metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Hy­dr­oxy­phen­yl)piperazine-1,4-diium tetra­chlorido­cobalt(II) monohydrate

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn

(Received 25 November 2013; accepted 24 January 2014; online 31 January 2014)

The asymmetric unit of the title inorganic–organic hybrid compound, (C10H16N2O)[CoCl4]·H2O, consists of a tetrahedral [CoCl4]2− anion, together with a [C10H18N2O]2+ cation and a water mol­ecule. Crystal cohesion is achieved through N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonds between organic cations, inorganic anions and the water mol­ecules, building up a three-dimensional network.

Related literature

For spectroscopic and electrochemical properties of hybrid compounds, see: Bu et al. (2001[Bu, X. H., Liu, H., Du, M., Wong, K. M. C., Yam, V. W. W. & Shionoya, M. (2001). Inorg. Chem. 40, 4143-4149.]). For a similar structural arrangement, see: Aza­dbakht et al. (2012[Azadbakht, R., Hadadzadeh, H. & Amiri Rudbari, H. (2012). Acta Cryst. E68, m859.]). For the coordination of cobalt, see: Reiss (2013[Reiss, G. J. (2013). Acta Cryst. E69, m248-m249.]); Oh et al. (2011[Oh, I.-H., Kim, D., Huh, Y.-D., Park, Y., Park, J. M. S. & Park, S.-H. (2011). Acta Cryst. E67, m522-m523.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H16N2O)[CoCl4]·H2O

  • Mr = 398.99

  • Triclinic, [P \overline 1]

  • a = 7.455 (1) Å

  • b = 8.002 (2) Å

  • c = 14.105 (1) Å

  • α = 91.72 (1)°

  • β = 96.98 (1)°

  • γ = 99.19 (1)°

  • V = 823.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 298 K

  • 0.6 × 0.3 × 0.2 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.607, Tmax = 0.712

  • 4220 measured reflections

  • 3586 independent reflections

  • 3110 reflections with I > 2σ(I)

  • Rint = 0.027

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.08

  • 3586 reflections

  • 245 parameters

  • All H-atom parameters refined

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Co—Cl2 2.2475 (7)
Co—Cl4 2.2772 (7)
Co—Cl1 2.2777 (7)
Co—Cl3 2.2868 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWA⋯Cl3i 0.87 (4) 2.59 (4) 3.381 (3) 150 (4)
OW—HWB⋯Cl1ii 0.78 (4) 2.51 (4) 3.264 (3) 164 (4)
O—H1⋯Cl3iii 0.79 (4) 2.41 (4) 3.177 (3) 165 (4)
N1—H1N⋯Cl4iv 0.94 (3) 2.24 (3) 3.171 (2) 170 (2)
N2—H2NA⋯OW 0.83 (4) 2.06 (4) 2.807 (2) 151 (3)
N2—H2NB⋯Cl1v 0.91 (3) 2.47 (3) 3.267 (2) 147 (2)
N2—H2NB⋯Cl2v 0.91 (3) 2.81 (3) 3.324 (2) 117 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, the synthesis of organic-inorganic hybrid compounds has attracted increasing interest, not only from a structural point of view, but also because of their diverse optical properties and various applications in catalysis, electrical conductivity and photochemistry (Bu et al., 2001).

Here we report the synthesis and structural characterisation of the organic-inorganic hybrid compound, (1-hydroxyphenyl)piperazine-1,4-diium tetrachloridocobalt(II) monohydrate, [C10H18N2O] [CoCl4]·H2O.

The asymmetric unit of this compound is composed of one tetrachlorocobalt(II) anion, one organic cation and one isolated water molecule, as shown in Figure 1. The coordination geometry of the Co(II) ion is tetrahedral with Co—Cl bond lengths ranging from 2.2475 (7) to 2.2868 (7) Å, as observed in similar compounds (Oh et al.; 2011), (Reiss; 2013), (Azadbakht et al.; 2012).

The CoCl4 groups are isolated (0-D anionic network) and connected to three organic cations by N—H···Cl and O—H···Cl hydrogen bonds and to two water molecules by O—H···Cl hydrogen bonds.

The organic cation, [C10H18N2O]2+, contains a piperazindium ring in a chair conformation and a planar aromatic ring (r.m.s. deviation = 0.0119 Å). The angle between the mean planes of the phenyl and piperazindium rings is about 78.0°. The crystal structure can be described as alternating stacking of organic and inorganic layers along [011], as shown in Figure 2. Water molecules link adjacent inorganic sheets.

The stability and the cohesion between the different components of the structure are assured by the water molecules connected to the organic cations through N—H···O hydrogen bonds and to the tetrahedral vertices of the tetrachlorocobalt (II) anions to build up a three-dimensional network.

Related literature top

For spectroscopic and electrochemical properties of hyybrid compounds, see: Bu et al. (2001). For a similar structural arrangement, see: Azadbakht et al. (2012). For the mixed coordination of cobalt, see: Reiss (2013); Oh et al. (2011).

Experimental top

A mixture of chloride cobalt (II) CoCl2·H2O (0.24 g) and 1-acetyl-4-(4-hydroxyphenyl)piperazine (C12H16N2O2) (0.11 g) (molar ratio 1:1) was dissolved in an aqueous solution of hydrochloric acid. The mixture was stirred then kept at room temperature. Blue crystals of the title compound were obtained two weeks later. The (1-hydroxyphenyl) cations are formed by loss of the acetyl group on acid hydrolysis.

Refinement top

The hydrogen atoms were located in difference Fourier maps. Those attached to carbon were placed in calculated positions (C—H = 0.86 – 1.00 Å) while those attached to nitrogen and oxygen were placed in the experimental positions and their coordinates adjusted to give N—H = 0.83 Å and O—H = 0.81 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Structure description top

Recently, the synthesis of organic-inorganic hybrid compounds has attracted increasing interest, not only from a structural point of view, but also because of their diverse optical properties and various applications in catalysis, electrical conductivity and photochemistry (Bu et al., 2001).

Here we report the synthesis and structural characterisation of the organic-inorganic hybrid compound, (1-hydroxyphenyl)piperazine-1,4-diium tetrachloridocobalt(II) monohydrate, [C10H18N2O] [CoCl4]·H2O.

The asymmetric unit of this compound is composed of one tetrachlorocobalt(II) anion, one organic cation and one isolated water molecule, as shown in Figure 1. The coordination geometry of the Co(II) ion is tetrahedral with Co—Cl bond lengths ranging from 2.2475 (7) to 2.2868 (7) Å, as observed in similar compounds (Oh et al.; 2011), (Reiss; 2013), (Azadbakht et al.; 2012).

The CoCl4 groups are isolated (0-D anionic network) and connected to three organic cations by N—H···Cl and O—H···Cl hydrogen bonds and to two water molecules by O—H···Cl hydrogen bonds.

The organic cation, [C10H18N2O]2+, contains a piperazindium ring in a chair conformation and a planar aromatic ring (r.m.s. deviation = 0.0119 Å). The angle between the mean planes of the phenyl and piperazindium rings is about 78.0°. The crystal structure can be described as alternating stacking of organic and inorganic layers along [011], as shown in Figure 2. Water molecules link adjacent inorganic sheets.

The stability and the cohesion between the different components of the structure are assured by the water molecules connected to the organic cations through N—H···O hydrogen bonds and to the tetrahedral vertices of the tetrachlorocobalt (II) anions to build up a three-dimensional network.

For spectroscopic and electrochemical properties of hyybrid compounds, see: Bu et al. (2001). For a similar structural arrangement, see: Azadbakht et al. (2012). For the mixed coordination of cobalt, see: Reiss (2013); Oh et al. (2011).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP of the molecular entities of [C10H18N2O] [CoCl4]·H2O showing the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 1; (iii) -x, -y + 1, -z; (iv) x + 1, y, z; (v) -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. Projection of the [C10H18N2O] [CoCl4]·H2O structure showing the hydrogen bonds as dashed lines and the alternating stacking of organic and inorganic layers along [011].
1-(4-Hydroxyphenyl)piperazine-1,4-diium tetrachloridocobalt(II) monohydrate top
Crystal data top
(C10H16N2O)[CoCl4]·H2OZ = 2
Mr = 398.99F(000) = 406
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.455 (1) ÅCell parameters from 25 reflections
b = 8.002 (2) Åθ = 10–15°
c = 14.105 (1) ŵ = 1.69 mm1
α = 91.72 (1)°T = 298 K
β = 96.98 (1)°Prism, blue
γ = 99.19 (1)°0.6 × 0.3 × 0.2 mm
V = 823.4 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3110 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.0°, θmin = 2.6°
non–profiled ω/2θ scansh = 91
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.607, Tmax = 0.712l = 1717
4220 measured reflections2 standard reflections every 120 min
3586 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.2936P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3586 reflectionsΔρmax = 0.73 e Å3
245 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (2)
Crystal data top
(C10H16N2O)[CoCl4]·H2Oγ = 99.19 (1)°
Mr = 398.99V = 823.4 (2) Å3
Triclinic, P1Z = 2
a = 7.455 (1) ÅMo Kα radiation
b = 8.002 (2) ŵ = 1.69 mm1
c = 14.105 (1) ÅT = 298 K
α = 91.72 (1)°0.6 × 0.3 × 0.2 mm
β = 96.98 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3110 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.607, Tmax = 0.7122 standard reflections every 120 min
4220 measured reflections intensity decay: 1%
3586 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102All H-atom parameters refined
S = 1.08Δρmax = 0.73 e Å3
3586 reflectionsΔρmin = 0.45 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.13891 (4)0.68672 (4)0.31676 (2)0.03430 (13)
Cl10.02197 (8)0.72320 (8)0.44103 (4)0.04349 (16)
Cl20.43614 (7)0.72221 (8)0.37771 (4)0.04201 (16)
Cl30.09100 (10)0.89884 (9)0.21635 (5)0.05405 (19)
Cl40.04924 (9)0.43236 (8)0.23402 (5)0.0534 (2)
N10.6315 (3)0.2602 (2)0.20897 (12)0.0300 (4)
N20.6528 (3)0.1678 (3)0.40592 (14)0.0362 (4)
O0.3173 (3)0.2976 (3)0.16914 (12)0.0487 (4)
OW0.2791 (3)0.1012 (3)0.42756 (18)0.0602 (6)
C10.3886 (3)0.2802 (3)0.07645 (16)0.0375 (5)
C20.2788 (4)0.2306 (4)0.00674 (18)0.0475 (6)
C30.3570 (3)0.2225 (4)0.08687 (17)0.0447 (6)
C40.5440 (3)0.2645 (3)0.10896 (15)0.0319 (4)
C50.6549 (3)0.3101 (3)0.03969 (17)0.0395 (5)
C60.5760 (4)0.3167 (3)0.05438 (17)0.0422 (5)
C70.6411 (4)0.3453 (3)0.37993 (17)0.0416 (5)
C80.5389 (4)0.3477 (3)0.28063 (17)0.0402 (5)
C90.6456 (4)0.0825 (3)0.23609 (17)0.0363 (5)
C100.7445 (3)0.0816 (3)0.33578 (17)0.0379 (5)
HWA0.193 (6)0.050 (5)0.384 (3)0.082 (12)*
HWB0.227 (6)0.161 (5)0.454 (3)0.080 (13)*
H10.213 (5)0.259 (5)0.172 (3)0.066 (11)*
H20.144 (4)0.201 (4)0.019 (2)0.055 (8)*
H30.284 (4)0.180 (4)0.134 (2)0.054 (8)*
H50.781 (4)0.344 (4)0.056 (2)0.052 (8)*
H60.646 (4)0.344 (4)0.102 (2)0.052 (8)*
H7A0.578 (5)0.390 (4)0.426 (2)0.064 (9)*
H7B0.769 (5)0.410 (4)0.385 (2)0.054 (8)*
H8A0.415 (4)0.288 (4)0.278 (2)0.052 (8)*
H8B0.531 (4)0.449 (4)0.264 (2)0.051 (8)*
H9A0.528 (5)0.019 (4)0.231 (2)0.054 (8)*
H9B0.718 (4)0.045 (4)0.191 (2)0.045 (7)*
H10A0.749 (4)0.027 (4)0.353 (2)0.047 (7)*
H10B0.865 (4)0.147 (4)0.340 (2)0.045 (7)*
H1N0.752 (4)0.317 (4)0.209 (2)0.046 (7)*
H2NA0.551 (5)0.113 (4)0.411 (2)0.063 (10)*
H2NB0.722 (4)0.175 (4)0.464 (2)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.03205 (18)0.03383 (18)0.03517 (19)0.00247 (12)0.00115 (12)0.00040 (12)
Cl10.0365 (3)0.0511 (3)0.0436 (3)0.0088 (2)0.0072 (2)0.0033 (2)
Cl20.0314 (3)0.0489 (3)0.0448 (3)0.0073 (2)0.0020 (2)0.0056 (2)
Cl30.0535 (4)0.0515 (4)0.0533 (4)0.0005 (3)0.0020 (3)0.0208 (3)
Cl40.0400 (3)0.0473 (3)0.0682 (4)0.0050 (3)0.0099 (3)0.0209 (3)
N10.0349 (9)0.0261 (8)0.0281 (8)0.0025 (7)0.0030 (7)0.0021 (6)
N20.0353 (10)0.0397 (10)0.0316 (9)0.0020 (8)0.0003 (8)0.0082 (8)
O0.0569 (12)0.0537 (11)0.0325 (9)0.0054 (9)0.0026 (8)0.0072 (7)
OW0.0417 (10)0.0598 (13)0.0764 (15)0.0048 (9)0.0080 (10)0.0254 (11)
C10.0479 (13)0.0318 (10)0.0322 (11)0.0078 (9)0.0015 (9)0.0000 (8)
C20.0400 (13)0.0566 (15)0.0408 (13)0.0031 (11)0.0019 (10)0.0074 (11)
C30.0384 (12)0.0569 (15)0.0347 (12)0.0052 (11)0.0037 (10)0.0090 (10)
C40.0378 (11)0.0266 (9)0.0301 (10)0.0036 (8)0.0014 (8)0.0009 (7)
C50.0371 (12)0.0469 (13)0.0350 (11)0.0074 (10)0.0053 (9)0.0024 (9)
C60.0466 (13)0.0491 (13)0.0322 (11)0.0070 (11)0.0107 (10)0.0042 (10)
C70.0589 (15)0.0334 (11)0.0323 (11)0.0088 (11)0.0046 (10)0.0006 (9)
C80.0569 (15)0.0344 (11)0.0340 (11)0.0193 (11)0.0079 (10)0.0032 (9)
C90.0458 (13)0.0257 (10)0.0375 (12)0.0092 (9)0.0013 (10)0.0017 (8)
C100.0395 (12)0.0332 (11)0.0413 (12)0.0096 (10)0.0003 (9)0.0071 (9)
Geometric parameters (Å, º) top
Co—Cl22.2475 (7)C2—C31.385 (3)
Co—Cl42.2772 (7)C2—H20.99 (3)
Co—Cl12.2777 (7)C3—C41.376 (3)
Co—Cl32.2868 (7)C3—H30.95 (3)
N1—C41.484 (3)C4—C51.376 (3)
N1—C91.500 (3)C5—C61.391 (3)
N1—C81.506 (3)C5—H50.94 (3)
N1—H1N0.94 (3)C6—H60.91 (3)
N2—C101.482 (3)C7—C81.513 (3)
N2—C71.491 (3)C7—H7A0.94 (3)
N2—H2NA0.83 (4)C7—H7B1.00 (3)
N2—H2NB0.91 (3)C8—H8A0.96 (3)
O—C11.370 (3)C8—H8B0.86 (3)
O—H10.79 (4)C9—C101.507 (3)
OW—HWA0.87 (4)C9—H9A0.93 (3)
OW—HWB0.77 (4)C9—H9B0.95 (3)
C1—C61.376 (4)C10—H10A0.92 (3)
C1—C21.382 (4)C10—H10B0.96 (3)
Cl2—Co—Cl4111.38 (3)C3—C4—N1120.36 (19)
Cl2—Co—Cl1106.87 (3)C4—C5—C6119.3 (2)
Cl4—Co—Cl1113.97 (3)C4—C5—H5120.3 (19)
Cl2—Co—Cl3109.60 (3)C6—C5—H5120.3 (19)
Cl4—Co—Cl3108.94 (3)C1—C6—C5119.6 (2)
Cl1—Co—Cl3105.87 (3)C1—C6—H6119.3 (19)
C4—N1—C9111.55 (16)C5—C6—H6121.1 (19)
C4—N1—C8113.32 (17)N2—C7—C8110.53 (19)
C9—N1—C8110.62 (17)N2—C7—H7A106 (2)
C4—N1—H1N105.0 (18)C8—C7—H7A111 (2)
C9—N1—H1N106.4 (18)N2—C7—H7B108.3 (18)
C8—N1—H1N109.6 (17)C8—C7—H7B111.9 (18)
C10—N2—C7110.87 (18)H7A—C7—H7B109 (3)
C10—N2—H2NA111 (2)N1—C8—C7110.1 (2)
C7—N2—H2NA112 (2)N1—C8—H8A107.9 (19)
C10—N2—H2NB109.1 (18)C7—C8—H8A110.1 (19)
C7—N2—H2NB106.2 (18)N1—C8—H8B109 (2)
H2NA—N2—H2NB108 (3)C7—C8—H8B112 (2)
C1—O—H1105 (3)H8A—C8—H8B107 (3)
HWA—OW—HWB102 (4)N1—C9—C10110.75 (18)
O—C1—C6117.2 (2)N1—C9—H9A108.8 (19)
O—C1—C2122.2 (2)C10—C9—H9A111.0 (19)
C6—C1—C2120.6 (2)N1—C9—H9B103.1 (17)
C1—C2—C3119.9 (2)C10—C9—H9B109.7 (17)
C1—C2—H2123.5 (18)H9A—C9—H9B113 (2)
C3—C2—H2116.6 (18)N2—C10—C9110.96 (19)
C4—C3—C2119.1 (2)N2—C10—H10A108.8 (18)
C4—C3—H3120.2 (18)C9—C10—H10A110.8 (18)
C2—C3—H3120.5 (18)N2—C10—H10B104.4 (17)
C5—C4—C3121.4 (2)C9—C10—H10B110.3 (17)
C5—C4—N1118.25 (19)H10A—C10—H10B111 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···Cl3i0.87 (4)2.59 (4)3.381 (3)150 (4)
OW—HWB···Cl1ii0.78 (4)2.51 (4)3.264 (3)164 (4)
O—H1···Cl3iii0.79 (4)2.41 (4)3.177 (3)165 (4)
N1—H1N···Cl4iv0.94 (3)2.24 (3)3.171 (2)170 (2)
N2—H2NA···OW0.83 (4)2.06 (4)2.807 (2)151 (3)
N2—H2NB···Cl1v0.91 (3)2.47 (3)3.267 (2)147 (2)
N2—H2NB···Cl2v0.91 (3)2.81 (3)3.324 (2)117 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1.
Selected bond lengths (Å) top
Co—Cl22.2475 (7)Co—Cl12.2777 (7)
Co—Cl42.2772 (7)Co—Cl32.2868 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWA···Cl3i0.87 (4)2.59 (4)3.381 (3)150 (4)
OW—HWB···Cl1ii0.78 (4)2.51 (4)3.264 (3)164 (4)
O—H1···Cl3iii0.79 (4)2.41 (4)3.177 (3)165 (4)
N1—H1N···Cl4iv0.94 (3)2.24 (3)3.171 (2)170 (2)
N2—H2NA···OW0.83 (4)2.06 (4)2.807 (2)151 (3)
N2—H2NB···Cl1v0.91 (3)2.47 (3)3.267 (2)147 (2)
N2—H2NB···Cl2v0.91 (3)2.81 (3)3.324 (2)117 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z+1.
 

References

First citationAzadbakht, R., Hadadzadeh, H. & Amiri Rudbari, H. (2012). Acta Cryst. E68, m859.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBu, X. H., Liu, H., Du, M., Wong, K. M. C., Yam, V. W. W. & Shionoya, M. (2001). Inorg. Chem. 40, 4143–4149.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOh, I.-H., Kim, D., Huh, Y.-D., Park, Y., Park, J. M. S. & Park, S.-H. (2011). Acta Cryst. E67, m522–m523.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReiss, G. J. (2013). Acta Cryst. E69, m248–m249.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds