organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4S)-5′-Chloro-3,7,7-tri­methyl-5,6,7,8-tetra­hydro-4H-spiro­[1,2-oxazolo[5,4-b]quinoline-4,3′-indole]-2′,5-dione

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cD. G. Vaishnav College (Autonomous), Arumbakkam, Chennai 600 106, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 7 December 2013; accepted 4 January 2014; online 18 January 2014)

In the title compound, C20H18ClN3O3, the five- and six-membered heterocycles fused through a spiro C atom are inclined to each other at an angle of 87.4 (1)°. In the tricyclic ring system, the cyclo­hexene ring adopts an envelope conformation with the spiro atom as the flap. In the crystal, two sets of N—H⋯O hydrogen bonds link the mol­ecules into columns containing centrosymmetric R22(7) ring motifs and propagating along the b-axis direction.

Related literature

For applications of indole, quinoline and pyrrolidine derivatives, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN3O3

  • Mr = 383.82

  • Orthorhombic, P b c a

  • a = 17.9320 (7) Å

  • b = 11.1120 (4) Å

  • c = 18.5968 (7) Å

  • V = 3705.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.959

  • 17841 measured reflections

  • 4590 independent reflections

  • 2643 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.134

  • S = 1.01

  • 4590 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.05 2.837 (2) 151
N3—H3⋯O1ii 0.86 2.00 2.795 (2) 153
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A large number of natural products contain the quinoline and indole heterocycles, and they are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). In view of the above importance, crystallographic study of the title compound (I) has been carried out to establish its molecular structure.

In (I) (Fig. 1), the indole ring adopts slightly envelope conformation on atom C7. The sum of the bond angle around atom N3 (360°) of the quinoline ring indicates sp2 hybridization. The quinoline group and indole ring are in axial orientation with the dihedral angle between them as 87.39 (1)°. The indole and quinoline ring systems are planar and keto atoms O1 and O3 deviate from the attached ring system by -0.024 (1) and -0.012 (2) Å, respectively.

In the crystal, molecules are linked by two sets of N—H···O hydrogen bonds (Table 1), forming centrosymmetric dimers containing two R22(7) ring motifs (Bernstein et al., 1995).

Related literature top

For applications of indole, quinoline and pyrrolidine derivatives, see: Padwa et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A reaction mixture of 5-chloro isatin (1 mmol), 5,5-dimethylcyclohexane-1,3 dione (1 mmol) and 5-amino-3-methylisoxazole (1 mmol) in 5 ml of ethanol was heated up to 80°C for 6–10 h. The reaction was monitored by TLC. Then, the reaction mixture was filtered hot and the resulting solid products were washed with ethanol, dried in an air and recrystallized from ethanol.

Refinement top

All H atoms were positioned geometrically (C–H = 0.93–0.98 Å, N–H = 0.86 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C, N).

Structure description top

A large number of natural products contain the quinoline and indole heterocycles, and they are found in numerous commercial products, including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). In view of the above importance, crystallographic study of the title compound (I) has been carried out to establish its molecular structure.

In (I) (Fig. 1), the indole ring adopts slightly envelope conformation on atom C7. The sum of the bond angle around atom N3 (360°) of the quinoline ring indicates sp2 hybridization. The quinoline group and indole ring are in axial orientation with the dihedral angle between them as 87.39 (1)°. The indole and quinoline ring systems are planar and keto atoms O1 and O3 deviate from the attached ring system by -0.024 (1) and -0.012 (2) Å, respectively.

In the crystal, molecules are linked by two sets of N—H···O hydrogen bonds (Table 1), forming centrosymmetric dimers containing two R22(7) ring motifs (Bernstein et al., 1995).

For applications of indole, quinoline and pyrrolidine derivatives, see: Padwa et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at 30% probability level.
(4S)-5'-Chloro-3,7,7-trimethyl-5,6,7,8-tetrahydro-4H-spiro[1,2-oxazolo[5,4-b]quinoline-4,3'-indole]-2',5-dione top
Crystal data top
C20H18ClN3O3F(000) = 1600
Mr = 383.82Dx = 1.376 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2643 reflections
a = 17.9320 (7) Åθ = 2.2–28.3°
b = 11.1120 (4) ŵ = 0.23 mm1
c = 18.5968 (7) ÅT = 293 K
V = 3705.6 (2) Å3Block, white
Z = 80.21 × 0.19 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4590 independent reflections
Radiation source: fine-focus sealed tube2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2223
Tmin = 0.952, Tmax = 0.959k = 1412
17841 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0522P)2 + 1.5319P]
where P = (Fo2 + 2Fc2)/3
4590 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C20H18ClN3O3V = 3705.6 (2) Å3
Mr = 383.82Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.9320 (7) ŵ = 0.23 mm1
b = 11.1120 (4) ÅT = 293 K
c = 18.5968 (7) Å0.21 × 0.19 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4590 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2643 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.959Rint = 0.032
17841 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
4590 reflectionsΔρmin = 0.36 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.72085 (13)0.4404 (3)0.61785 (14)0.0621 (7)
C40.70766 (15)0.5417 (3)0.57753 (16)0.0718 (8)
H40.73410.61170.58740.086*
C50.65605 (15)0.5416 (2)0.52285 (14)0.0611 (7)
H50.64700.61040.49570.073*
C60.61833 (12)0.43645 (18)0.50978 (11)0.0441 (5)
C70.53305 (12)0.30227 (16)0.46674 (10)0.0372 (5)
C80.58105 (11)0.23360 (16)0.52297 (9)0.0339 (4)
C10.63164 (11)0.33335 (17)0.54984 (11)0.0404 (5)
C20.68261 (11)0.3336 (2)0.60484 (12)0.0483 (5)
H20.69130.26510.63230.058*
C110.70709 (15)0.2294 (2)0.38484 (14)0.0646 (7)
H11A0.73970.19720.34870.097*
H11B0.73480.28210.41580.097*
H11C0.66750.27360.36220.097*
C100.67503 (11)0.12915 (19)0.42792 (11)0.0430 (5)
N20.69504 (10)0.01800 (17)0.41311 (10)0.0512 (5)
C120.61464 (11)0.01774 (17)0.50416 (10)0.0369 (4)
C90.62300 (11)0.13389 (16)0.48535 (10)0.0352 (4)
C140.53339 (10)0.17653 (16)0.58196 (9)0.0328 (4)
C130.53320 (11)0.05668 (16)0.59824 (9)0.0342 (4)
N30.57236 (9)0.02562 (14)0.55869 (8)0.0410 (4)
H30.57020.10140.56800.049*
C180.49051 (12)0.00573 (18)0.66015 (10)0.0419 (5)
H18A0.51910.05970.68100.050*
H18B0.44400.02760.64240.050*
C170.47298 (12)0.09738 (19)0.71891 (10)0.0430 (5)
C160.43875 (12)0.20721 (19)0.68196 (11)0.0450 (5)
H16A0.38990.18540.66380.054*
H16B0.43190.27020.71750.054*
C150.48421 (11)0.25641 (17)0.62112 (10)0.0365 (4)
C200.54316 (14)0.1327 (2)0.75966 (12)0.0585 (6)
H20A0.53080.19070.79600.088*
H20B0.57860.16690.72680.088*
H20C0.56440.06260.78190.088*
C190.41680 (15)0.0438 (2)0.77122 (13)0.0644 (7)
H19A0.43740.02740.79270.097*
H19B0.37190.02350.74590.097*
H19C0.40570.10150.80810.097*
N10.56218 (10)0.41421 (14)0.45939 (9)0.0460 (4)
H10.54780.46540.42760.055*
O20.65528 (8)0.05644 (12)0.46364 (7)0.0470 (4)
O10.48047 (8)0.26181 (12)0.43288 (7)0.0459 (4)
O30.47829 (9)0.36227 (12)0.60321 (8)0.0500 (4)
Cl10.78469 (4)0.44523 (9)0.68787 (4)0.1018 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0460 (14)0.0766 (19)0.0638 (15)0.0167 (13)0.0158 (12)0.0339 (14)
C40.0681 (17)0.0589 (17)0.089 (2)0.0330 (14)0.0337 (16)0.0327 (15)
C50.0736 (17)0.0354 (12)0.0744 (17)0.0175 (11)0.0311 (15)0.0130 (11)
C60.0548 (13)0.0296 (11)0.0478 (11)0.0074 (9)0.0184 (10)0.0068 (9)
C70.0561 (13)0.0227 (10)0.0327 (9)0.0033 (9)0.0095 (9)0.0017 (8)
C80.0453 (11)0.0244 (9)0.0321 (9)0.0000 (8)0.0028 (8)0.0019 (7)
C10.0475 (12)0.0326 (11)0.0413 (10)0.0037 (9)0.0102 (9)0.0094 (8)
C20.0436 (12)0.0506 (13)0.0506 (12)0.0015 (10)0.0073 (10)0.0184 (10)
C110.0714 (17)0.0578 (16)0.0646 (15)0.0068 (13)0.0226 (13)0.0022 (12)
C100.0437 (12)0.0454 (13)0.0398 (11)0.0003 (10)0.0003 (9)0.0071 (9)
N20.0558 (11)0.0495 (12)0.0484 (10)0.0047 (9)0.0043 (9)0.0093 (9)
C120.0457 (12)0.0294 (10)0.0357 (10)0.0046 (9)0.0051 (9)0.0056 (8)
C90.0425 (11)0.0297 (10)0.0335 (9)0.0007 (8)0.0018 (8)0.0038 (8)
C140.0451 (11)0.0250 (9)0.0285 (9)0.0002 (8)0.0009 (8)0.0005 (7)
C130.0445 (11)0.0278 (10)0.0303 (9)0.0012 (8)0.0061 (8)0.0009 (7)
N30.0613 (11)0.0222 (8)0.0395 (9)0.0039 (7)0.0019 (8)0.0013 (7)
C180.0578 (13)0.0302 (10)0.0378 (10)0.0050 (9)0.0038 (9)0.0073 (8)
C170.0569 (13)0.0395 (11)0.0327 (10)0.0024 (10)0.0033 (9)0.0049 (8)
C160.0541 (13)0.0392 (12)0.0418 (11)0.0018 (10)0.0077 (10)0.0023 (9)
C150.0474 (11)0.0284 (10)0.0337 (9)0.0002 (8)0.0013 (9)0.0006 (8)
C200.0742 (17)0.0651 (16)0.0361 (11)0.0030 (13)0.0064 (11)0.0025 (11)
C190.0755 (17)0.0656 (16)0.0520 (13)0.0035 (13)0.0155 (13)0.0179 (12)
N10.0712 (12)0.0234 (8)0.0433 (9)0.0020 (8)0.0098 (9)0.0063 (7)
O20.0580 (9)0.0355 (8)0.0474 (8)0.0102 (7)0.0002 (7)0.0086 (6)
O10.0630 (9)0.0329 (8)0.0418 (8)0.0007 (7)0.0082 (7)0.0052 (6)
O30.0726 (10)0.0265 (7)0.0508 (9)0.0072 (7)0.0112 (8)0.0040 (6)
Cl10.0629 (5)0.1486 (8)0.0938 (6)0.0320 (5)0.0028 (4)0.0515 (5)
Geometric parameters (Å, º) top
C3—C41.373 (4)C12—C91.346 (3)
C3—C21.392 (3)C12—N31.355 (2)
C3—Cl11.735 (3)C14—C131.366 (2)
C4—C51.375 (4)C14—C151.448 (3)
C4—H40.9300C13—N31.368 (2)
C5—C61.372 (3)C13—C181.494 (3)
C5—H50.9300N3—H30.8600
C6—C11.387 (3)C18—C171.527 (3)
C6—N11.397 (3)C18—H18A0.9700
C7—O11.220 (2)C18—H18B0.9700
C7—N11.356 (2)C17—C201.520 (3)
C7—C81.555 (3)C17—C191.522 (3)
C8—C91.511 (3)C17—C161.529 (3)
C8—C11.517 (3)C16—C151.498 (3)
C8—C141.528 (2)C16—H16A0.9700
C1—C21.372 (3)C16—H16B0.9700
C2—H20.9300C15—O31.227 (2)
C11—C101.488 (3)C20—H20A0.9600
C11—H11A0.9600C20—H20B0.9600
C11—H11B0.9600C20—H20C0.9600
C11—H11C0.9600C19—H19A0.9600
C10—N21.315 (3)C19—H19B0.9600
C10—C91.419 (3)C19—H19C0.9600
N2—O21.441 (2)N1—H10.8600
C12—O21.333 (2)
C4—C3—C2121.3 (2)C15—C14—C8116.57 (15)
C4—C3—Cl1119.9 (2)C14—C13—N3122.11 (17)
C2—C3—Cl1118.8 (2)C14—C13—C18122.80 (17)
C3—C4—C5121.3 (2)N3—C13—C18115.09 (16)
C3—C4—H4119.4C12—N3—C13116.88 (15)
C5—C4—H4119.4C12—N3—H3121.6
C6—C5—C4117.6 (2)C13—N3—H3121.6
C6—C5—H5121.2C13—C18—C17113.85 (16)
C4—C5—H5121.2C13—C18—H18A108.8
C5—C6—C1121.6 (2)C17—C18—H18A108.8
C5—C6—N1128.7 (2)C13—C18—H18B108.8
C1—C6—N1109.76 (17)C17—C18—H18B108.8
O1—C7—N1125.72 (18)H18A—C18—H18B107.7
O1—C7—C8126.47 (16)C20—C17—C19109.29 (18)
N1—C7—C8107.75 (17)C20—C17—C18111.00 (18)
C9—C8—C1113.00 (16)C19—C17—C18109.45 (18)
C9—C8—C14107.84 (15)C20—C17—C16110.52 (18)
C1—C8—C14113.66 (15)C19—C17—C16109.49 (18)
C9—C8—C7108.91 (14)C18—C17—C16107.06 (16)
C1—C8—C7101.19 (15)C15—C16—C17114.35 (17)
C14—C8—C7112.14 (15)C15—C16—H16A108.7
C2—C1—C6120.90 (19)C17—C16—H16A108.7
C2—C1—C8130.20 (19)C15—C16—H16B108.7
C6—C1—C8108.89 (18)C17—C16—H16B108.7
C1—C2—C3117.3 (2)H16A—C16—H16B107.6
C1—C2—H2121.3O3—C15—C14120.25 (17)
C3—C2—H2121.3O3—C15—C16120.52 (18)
C10—C11—H11A109.5C14—C15—C16119.19 (17)
C10—C11—H11B109.5C17—C20—H20A109.5
H11A—C11—H11B109.5C17—C20—H20B109.5
C10—C11—H11C109.5H20A—C20—H20B109.5
H11A—C11—H11C109.5C17—C20—H20C109.5
H11B—C11—H11C109.5H20A—C20—H20C109.5
N2—C10—C9111.83 (19)H20B—C20—H20C109.5
N2—C10—C11119.01 (19)C17—C19—H19A109.5
C9—C10—C11129.16 (19)C17—C19—H19B109.5
C10—N2—O2105.51 (16)H19A—C19—H19B109.5
O2—C12—C9112.65 (17)C17—C19—H19C109.5
O2—C12—N3120.60 (17)H19A—C19—H19C109.5
C9—C12—N3126.73 (17)H19B—C19—H19C109.5
C12—C9—C10103.49 (17)C7—N1—C6111.84 (17)
C12—C9—C8121.84 (17)C7—N1—H1124.1
C10—C9—C8134.67 (17)C6—N1—H1124.1
C13—C14—C15119.00 (17)C12—O2—N2106.51 (14)
C13—C14—C8124.41 (16)
C2—C3—C4—C50.1 (4)C1—C8—C9—C1053.1 (3)
Cl1—C3—C4—C5178.35 (18)C14—C8—C9—C10179.6 (2)
C3—C4—C5—C60.2 (3)C7—C8—C9—C1058.5 (3)
C4—C5—C6—C10.3 (3)C9—C8—C14—C132.9 (2)
C4—C5—C6—N1177.8 (2)C1—C8—C14—C13123.2 (2)
O1—C7—C8—C965.4 (2)C7—C8—C14—C13122.75 (19)
N1—C7—C8—C9111.86 (17)C9—C8—C14—C15175.48 (16)
O1—C7—C8—C1175.38 (18)C1—C8—C14—C1558.4 (2)
N1—C7—C8—C17.40 (18)C7—C8—C14—C1555.6 (2)
O1—C7—C8—C1453.9 (2)C15—C14—C13—N3173.17 (17)
N1—C7—C8—C14128.87 (16)C8—C14—C13—N35.1 (3)
C5—C6—C1—C20.9 (3)C15—C14—C13—C186.8 (3)
N1—C6—C1—C2177.55 (17)C8—C14—C13—C18174.89 (17)
C5—C6—C1—C8179.47 (18)O2—C12—N3—C13179.11 (16)
N1—C6—C1—C81.1 (2)C9—C12—N3—C131.0 (3)
C9—C8—C1—C270.3 (2)C14—C13—N3—C123.1 (3)
C14—C8—C1—C253.0 (3)C18—C13—N3—C12176.94 (16)
C7—C8—C1—C2173.4 (2)C14—C13—C18—C1722.5 (3)
C9—C8—C1—C6111.28 (18)N3—C13—C18—C17157.52 (17)
C14—C8—C1—C6125.39 (17)C13—C18—C17—C2070.7 (2)
C7—C8—C1—C65.00 (19)C13—C18—C17—C19168.61 (18)
C6—C1—C2—C30.9 (3)C13—C18—C17—C1650.0 (2)
C8—C1—C2—C3179.21 (19)C20—C17—C16—C1568.5 (2)
C4—C3—C2—C10.5 (3)C19—C17—C16—C15171.06 (18)
Cl1—C3—C2—C1178.95 (15)C18—C17—C16—C1552.5 (2)
C9—C10—N2—O20.7 (2)C13—C14—C15—O3173.34 (18)
C11—C10—N2—O2179.71 (19)C8—C14—C15—O35.1 (3)
O2—C12—C9—C100.8 (2)C13—C14—C15—C164.5 (3)
N3—C12—C9—C10177.44 (18)C8—C14—C15—C16177.07 (17)
O2—C12—C9—C8178.75 (16)C17—C16—C15—O3155.17 (19)
N3—C12—C9—C83.0 (3)C17—C16—C15—C1427.0 (3)
N2—C10—C9—C121.0 (2)O1—C7—N1—C6175.33 (18)
C11—C10—C9—C12179.5 (2)C8—C7—N1—C67.4 (2)
N2—C10—C9—C8178.5 (2)C5—C6—N1—C7174.1 (2)
C11—C10—C9—C81.0 (4)C1—C6—N1—C74.2 (2)
C1—C8—C9—C12127.5 (2)C9—C12—O2—N20.4 (2)
C14—C8—C9—C121.0 (2)N3—C12—O2—N2177.96 (16)
C7—C8—C9—C12120.92 (19)C10—N2—O2—C120.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.052.837 (2)151
N3—H3···O1ii0.862.002.795 (2)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.052.837 (2)151
N3—H3···O1ii0.862.002.795 (2)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and BioPhysics, University of Madras, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPadwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds