organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-phenyl-1,3-thia­zole

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, and bX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 5 January 2014; accepted 10 January 2014; online 15 January 2014)

In the title mol­ecule, C9H6BrNS, the planes of the 2-bromo-1,3-thia­zole and phenyl rings are inclined at 7.45 (10)° with respect to each other. In the crystal, mol­ecules related by a centre of symmetry are held together via ππ inter­actions, with a short distance of 3.815 (2) Å between the centroids of the five- and six-membered rings. The crystal packing exhibits short inter­molecular S⋯Br contacts of 3.5402 (6) Å.

Related literature

For syntheses and properties of compounds containing a thia­zole fragment, see: Kelly & Lang (1995[Kelly, T. R. & Lang, F. (1995). Tetrahedron Lett. 36, 5319-5322.]); Nicolaou et al. (1999[Nicolaou, K. C., King, N. P., Finlay, M. R. V., He, Y., Roshangar, F., Vourloumis, D., Vallberg, H., Sarabia, F., Ninkovic, S. & Hepworth, D. (1999). Bioorg. Med. Chem. 7, 665-697.]); Cosford et al. (2003[Cosford, N. D. P., Tehrani, L., Roppe, J., Schweiger, E., Smith, N. D., Anderson, J. J., Bristow, L., Brodkin, J., Jiang, X. H., McDonald, I., Rao, S., Washburn, M. & Varney, M. A. (2003). J. Med. Chem. 46, 204-206.]); Fyfe et al. (2004[Fyfe, F. M. C. T., Gardner, L. S., Nawano, M., Procter, J. M., Rasamison, C. M., Shofield, K. L., Shah, V. K. & Yasuda, K. (2004). WO2004/072031.]); Hamill et al. (2005[Hamill, T. G., Krause, S., Ryan, C., Bonnefous, C., Govek, S., Seiders, T. J., Cosford, N. D. P., Roppe, J., Kamenecka, T., Patel, S., Gibson, R. E., Sanabria, S., Riffel, K., Eng, W., King, C., Yang, X., Green, M. D., O'Malley, S. S., Hargreaves, R. & Burns, H. D. (2005). Synapse, 56, 205-216.]). For the crystal structures of related compounds, see: Abbenante et al. (1996[Abbenante, G., Fairlie, D. P., Gahan, L. R., Hanson, G. R., Pierens, G. K. & van den Brenk, A. L. (1996). J. Am. Chem. Soc. 118, 10384-10388.]); Zhao et al. (2011[Zhao, L.-L., Cheng, W.-H. & Cai, Z.-S. (2011). Acta Cryst. E67, o1531.]); Ghabbour, Chia et al. (2012[Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631-o1632.]); Ghabbour, Kadi et al. (2012[Ghabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1738-o1739.]).

[Scheme 1]

Experimental

Crystal data
  • C9H6BrNS

  • Mr = 240.12

  • Monoclinic, P 21 /n

  • a = 5.8934 (3) Å

  • b = 10.6591 (6) Å

  • c = 13.8697 (7) Å

  • β = 90.812 (1)°

  • V = 871.18 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.89 mm−1

  • T = 120 K

  • 0.15 × 0.12 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.527, Tmax = 0.591

  • 12144 measured reflections

  • 2780 independent reflections

  • 2258 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.03

  • 2780 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3–Thiazole rings appear in many compounds that exhibit important biological and pharmacological activities. For example, these rings feature in all the potent epothilones (Nicolaou et al., 1999) used aganist multidrug–resistant tumor cell lines. They are also found among pharmaceuticals used for the treatment of type 2 diabetes (Fyfe et al., 2004), antibiotic-like compounds (Kelly et al., 1995), and metabotropic glutamate receptor subtype (mGluR5) antagonists (Cosford et al., 2003; Hamill et al., 2005). Herewith we present the title compound (I) prepared by the reaction of 2–amino–4–phenylthiazole with n-butyl nintrine and CuBr (Figure 1).

In I (Fig. 2), the bond lengths and angles are in a good agreement with those found in the related compounds (Abbenante et al., 1996; Zhao et al., 2011; Ghabbour, Chia et al., 2012; Ghabbour, Kadi et al., 2012). The 2-bromo-1,3-thiazole mean plane and phenyl ring are twisted by 7.45 (10)°.

In the crystal, the molecules related by center of symmetry held together via π···π interactions proved by short Cg5···Cg6i distance of 3.815 (2) Å between the centroids of five-membered (Cg5) and six-membered (Cg6) rings [symmetry code: (i) –x, 1–y, 1–z]. The crystal packing exhibits short intermolecular S···Brii contacts of 3.5402 (6) Å (Figure 3) [symmetry code: (ii) -1 + x, y, z].

Related literature top

For syntheses and properties of compounds containing a thiazole fragment, see: Kelly & Lang (1995); Nicolaou et al. (1999); Cosford et al. (2003); Fyfe et al. (2004); Hamill et al. (2005). For the crystal structures of related compounds, see: Abbenante et al. (1996); Zhao et al. (2011); Ghabbour, Chia et al. (2012); Ghabbour, Kadi et al. (2012).

Experimental top

The 4–phenyl–2–aminothiazole (8.1 g, 46.9 mmol) and CuBr (10.7 g, 74.6 mmol) were dissolved in acetonitrile at room temperature. n-Butyl nitrite (8.7 ml, 7.69 g, 74.6 mmol) was added with stirring, and the solution was heated to 333 K. The reaction completed after 15 min. The reaction mixture was then evaporated to dryness in vacuo. The residue was dissolved in ethyl acetate (50 ml) and washed with ammonia solution (0.1 M, 2 × 50). The organic layer was dried over MgSO4 and evaporated to dryness in vacuo. The residue was purified by chromatography on silica gel (heptane–ethylacetate; 70:3, v/v). The residue crystallized from 5% soluition in heptane. Yield is 53%. The single-crystal of the product I was obtained by slow crystallization from hexane. M.p. = 327–328 K. IR (KBr), ν/cm-1: 3098, 3063, 1476, 1420, 1263, 1070, 1010, 836, 730, 689. 1H NMR (500 MHz, DMSO-d6, 304 K): 7.40–6.37 (m, 1H, Ph), 7.46 (t, 2H, J = 7.63, Ph), 7.92 (d, 2H, J = 7.32, Ph), 8.16 (s, 1H, thiazole). Anal. Calcd for C9H6BrNS: C, 45.02; H, 2.52. Found: C, 45.09; H, 2.57.

Refinement top

All hydrogen atoms were placed in the calculated positions [C—H = 0.95 Å] and refined in the riding model, with Uiso(H) = 1.2Ueq(C)].

Structure description top

1,3–Thiazole rings appear in many compounds that exhibit important biological and pharmacological activities. For example, these rings feature in all the potent epothilones (Nicolaou et al., 1999) used aganist multidrug–resistant tumor cell lines. They are also found among pharmaceuticals used for the treatment of type 2 diabetes (Fyfe et al., 2004), antibiotic-like compounds (Kelly et al., 1995), and metabotropic glutamate receptor subtype (mGluR5) antagonists (Cosford et al., 2003; Hamill et al., 2005). Herewith we present the title compound (I) prepared by the reaction of 2–amino–4–phenylthiazole with n-butyl nintrine and CuBr (Figure 1).

In I (Fig. 2), the bond lengths and angles are in a good agreement with those found in the related compounds (Abbenante et al., 1996; Zhao et al., 2011; Ghabbour, Chia et al., 2012; Ghabbour, Kadi et al., 2012). The 2-bromo-1,3-thiazole mean plane and phenyl ring are twisted by 7.45 (10)°.

In the crystal, the molecules related by center of symmetry held together via π···π interactions proved by short Cg5···Cg6i distance of 3.815 (2) Å between the centroids of five-membered (Cg5) and six-membered (Cg6) rings [symmetry code: (i) –x, 1–y, 1–z]. The crystal packing exhibits short intermolecular S···Brii contacts of 3.5402 (6) Å (Figure 3) [symmetry code: (ii) -1 + x, y, z].

For syntheses and properties of compounds containing a thiazole fragment, see: Kelly & Lang (1995); Nicolaou et al. (1999); Cosford et al. (2003); Fyfe et al. (2004); Hamill et al. (2005). For the crystal structures of related compounds, see: Abbenante et al. (1996); Zhao et al. (2011); Ghabbour, Chia et al. (2012); Ghabbour, Kadi et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of 2–bromo–4–phenylthiazole.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.
[Figure 3] Fig. 3. The crystal packing of I viewed along the a axis. Dashed lines indicate the intermolecular secondary S···Br interactions.
2-Bromo-4-phenyl-1,3-thiazole top
Crystal data top
C9H6BrNSF(000) = 472
Mr = 240.12Dx = 1.831 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3185 reflections
a = 5.8934 (3) Åθ = 2.4–29.5°
b = 10.6591 (6) ŵ = 4.89 mm1
c = 13.8697 (7) ÅT = 120 K
β = 90.812 (1)°Prism, yellow
V = 871.18 (8) Å30.15 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2780 independent reflections
Radiation source: fine–focus sealed tube2258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 31.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 88
Tmin = 0.527, Tmax = 0.591k = 1515
12144 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.1245P]
where P = (Fo2 + 2Fc2)/3
2780 reflections(Δ/σ)max = 0.002
109 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C9H6BrNSV = 871.18 (8) Å3
Mr = 240.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.8934 (3) ŵ = 4.89 mm1
b = 10.6591 (6) ÅT = 120 K
c = 13.8697 (7) Å0.15 × 0.12 × 0.12 mm
β = 90.812 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2258 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.591Rint = 0.045
12144 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
2780 reflectionsΔρmin = 0.51 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.21824 (3)0.90020 (2)0.576233 (15)0.02238 (7)
S10.24024 (8)0.75866 (5)0.55984 (4)0.01975 (11)
C20.0322 (3)0.77659 (19)0.52049 (14)0.0165 (4)
N30.0960 (3)0.70330 (16)0.45150 (11)0.0161 (3)
C40.0825 (3)0.62475 (17)0.42443 (14)0.0144 (4)
C50.2768 (3)0.64278 (19)0.47549 (14)0.0178 (4)
H50.41350.59720.46550.021*
C60.0500 (3)0.53485 (18)0.34463 (14)0.0151 (4)
C70.2155 (3)0.4453 (2)0.32167 (14)0.0184 (4)
H70.35080.44190.35800.022*
C80.1849 (4)0.3613 (2)0.24652 (14)0.0214 (4)
H80.29880.30090.23180.026*
C90.0134 (4)0.3655 (2)0.19254 (15)0.0213 (4)
H90.03540.30800.14110.026*
C100.1778 (4)0.4544 (2)0.21484 (15)0.0208 (4)
H100.31300.45760.17840.025*
C110.1471 (3)0.53900 (19)0.28978 (14)0.0174 (4)
H110.26050.59990.30380.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02065 (11)0.02080 (11)0.02561 (12)0.00021 (8)0.00253 (8)0.00725 (8)
S10.0181 (2)0.0210 (3)0.0202 (2)0.00233 (19)0.00358 (19)0.00361 (19)
C20.0156 (9)0.0158 (9)0.0181 (9)0.0006 (7)0.0012 (7)0.0013 (7)
N30.0167 (8)0.0160 (8)0.0155 (8)0.0008 (6)0.0005 (6)0.0006 (6)
C40.0162 (9)0.0129 (9)0.0142 (8)0.0009 (7)0.0008 (7)0.0015 (7)
C50.0173 (9)0.0173 (9)0.0190 (10)0.0002 (7)0.0009 (7)0.0011 (8)
C60.0187 (9)0.0137 (9)0.0129 (8)0.0020 (7)0.0013 (7)0.0015 (7)
C70.0194 (9)0.0182 (9)0.0176 (9)0.0013 (8)0.0002 (7)0.0010 (8)
C80.0264 (10)0.0180 (10)0.0198 (10)0.0019 (8)0.0054 (8)0.0004 (8)
C90.0307 (11)0.0180 (10)0.0153 (9)0.0045 (8)0.0019 (8)0.0026 (7)
C100.0224 (10)0.0225 (10)0.0175 (9)0.0041 (8)0.0028 (8)0.0006 (8)
C110.0184 (9)0.0165 (9)0.0172 (9)0.0013 (7)0.0019 (7)0.0004 (7)
Geometric parameters (Å, º) top
Br1—C21.874 (2)C7—C81.388 (3)
S1—C51.713 (2)C7—H70.9500
S1—C21.714 (2)C8—C91.398 (3)
C2—N31.295 (2)C8—H80.9500
N3—C41.392 (2)C9—C101.388 (3)
C4—C51.368 (3)C9—H90.9500
C4—C61.478 (3)C10—C111.390 (3)
C5—H50.9500C10—H100.9500
C6—C111.398 (3)C11—H110.9500
C6—C71.398 (3)
C5—S1—C288.40 (10)C8—C7—H7119.5
N3—C2—S1116.81 (15)C6—C7—H7119.5
N3—C2—Br1123.68 (15)C7—C8—C9120.0 (2)
S1—C2—Br1119.49 (11)C7—C8—H8120.0
C2—N3—C4109.64 (17)C9—C8—H8120.0
C5—C4—N3114.24 (17)C10—C9—C8119.28 (19)
C5—C4—C6126.63 (18)C10—C9—H9120.4
N3—C4—C6119.11 (17)C8—C9—H9120.4
C4—C5—S1110.91 (15)C9—C10—C11120.80 (19)
C4—C5—H5124.5C9—C10—H10119.6
S1—C5—H5124.5C11—C10—H10119.6
C11—C6—C7118.68 (18)C10—C11—C6120.30 (19)
C11—C6—C4120.27 (17)C10—C11—H11119.9
C7—C6—C4121.05 (17)C6—C11—H11119.9
C8—C7—C6120.92 (19)
C5—S1—C2—N30.65 (17)C5—C4—C6—C78.5 (3)
C5—S1—C2—Br1178.28 (13)N3—C4—C6—C7173.20 (18)
S1—C2—N3—C40.5 (2)C11—C6—C7—C80.5 (3)
Br1—C2—N3—C4178.35 (13)C4—C6—C7—C8179.78 (19)
C2—N3—C4—C50.1 (2)C6—C7—C8—C90.0 (3)
C2—N3—C4—C6178.41 (17)C7—C8—C9—C100.2 (3)
N3—C4—C5—S10.4 (2)C8—C9—C10—C110.1 (3)
C6—C4—C5—S1178.74 (16)C9—C10—C11—C60.6 (3)
C2—S1—C5—C40.56 (16)C7—C6—C11—C100.8 (3)
C5—C4—C6—C11170.74 (19)C4—C6—C11—C10179.93 (18)
N3—C4—C6—C117.5 (3)

Experimental details

Crystal data
Chemical formulaC9H6BrNS
Mr240.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)5.8934 (3), 10.6591 (6), 13.8697 (7)
β (°) 90.812 (1)
V3)871.18 (8)
Z4
Radiation typeMo Kα
µ (mm1)4.89
Crystal size (mm)0.15 × 0.12 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.527, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
12144, 2780, 2258
Rint0.045
(sin θ/λ)max1)0.725
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.03
No. of reflections2780
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.51

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 3.1168.2011).

References

First citationAbbenante, G., Fairlie, D. P., Gahan, L. R., Hanson, G. R., Pierens, G. K. & van den Brenk, A. L. (1996). J. Am. Chem. Soc. 118, 10384–10388.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosford, N. D. P., Tehrani, L., Roppe, J., Schweiger, E., Smith, N. D., Anderson, J. J., Bristow, L., Brodkin, J., Jiang, X. H., McDonald, I., Rao, S., Washburn, M. & Varney, M. A. (2003). J. Med. Chem. 46, 204–206.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFyfe, F. M. C. T., Gardner, L. S., Nawano, M., Procter, J. M., Rasamison, C. M., Shofield, K. L., Shah, V. K. & Yasuda, K. (2004). WO2004/072031.  Google Scholar
First citationGhabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631–o1632.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhabbour, H. A., Kadi, A. A., El-Subbagh, H. I., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1738–o1739.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHamill, T. G., Krause, S., Ryan, C., Bonnefous, C., Govek, S., Seiders, T. J., Cosford, N. D. P., Roppe, J., Kamenecka, T., Patel, S., Gibson, R. E., Sanabria, S., Riffel, K., Eng, W., King, C., Yang, X., Green, M. D., O'Malley, S. S., Hargreaves, R. & Burns, H. D. (2005). Synapse, 56, 205–216.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKelly, T. R. & Lang, F. (1995). Tetrahedron Lett. 36, 5319–5322.  CrossRef CAS Web of Science Google Scholar
First citationNicolaou, K. C., King, N. P., Finlay, M. R. V., He, Y., Roshangar, F., Vourloumis, D., Vallberg, H., Sarabia, F., Ninkovic, S. & Hepworth, D. (1999). Bioorg. Med. Chem. 7, 665–697.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, L.-L., Cheng, W.-H. & Cai, Z.-S. (2011). Acta Cryst. E67, o1531.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds