)0.0019 (4)0.0002 (4)
C120.0263 (6)0.0297 (6)0.0205 (5)0.0030 (5)0.0069 (4)0.0008 (4)
C130.0248 (6)0.0391 (7)0.0242 (6)0.0001 (5)0.0033 (5)0.0019 (5)
C140.0360 (7)0.0323 (7)0.0310 (6)0.0038 (5)0.0057 (5)0.0058 (5)
C150.0383 (7)0.0303 (7)0.0318 (7)0.0055 (5)0.0086 (6)0.0012 (5)
C160.0263 (6)0.0388 (7)0.0292 (6)0.0054 (5)0.0044 (5)0.0012 (5)
C170.0255 (6)0.0323 (7)0.0266 (6)0.0014 (5)0.0058 (5)0.0036 (5)
Geometric parameters (Å, º) top
S1—C11.6773 (13)C7—H70.9500
C1—N31.3427 (16)C8—C91.383 (2)
C1—N11.3642 (16)C8—H80.9500
N1—N21.3846 (14)C9—C101.3864 (19)
N1—H1N0.8800C9—H90.9500
N2—C21.2894 (16)C10—C111.3995 (18)
C2—C111.4823 (16)C10—H100.9500
C2—C31.5055 (18)N3—C121.4190 (16)
C3—C41.5238 (18)N3—H2N0.8800
C3—H3A0.9900C12—C171.3861 (18)
C3—H3B0.9900C12—C131.3892 (18)
C4—C51.518 (2)C13—C141.3854 (19)
C4—H4A0.9900C13—H130.9500
C4—H4B0.9900C14—C151.387 (2)
C5—C61.508 (2)C14—H140.9500
C5—H5A0.9900C15—C161.3826 (19)
C5—H5B0.9900C15—H150.9500
C6—C71.3963 (18)C16—C171.3849 (19)
C6—C111.4033 (18)C16—H160.9500
C7—C81.380 (2)C17—H170.9500
N3—C1—N1114.44 (11)C7—C8—C9119.65 (13)
N3—C1—S1125.48 (10)C7—C8—H8120.2
N1—C1—S1120.06 (9)C9—C8—H8120.2
C1—N1—N2117.35 (10)C8—C9—C10120.11 (14)
C1—N1—H1N116.9C8—C9—H9119.9
N2—N1—H1N121.6C10—C9—H9119.9
C2—N2—N1118.38 (11)C9—C10—C11120.61 (13)
N2—C2—C11116.45 (11)C9—C10—H10119.7
N2—C2—C3124.48 (11)C11—C10—H10119.7
C11—C2—C3119.01 (11)C10—C11—C6119.32 (12)
C2—C3—C4112.33 (10)C10—C11—C2120.94 (11)
C2—C3—H3A109.1C6—C11—C2119.70 (11)
C4—C3—H3A109.1C1—N3—C12127.91 (11)
C2—C3—H3B109.1C1—N3—H2N116.0
C4—C3—H3B109.1C12—N3—H2N116.0
H3A—C3—H3B107.9C17—C12—C13119.87 (12)
C5—C4—C3109.89 (11)C17—C12—N3121.61 (11)
C5—C4—H4A109.7C13—C12—N3118.44 (11)
C3—C4—H4A109.7C14—C13—C12120.06 (12)
C5—C4—H4B109.7C14—C13—H13120.0
C3—C4—H4B109.7C12—C13—H13120.0
H4A—C4—H4B108.2C13—C14—C15120.17 (13)
C6—C5—C4110.78 (11)C13—C14—H14119.9
C6—C5—H5A109.5C15—C14—H14119.9
C4—C5—H5A109.5C16—C15—C14119.45 (13)
C6—C5—H5B109.5C16—C15—H15120.3
C4—C5—H5B109.5C14—C15—H15120.3
H5A—C5—H5B108.1C15—C16—C17120.79 (12)
C7—C6—C11118.80 (13)C15—C16—H16119.6
C7—C6—C5120.80 (12)C17—C16—H16119.6
C11—C6—C5120.40 (12)C16—C17—C12119.66 (12)
C8—C7—C6121.45 (13)C16—C17—H17120.2
C8—C7—H7119.3C12—C17—H17120.2
C6—C7—H7119.3
N3—C1—N1—N29.03 (16)C5—C6—C11—C10176.54 (12)
S1—C1—N1—N2169.57 (9)C7—C6—C11—C2175.51 (11)
C1—N1—N2—C2172.78 (11)C5—C6—C11—C25.79 (18)
N1—N2—C2—C11175.47 (10)N2—C2—C11—C1011.35 (18)
N1—N2—C2—C31.69 (18)C3—C2—C11—C10171.33 (12)
N2—C2—C3—C4163.68 (12)N2—C2—C11—C6166.29 (11)
C11—C2—C3—C419.23 (16)C3—C2—C11—C611.04 (17)
C2—C3—C4—C553.39 (15)N1—C1—N3—C12177.29 (12)
C3—C4—C5—C658.18 (15)S1—C1—N3—C124.2 (2)
C4—C5—C6—C7149.58 (12)C1—N3—C12—C1747.42 (19)
C4—C5—C6—C1129.09 (17)C1—N3—C12—C13135.95 (14)
C11—C6—C7—C80.67 (19)C17—C12—C13—C140.13 (19)
C5—C6—C7—C8178.02 (13)N3—C12—C13—C14176.81 (12)
C6—C7—C8—C91.4 (2)C12—C13—C14—C150.3 (2)
C7—C8—C9—C101.9 (2)C13—C14—C15—C160.3 (2)
C8—C9—C10—C110.4 (2)C14—C15—C16—C170.1 (2)
C9—C10—C11—C61.6 (2)C15—C16—C17—C120.5 (2)
C9—C10—C11—C2175.99 (12)C13—C12—C17—C160.51 (19)
C7—C6—C11—C102.16 (18)N3—C12—C17—C16177.09 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.882.703.5793 (11)176
N3—H2N···N20.882.122.5630 (15)111
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S1i0.882.703.5793 (11)176.1
N3—H2N···N20.882.122.5630 (15)110.6
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

We gratefully acknowledge financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. BRSF thanks CNPq/UFS for the award of a PIBIC scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationOliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. & Jess, I. (2012). Acta Cryst. E68, o2581.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThanigaimalai, P., Lee, K.-C., Sharma, V. K., Roh, E., Kim, Y. & Jung, S.-H. (2011). Bioorg. Med. Chem. 21, 3527–3530.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds