metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[5-meth­­oxy-1H-benzimidazole-2(3H)-thione-κS]bis­­(tri­phenyl­phos­phane-κP)copper(I) methanol disolvate

aDaxing High School Attached to CNU, Beijing 102600, People's Republic of China
*Correspondence e-mail: mengqx90@163.com

(Received 8 January 2014; accepted 17 January 2014; online 22 January 2014)

In the title complex, [CuCl(C8H8N2OS)(C18H15P)2]·2CH3OH, the CuI ion is coordinated by one chloride anion, one S atom from the 5-meth­oxy-1H-benzimidazole-2(3H)-thione ligand and two P atoms from two tri­phenyl­phosphine ligands in a distorted tetra­hedral geometry. One of the N-bound H atoms is involved in an intra­molecular N—H⋯Cl hydrogen bond, while another one inter­acts with the solvent methanol mol­ecule via an N—H⋯O hydrogen bond. Inter­molecular O—H⋯Cl and O—H⋯O hydrogen bonds link two further complex mol­ecules and four solvent mol­ecules into a centrosymmetric structural unit. The short distance of 3.624 (4) Å between the centroids of the five- and the six-membered rings of two benzimidazole fragments indicates the presence of ππ inter­actions.

Related literature

For the structures and properties of CuI complexes with triphenlyphosphine ligands, see: Gennari et al. (2006[Gennari, M., Lanfranchi, M., Marchio, L., Pellinghelli, M. A., Tegoni, M. & Cammi, R. (2006). Inorg. Chem. 45, 3456-3466.]); Kitagawa et al. (1995[Kitagawa, S., Kondo, M., Kawata, S., Wada, S., Maekawa, M. & Munakata, M. (1995). Inorg. Chem. 34, 1455-1465.]); Raper (1994[Raper, E. S. (1994). Coord. Chem. Rev. 129, 91-156.]). For complexes with a 5-meth­oxy-1H-benzimidazole-2(3H)-thione ligand, see: Schneider et al. (2008[Schneider, J., Lee, Y. A., Pérez, J., Brennessel, W. W., Flaschenriem, C. & Eisenberg, R. (2008). Inorg. Chem. 47, 957-968.]). For related structures, see: Lobana & Castineiras (2002[Lobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603-1611.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C8H8N2OS)(C18H15P)2]·2CH4O

  • Mr = 867.84

  • Monoclinic, P 21 /c

  • a = 12.8354 (9) Å

  • b = 18.4979 (17) Å

  • c = 18.7933 (18) Å

  • β = 92.839 (12)°

  • V = 4456.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 298 K

  • 0.34 × 0.27 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]) Tmin = 0.794, Tmax = 0.901

  • 22332 measured reflections

  • 7835 independent reflections

  • 3113 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.217

  • S = 1.07

  • 7835 reflections

  • 510 parameters

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.86 2.30 3.136 (6) 165
N2—H2⋯O2 0.86 2.08 2.893 (9) 157
O2—H2A⋯O3i 0.82 2.00 2.728 (10) 148
O3—H3⋯Cl1ii 0.82 2.35 3.170 (8) 176
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cu(I) complexes containing triphenlyphosphine and mercaptan ligands have received much attention in the past, mainly because of their interesting coordination chemistry and potential applications in photography, biochemistry and enzymatic reactions (Gennari et al., 2006; Kitagawa et al., 1995; Raper et al., 1994). However, only one structure was reported for metal-MOBMT complex (MOBMT = 5-methoxy-1H- benzimidazole-2(3H)-thione) (Schneider et al., 2008). Herewith we present the crystal structure of new Cu(I) complex with triphenlyphosphine and MOBMT ligands.

In the title complex, MOMBT act as neutral, monodentate ligand with the S atom as a coordination atom. Other sites of the coordination tetrahedron are occupied by two P atoms from two triphenlyphosphine ligands and one halide anion. The Cu—S and Cu—P bond distances are similar to those reported in other copper(I) complexes (Lobana et al., 2002). The environment around copper(I) is distorted tetrahedral, angles around the Cu atom ranging from 102.1 (1)–122.0 (1)°. A dimer is formed by hydrogen bonds N—H···O, O—H···Cl, O—H···O between the unit [CuX(thione)(PPh3)2] and the solvent methanol molecules. An intramolecular N—H···Cl hydrogen bond is also observed (Table 1). Furthermore, the centroid to centroid distance between the parallel five- and six-membered rings of two benzimidazole fragments is 3.624 (4) Å, which suggests an existence of π···π interactions between them.

Related literature top

For the structures and properties of CuI complexes with triphenlyphosphine ligands, see: Gennari et al. (2006); Kitagawa et al. (1995); Raper (1994). For complexes with the 5-methoxy-1H-benzimidazole -2(3H)-thione ligand, see: Schneider et al. (2008). For related structures, see: Lobana & Castineiras (2002).

Experimental top

A mixture of CuCl (0.2 mmol) and 5-methoxy-1H-benzimidazole- 2(3H)-thione(0.2 mmol) in MeOH and CH2Cl2 (10 mL, v/v = 1:1) was stirred for 2 h and triphenylphosphine (0.2 mmol) was added to the mixture which was stirred for another 4 h. The insoluble residues were removed by filtration, and filtrate was evaporated slowly at room temperature for two weeks to yield colorless crystalline products.

Refinement top

H atoms were positioned geometrically [C—H = 0.93 – 0.96 Å, N—H = 0.86 Å, O—H = 0.82 Å] and refined as riding, with Uiso(H) = 1.2 – 1.5 Ueq of the parent atom.

Structure description top

Cu(I) complexes containing triphenlyphosphine and mercaptan ligands have received much attention in the past, mainly because of their interesting coordination chemistry and potential applications in photography, biochemistry and enzymatic reactions (Gennari et al., 2006; Kitagawa et al., 1995; Raper et al., 1994). However, only one structure was reported for metal-MOBMT complex (MOBMT = 5-methoxy-1H- benzimidazole-2(3H)-thione) (Schneider et al., 2008). Herewith we present the crystal structure of new Cu(I) complex with triphenlyphosphine and MOBMT ligands.

In the title complex, MOMBT act as neutral, monodentate ligand with the S atom as a coordination atom. Other sites of the coordination tetrahedron are occupied by two P atoms from two triphenlyphosphine ligands and one halide anion. The Cu—S and Cu—P bond distances are similar to those reported in other copper(I) complexes (Lobana et al., 2002). The environment around copper(I) is distorted tetrahedral, angles around the Cu atom ranging from 102.1 (1)–122.0 (1)°. A dimer is formed by hydrogen bonds N—H···O, O—H···Cl, O—H···O between the unit [CuX(thione)(PPh3)2] and the solvent methanol molecules. An intramolecular N—H···Cl hydrogen bond is also observed (Table 1). Furthermore, the centroid to centroid distance between the parallel five- and six-membered rings of two benzimidazole fragments is 3.624 (4) Å, which suggests an existence of π···π interactions between them.

For the structures and properties of CuI complexes with triphenlyphosphine ligands, see: Gennari et al. (2006); Kitagawa et al. (1995); Raper (1994). For complexes with the 5-methoxy-1H-benzimidazole -2(3H)-thione ligand, see: Schneider et al. (2008). For related structures, see: Lobana & Castineiras (2002).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. Solvent molecules and H atoms have been omitted for clarity.
Chlorido[5-methoxy-1H-benzimidazole-2(3H)-thione-κS]bis(triphenylphosphane-κP)copper(I) methanol disolvate top
Crystal data top
[CuCl(C8H8N2OS)(C18H15P)2]·2CH4OF(000) = 1808
Mr = 867.84Dx = 1.293 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1965 reflections
a = 12.8354 (9) Åθ = 2.6–18.0°
b = 18.4979 (17) ŵ = 0.71 mm1
c = 18.7933 (18) ÅT = 298 K
β = 92.839 (12)°Block, colorless
V = 4456.6 (7) Å30.34 × 0.27 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7835 independent reflections
Radiation source: fine-focus sealed tube3113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
phi and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.794, Tmax = 0.901k = 1521
22332 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0574P)2]
where P = (Fo2 + 2Fc2)/3
7835 reflections(Δ/σ)max = 0.001
510 parametersΔρmax = 1.53 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[CuCl(C8H8N2OS)(C18H15P)2]·2CH4OV = 4456.6 (7) Å3
Mr = 867.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8354 (9) ŵ = 0.71 mm1
b = 18.4979 (17) ÅT = 298 K
c = 18.7933 (18) Å0.34 × 0.27 × 0.15 mm
β = 92.839 (12)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7835 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3113 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.901Rint = 0.143
22332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.07Δρmax = 1.53 e Å3
7835 reflectionsΔρmin = 0.57 e Å3
510 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.30121 (7)0.43378 (5)0.23518 (5)0.0537 (3)
P10.47643 (15)0.42103 (10)0.21637 (10)0.0509 (5)
P20.24071 (15)0.44918 (10)0.34688 (10)0.0531 (6)
Cl10.22504 (15)0.32234 (10)0.18410 (10)0.0599 (5)
S10.22509 (17)0.53539 (11)0.17178 (11)0.0692 (7)
N10.1747 (4)0.4387 (3)0.0660 (3)0.0563 (16)
H10.19000.40130.09150.068*
N20.1489 (5)0.5499 (3)0.0335 (3)0.0628 (18)
H20.14460.59630.03480.075*
O10.0716 (5)0.3451 (4)0.1723 (3)0.0926 (19)
O20.1114 (6)0.6996 (4)0.0042 (5)0.130 (3)
H2A0.06390.69510.03470.195*
O30.9931 (7)0.2825 (5)0.1330 (5)0.158 (4)
H31.05320.29070.14750.236*
C10.1816 (6)0.5083 (4)0.0894 (4)0.059 (2)
C20.1233 (6)0.5082 (4)0.0262 (4)0.058 (2)
C30.1393 (6)0.4368 (4)0.0056 (4)0.0524 (19)
C40.1246 (6)0.3797 (4)0.0514 (4)0.065 (2)
H40.13780.33240.03680.078*
C50.0892 (6)0.3957 (5)0.1203 (5)0.066 (2)
C60.0695 (6)0.4672 (5)0.1402 (4)0.070 (2)
H60.04410.47660.18650.084*
C70.0856 (6)0.5234 (5)0.0950 (4)0.065 (2)
H70.07190.57070.10960.079*
C80.1079 (9)0.2732 (6)0.1583 (5)0.122 (4)
H8A0.16390.27440.12250.182*
H8B0.13240.25260.20130.182*
H8C0.05180.24440.14180.182*
C90.5097 (7)0.4059 (4)0.1244 (4)0.059 (2)
C100.6037 (7)0.3743 (5)0.1044 (5)0.082 (3)
H100.65440.36050.13880.099*
C110.6198 (9)0.3640 (5)0.0318 (7)0.094 (3)
H110.68120.34260.01800.113*
C120.5476 (11)0.3847 (6)0.0176 (6)0.095 (3)
H120.56050.37750.06530.115*
C130.4570 (9)0.4156 (6)0.0013 (6)0.096 (3)
H130.40790.42950.03670.116*
C140.4393 (7)0.4258 (4)0.0702 (5)0.072 (2)
H140.37700.44720.08220.087*
C150.5550 (6)0.4989 (4)0.2451 (5)0.059 (2)
C160.6271 (6)0.5323 (5)0.2041 (5)0.073 (2)
H160.63790.51510.15860.088*
C170.6840 (7)0.5918 (5)0.2304 (6)0.085 (3)
H170.73200.61390.20190.102*
C180.6702 (7)0.6179 (5)0.2974 (6)0.084 (3)
H180.70880.65720.31470.101*
C190.5988 (7)0.5855 (5)0.3385 (5)0.082 (3)
H190.58850.60280.38410.098*
C200.5415 (6)0.5266 (5)0.3126 (5)0.073 (2)
H200.49290.50530.34110.088*
C210.5458 (6)0.3451 (4)0.2602 (4)0.058 (2)
C220.6389 (7)0.3535 (5)0.2985 (5)0.088 (3)
H220.66730.39940.30550.106*
C230.6913 (8)0.2926 (6)0.3271 (6)0.109 (4)
H230.75470.29830.35260.131*
C240.6496 (8)0.2252 (5)0.3176 (5)0.089 (3)
H240.68570.18490.33540.106*
C250.5562 (8)0.2171 (5)0.2826 (5)0.084 (3)
H250.52630.17140.27790.101*
C260.5054 (7)0.2761 (5)0.2539 (4)0.072 (2)
H260.44140.26940.22930.086*
C270.2655 (6)0.3748 (4)0.4116 (4)0.057 (2)
C280.3502 (7)0.3323 (4)0.4029 (4)0.070 (2)
H280.39080.33960.36390.084*
C290.3773 (7)0.2775 (5)0.4521 (5)0.084 (3)
H290.43600.24890.44660.100*
C300.3162 (8)0.2672 (5)0.5073 (5)0.079 (3)
H300.33340.23100.54020.095*
C310.2305 (8)0.3080 (5)0.5166 (5)0.081 (3)
H310.18940.29960.55510.098*
C320.2046 (7)0.3622 (4)0.4682 (5)0.072 (2)
H320.14550.39020.47420.087*
C330.2920 (6)0.5294 (4)0.3946 (4)0.061 (2)
C340.3381 (7)0.5259 (5)0.4634 (5)0.081 (3)
H340.34140.48230.48810.097*
C350.3790 (8)0.5885 (6)0.4946 (5)0.103 (3)
H350.41070.58630.54020.123*
C360.3736 (8)0.6538 (6)0.4593 (6)0.101 (3)
H360.39920.69550.48150.121*
C370.3302 (7)0.6571 (5)0.3913 (6)0.089 (3)
H370.32900.70060.36650.106*
C380.2885 (7)0.5960 (5)0.3598 (5)0.080 (3)
H380.25710.59910.31420.095*
C390.0997 (6)0.4619 (4)0.3492 (4)0.063 (2)
C400.0361 (7)0.4197 (4)0.3041 (4)0.074 (2)
H400.06640.38820.27260.089*
C410.0717 (7)0.4236 (5)0.3052 (5)0.081 (3)
H410.11290.39360.27570.097*
C420.1163 (8)0.4702 (7)0.3483 (6)0.103 (3)
H420.18860.47280.34860.123*
C430.0571 (9)0.5136 (6)0.3914 (6)0.115 (4)
H430.08900.54690.42030.138*
C440.0514 (8)0.5090 (5)0.3931 (5)0.091 (3)
H440.09130.53810.42430.109*
C450.1070 (11)0.7687 (8)0.0263 (7)0.184 (6)
H45A0.09600.76430.07630.277*
H45B0.05050.79540.00360.277*
H45C0.17140.79360.01990.277*
C460.9510 (12)0.2268 (10)0.1738 (8)0.231 (10)
H46A0.92280.24700.21580.346*
H46B1.00490.19280.18740.346*
H46C0.89670.20260.14610.346*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0613 (6)0.0469 (6)0.0522 (6)0.0002 (5)0.0049 (4)0.0005 (5)
P10.0540 (12)0.0396 (12)0.0584 (13)0.0011 (10)0.0033 (10)0.0018 (10)
P20.0631 (13)0.0440 (13)0.0516 (13)0.0016 (10)0.0029 (10)0.0023 (10)
Cl10.0783 (13)0.0395 (11)0.0605 (13)0.0042 (10)0.0093 (10)0.0004 (9)
S10.0936 (16)0.0418 (12)0.0695 (15)0.0030 (11)0.0228 (12)0.0021 (11)
N10.074 (4)0.038 (4)0.056 (4)0.002 (3)0.011 (3)0.005 (3)
N20.074 (4)0.055 (5)0.057 (4)0.001 (4)0.009 (3)0.012 (4)
O10.122 (5)0.075 (5)0.078 (4)0.021 (4)0.020 (4)0.010 (4)
O20.162 (8)0.073 (5)0.150 (7)0.005 (5)0.045 (5)0.023 (5)
O30.140 (7)0.146 (8)0.178 (8)0.042 (6)0.081 (6)0.048 (6)
C10.065 (5)0.053 (6)0.059 (6)0.003 (4)0.006 (4)0.005 (5)
C20.063 (5)0.054 (6)0.055 (6)0.002 (4)0.008 (4)0.010 (5)
C30.068 (5)0.039 (5)0.049 (5)0.003 (4)0.006 (4)0.006 (4)
C40.082 (6)0.051 (5)0.062 (6)0.012 (5)0.011 (5)0.004 (5)
C50.082 (6)0.060 (6)0.055 (6)0.009 (5)0.007 (5)0.002 (5)
C60.088 (6)0.068 (6)0.053 (6)0.012 (5)0.009 (4)0.005 (5)
C70.082 (6)0.057 (6)0.057 (6)0.007 (5)0.005 (5)0.014 (5)
C80.190 (11)0.079 (8)0.094 (8)0.007 (8)0.014 (8)0.016 (6)
C90.069 (6)0.036 (5)0.073 (6)0.009 (4)0.001 (5)0.001 (4)
C100.094 (7)0.066 (6)0.088 (8)0.007 (5)0.007 (6)0.000 (5)
C110.122 (10)0.060 (7)0.103 (9)0.001 (6)0.045 (8)0.009 (6)
C120.127 (10)0.078 (8)0.084 (9)0.028 (8)0.025 (8)0.018 (7)
C130.116 (9)0.096 (8)0.077 (8)0.017 (7)0.002 (6)0.010 (6)
C140.085 (6)0.071 (6)0.062 (6)0.011 (5)0.010 (5)0.013 (5)
C150.055 (5)0.048 (5)0.072 (6)0.002 (4)0.004 (4)0.003 (4)
C160.078 (6)0.056 (6)0.086 (7)0.006 (5)0.004 (5)0.002 (5)
C170.078 (7)0.064 (7)0.113 (9)0.015 (5)0.010 (6)0.002 (6)
C180.080 (7)0.065 (7)0.107 (9)0.006 (5)0.013 (6)0.010 (6)
C190.085 (7)0.068 (7)0.093 (7)0.003 (5)0.005 (6)0.024 (5)
C200.072 (6)0.062 (6)0.085 (7)0.005 (5)0.009 (5)0.007 (5)
C210.056 (5)0.046 (5)0.073 (6)0.001 (4)0.001 (4)0.006 (4)
C220.086 (7)0.054 (6)0.121 (8)0.003 (5)0.020 (6)0.009 (6)
C230.105 (8)0.080 (8)0.139 (10)0.006 (7)0.042 (7)0.023 (7)
C240.104 (8)0.047 (6)0.113 (8)0.013 (6)0.010 (6)0.015 (6)
C250.098 (8)0.048 (6)0.106 (8)0.001 (6)0.001 (6)0.005 (5)
C260.083 (6)0.043 (5)0.086 (6)0.005 (5)0.016 (5)0.000 (5)
C270.073 (6)0.042 (5)0.056 (6)0.001 (4)0.005 (4)0.003 (4)
C280.085 (6)0.059 (6)0.067 (6)0.002 (5)0.006 (5)0.014 (5)
C290.091 (7)0.068 (7)0.091 (8)0.011 (5)0.008 (6)0.025 (6)
C300.103 (8)0.062 (6)0.069 (7)0.010 (6)0.027 (6)0.012 (5)
C310.114 (8)0.066 (7)0.064 (6)0.005 (6)0.004 (6)0.008 (5)
C320.092 (7)0.058 (6)0.067 (6)0.005 (5)0.006 (5)0.003 (5)
C330.077 (6)0.047 (5)0.060 (6)0.002 (4)0.003 (4)0.005 (4)
C340.109 (7)0.056 (6)0.076 (7)0.008 (5)0.015 (6)0.010 (5)
C350.139 (9)0.075 (8)0.089 (8)0.010 (7)0.037 (6)0.011 (6)
C360.126 (9)0.064 (8)0.109 (9)0.010 (6)0.019 (7)0.025 (7)
C370.128 (8)0.045 (6)0.092 (8)0.006 (6)0.011 (6)0.004 (5)
C380.106 (7)0.052 (6)0.079 (6)0.006 (5)0.013 (5)0.009 (5)
C390.075 (6)0.053 (5)0.061 (6)0.004 (5)0.001 (5)0.005 (4)
C400.076 (7)0.064 (6)0.080 (6)0.006 (5)0.005 (5)0.009 (5)
C410.064 (6)0.086 (7)0.092 (7)0.011 (6)0.003 (5)0.008 (6)
C420.079 (7)0.113 (9)0.116 (9)0.001 (7)0.001 (7)0.015 (7)
C430.093 (9)0.119 (10)0.133 (10)0.018 (8)0.014 (7)0.045 (8)
C440.082 (8)0.091 (8)0.099 (8)0.001 (6)0.001 (6)0.025 (6)
C450.219 (16)0.153 (15)0.176 (14)0.013 (12)0.046 (11)0.046 (12)
C460.225 (17)0.24 (2)0.215 (17)0.121 (16)0.117 (14)0.093 (15)
Geometric parameters (Å, º) top
Cu1—P22.292 (2)C19—C201.389 (11)
Cu1—P12.306 (2)C19—H190.9300
Cu1—S12.407 (2)C20—H200.9300
Cu1—Cl12.456 (2)C21—C221.373 (10)
P1—C91.822 (8)C21—C261.382 (10)
P1—C151.825 (8)C22—C231.405 (12)
P1—C211.835 (8)C22—H220.9300
P2—C391.828 (8)C23—C241.365 (12)
P2—C331.838 (8)C23—H230.9300
P2—C271.853 (8)C24—C251.348 (11)
S1—C11.695 (8)C24—H240.9300
N1—C11.362 (8)C25—C261.368 (11)
N1—C31.398 (8)C25—H250.9300
N1—H10.8600C26—H260.9300
N2—C11.352 (8)C27—C281.359 (10)
N2—C21.387 (9)C27—C321.371 (10)
N2—H20.8600C28—C291.404 (10)
O1—C51.363 (9)C28—H280.9300
O1—C81.429 (10)C29—C301.345 (11)
O2—C451.403 (13)C29—H290.9300
O2—H2A0.8200C30—C311.351 (11)
O3—C461.410 (14)C30—H300.9300
O3—H30.8200C31—C321.383 (11)
C2—C71.387 (10)C31—H310.9300
C2—C31.388 (9)C32—H320.9300
C3—C41.370 (10)C33—C381.394 (11)
C4—C51.382 (10)C33—C341.398 (10)
C4—H40.9300C34—C351.388 (12)
C5—C61.395 (10)C34—H340.9300
C6—C71.352 (10)C35—C361.380 (13)
C6—H60.9300C35—H350.9300
C7—H70.9300C36—C371.370 (12)
C8—H8A0.9600C36—H360.9300
C8—H8B0.9600C37—C381.371 (11)
C8—H8C0.9600C37—H370.9300
C9—C141.378 (10)C38—H380.9300
C9—C101.409 (11)C39—C441.370 (11)
C10—C111.403 (12)C39—C401.387 (10)
C10—H100.9300C40—C411.387 (10)
C11—C121.336 (13)C40—H400.9300
C11—H110.9300C41—C421.332 (12)
C12—C131.344 (13)C41—H410.9300
C12—H120.9300C42—C431.348 (13)
C13—C141.387 (11)C42—H420.9300
C13—H130.9300C43—C441.395 (11)
C14—H140.9300C43—H430.9300
C15—C161.378 (10)C44—H440.9300
C15—C201.387 (10)C45—H45A0.9600
C16—C171.397 (11)C45—H45B0.9600
C16—H160.9300C45—H45C0.9600
C17—C181.370 (12)C46—H46A0.9600
C17—H170.9300C46—H46B0.9600
C18—C191.366 (12)C46—H46C0.9600
C18—H180.9300
P2—Cu1—P1122.03 (8)C15—C20—C19121.5 (8)
P2—Cu1—S1102.05 (8)C15—C20—H20119.2
P1—Cu1—S1112.28 (8)C19—C20—H20119.2
P2—Cu1—Cl1108.42 (7)C22—C21—C26117.5 (8)
P1—Cu1—Cl1103.10 (7)C22—C21—P1122.7 (7)
S1—Cu1—Cl1108.54 (7)C26—C21—P1119.8 (6)
C9—P1—C15104.5 (4)C21—C22—C23119.9 (9)
C9—P1—C21100.1 (4)C21—C22—H22120.1
C15—P1—C21102.9 (3)C23—C22—H22120.1
C9—P1—Cu1115.9 (3)C24—C23—C22120.4 (9)
C15—P1—Cu1113.8 (3)C24—C23—H23119.8
C21—P1—Cu1117.7 (3)C22—C23—H23119.8
C39—P2—C33102.5 (4)C25—C24—C23119.9 (9)
C39—P2—C27102.6 (4)C25—C24—H24120.1
C33—P2—C27103.5 (4)C23—C24—H24120.1
C39—P2—Cu1114.8 (3)C24—C25—C26120.0 (9)
C33—P2—Cu1114.7 (3)C24—C25—H25120.0
C27—P2—Cu1117.0 (3)C26—C25—H25120.0
C1—S1—Cu1109.2 (3)C25—C26—C21122.3 (8)
C1—N1—C3110.3 (6)C25—C26—H26118.9
C1—N1—H1124.8C21—C26—H26118.9
C3—N1—H1124.8C28—C27—C32119.0 (8)
C1—N2—C2111.3 (6)C28—C27—P2117.6 (7)
C1—N2—H2124.3C32—C27—P2123.4 (7)
C2—N2—H2124.3C27—C28—C29120.9 (8)
C5—O1—C8117.7 (7)C27—C28—H28119.6
C45—O2—H2A109.5C29—C28—H28119.6
C46—O3—H3109.5C30—C29—C28118.3 (9)
N2—C1—N1105.9 (7)C30—C29—H29120.8
N2—C1—S1128.1 (6)C28—C29—H29120.8
N1—C1—S1126.0 (6)C29—C30—C31122.0 (9)
N2—C2—C7134.3 (8)C29—C30—H30119.0
N2—C2—C3106.1 (7)C31—C30—H30119.0
C7—C2—C3119.5 (8)C30—C31—C32119.4 (9)
C4—C3—C2123.0 (7)C30—C31—H31120.3
C4—C3—N1130.7 (7)C32—C31—H31120.3
C2—C3—N1106.3 (7)C27—C32—C31120.4 (9)
C3—C4—C5117.0 (8)C27—C32—H32119.8
C3—C4—H4121.5C31—C32—H32119.8
C5—C4—H4121.5C38—C33—C34118.4 (8)
O1—C5—C4124.1 (8)C38—C33—P2118.9 (6)
O1—C5—C6115.9 (7)C34—C33—P2122.7 (7)
C4—C5—C6120.0 (8)C35—C34—C33119.2 (9)
C7—C6—C5122.8 (8)C35—C34—H34120.4
C7—C6—H6118.6C33—C34—H34120.4
C5—C6—H6118.6C36—C35—C34121.1 (9)
C6—C7—C2117.7 (8)C36—C35—H35119.4
C6—C7—H7121.2C34—C35—H35119.4
C2—C7—H7121.2C37—C36—C35119.8 (9)
O1—C8—H8A109.5C37—C36—H36120.1
O1—C8—H8B109.5C35—C36—H36120.1
H8A—C8—H8B109.5C36—C37—C38119.8 (9)
O1—C8—H8C109.5C36—C37—H37120.1
H8A—C8—H8C109.5C38—C37—H37120.1
H8B—C8—H8C109.5C37—C38—C33121.6 (8)
C14—C9—C10116.9 (8)C37—C38—H38119.2
C14—C9—P1119.0 (7)C33—C38—H38119.2
C10—C9—P1124.1 (7)C44—C39—C40117.1 (8)
C11—C10—C9119.0 (9)C44—C39—P2125.1 (7)
C11—C10—H10120.5C40—C39—P2117.8 (6)
C9—C10—H10120.5C39—C40—C41121.4 (8)
C12—C11—C10120.4 (10)C39—C40—H40119.3
C12—C11—H11119.8C41—C40—H40119.3
C10—C11—H11119.8C42—C41—C40120.1 (9)
C11—C12—C13122.8 (11)C42—C41—H41120.0
C11—C12—H12118.6C40—C41—H41120.0
C13—C12—H12118.6C41—C42—C43120.3 (10)
C12—C13—C14117.6 (10)C41—C42—H42119.8
C12—C13—H13121.2C43—C42—H42119.8
C14—C13—H13121.2C42—C43—C44120.7 (10)
C9—C14—C13123.2 (9)C42—C43—H43119.7
C9—C14—H14118.4C44—C43—H43119.7
C13—C14—H14118.4C39—C44—C43120.4 (9)
C16—C15—C20117.6 (8)C39—C44—H44119.8
C16—C15—P1124.4 (7)C43—C44—H44119.8
C20—C15—P1118.0 (7)O2—C45—H45A109.5
C15—C16—C17120.6 (8)O2—C45—H45B109.5
C15—C16—H16119.7H45A—C45—H45B109.5
C17—C16—H16119.7O2—C45—H45C109.5
C18—C17—C16120.9 (9)H45A—C45—H45C109.5
C18—C17—H17119.5H45B—C45—H45C109.5
C16—C17—H17119.5O3—C46—H46A109.5
C19—C18—C17119.1 (9)O3—C46—H46B109.5
C19—C18—H18120.4H46A—C46—H46B109.5
C17—C18—H18120.4O3—C46—H46C109.5
C18—C19—C20120.3 (9)H46A—C46—H46C109.5
C18—C19—H19119.9H46B—C46—H46C109.5
C20—C19—H19119.9
P2—Cu1—P1—C9177.7 (3)Cu1—P1—C15—C2048.6 (7)
S1—Cu1—P1—C960.8 (3)C20—C15—C16—C170.1 (12)
Cl1—Cu1—P1—C955.9 (3)P1—C15—C16—C17180.0 (6)
P2—Cu1—P1—C1561.1 (3)C15—C16—C17—C180.5 (13)
S1—Cu1—P1—C1560.4 (3)C16—C17—C18—C190.6 (14)
Cl1—Cu1—P1—C15177.0 (3)C17—C18—C19—C200.2 (14)
P2—Cu1—P1—C2159.3 (3)C16—C15—C20—C190.5 (12)
S1—Cu1—P1—C21179.2 (3)P1—C15—C20—C19179.5 (6)
Cl1—Cu1—P1—C2162.6 (3)C18—C19—C20—C150.4 (13)
P1—Cu1—P2—C39177.6 (3)C9—P1—C21—C22102.6 (8)
S1—Cu1—P2—C3951.4 (3)C15—P1—C21—C224.9 (8)
Cl1—Cu1—P2—C3963.0 (3)Cu1—P1—C21—C22130.8 (7)
P1—Cu1—P2—C3359.4 (3)C9—P1—C21—C2676.0 (7)
S1—Cu1—P2—C3366.9 (3)C15—P1—C21—C26176.5 (7)
Cl1—Cu1—P2—C33178.7 (3)Cu1—P1—C21—C2650.5 (7)
P1—Cu1—P2—C2762.1 (3)C26—C21—C22—C232.5 (13)
S1—Cu1—P2—C27171.7 (3)P1—C21—C22—C23176.2 (7)
Cl1—Cu1—P2—C2757.2 (3)C21—C22—C23—C240.7 (15)
P2—Cu1—S1—C1138.7 (3)C22—C23—C24—C252.1 (16)
P1—Cu1—S1—C189.0 (3)C23—C24—C25—C262.8 (15)
Cl1—Cu1—S1—C124.3 (3)C24—C25—C26—C210.9 (14)
C2—N2—C1—N11.4 (8)C22—C21—C26—C251.8 (13)
C2—N2—C1—S1177.4 (6)P1—C21—C26—C25176.9 (7)
C3—N1—C1—N21.1 (8)C39—P2—C27—C28153.8 (6)
C3—N1—C1—S1177.7 (6)C33—P2—C27—C2899.9 (7)
Cu1—S1—C1—N2168.8 (6)Cu1—P2—C27—C2827.3 (7)
Cu1—S1—C1—N19.8 (7)C39—P2—C27—C3228.0 (7)
C1—N2—C2—C7179.0 (8)C33—P2—C27—C3278.3 (7)
C1—N2—C2—C31.1 (8)Cu1—P2—C27—C32154.5 (6)
N2—C2—C3—C4178.2 (7)C32—C27—C28—C291.8 (12)
C7—C2—C3—C43.5 (12)P2—C27—C28—C29176.5 (6)
N2—C2—C3—N10.4 (8)C27—C28—C29—C301.2 (13)
C7—C2—C3—N1178.7 (7)C28—C29—C30—C310.1 (13)
C1—N1—C3—C4177.2 (8)C29—C30—C31—C320.3 (14)
C1—N1—C3—C20.4 (8)C28—C27—C32—C311.4 (12)
C2—C3—C4—C52.0 (12)P2—C27—C32—C31176.8 (6)
N1—C3—C4—C5179.2 (7)C30—C31—C32—C270.4 (13)
C8—O1—C5—C410.8 (12)C39—P2—C33—C3875.4 (7)
C8—O1—C5—C6169.2 (8)C27—P2—C33—C38178.2 (7)
C3—C4—C5—O1179.4 (7)Cu1—P2—C33—C3849.6 (7)
C3—C4—C5—C60.5 (12)C39—P2—C33—C34107.1 (7)
O1—C5—C6—C7178.4 (8)C27—P2—C33—C340.7 (8)
C4—C5—C6—C71.5 (13)Cu1—P2—C33—C34127.9 (6)
C5—C6—C7—C20.1 (13)C38—C33—C34—C350.3 (13)
N2—C2—C7—C6180.0 (8)P2—C33—C34—C35177.2 (7)
C3—C2—C7—C62.3 (11)C33—C34—C35—C360.9 (15)
C15—P1—C9—C14104.9 (6)C34—C35—C36—C372.2 (16)
C21—P1—C9—C14148.8 (6)C35—C36—C37—C382.7 (15)
Cu1—P1—C9—C1421.1 (7)C36—C37—C38—C332.1 (14)
C15—P1—C9—C1075.4 (7)C34—C33—C38—C370.9 (13)
C21—P1—C9—C1030.9 (7)P2—C33—C38—C37176.7 (7)
Cu1—P1—C9—C10158.6 (6)C33—P2—C39—C4415.7 (9)
C14—C9—C10—C111.0 (11)C27—P2—C39—C4491.4 (8)
P1—C9—C10—C11178.7 (6)Cu1—P2—C39—C44140.6 (7)
C9—C10—C11—C120.9 (14)C33—P2—C39—C40165.6 (6)
C10—C11—C12—C130.4 (16)C27—P2—C39—C4087.3 (7)
C11—C12—C13—C140.0 (16)Cu1—P2—C39—C4040.7 (7)
C10—C9—C14—C130.6 (12)C44—C39—C40—C412.0 (13)
P1—C9—C14—C13179.1 (7)P2—C39—C40—C41176.8 (7)
C12—C13—C14—C90.1 (14)C39—C40—C41—C422.3 (14)
C9—P1—C15—C164.0 (8)C40—C41—C42—C430.4 (17)
C21—P1—C15—C16100.2 (7)C41—C42—C43—C441.8 (18)
Cu1—P1—C15—C16131.3 (6)C40—C39—C44—C430.3 (14)
C9—P1—C15—C20176.0 (6)P2—C39—C44—C43178.9 (8)
C21—P1—C15—C2079.8 (6)C42—C43—C44—C392.2 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.303.136 (6)165
N2—H2···O20.862.082.893 (9)157
O2—H2A···O3i0.822.002.728 (10)148
O3—H3···Cl1ii0.822.353.170 (8)176
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.303.136 (6)165
N2—H2···O20.862.082.893 (9)157
O2—H2A···O3i0.822.002.728 (10)148
O3—H3···Cl1ii0.822.353.170 (8)176
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The author thanks Liaocheng University for the X-ray structure determination of the title complex.

References

First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Wisconsin, USA.  Google Scholar
First citationGennari, M., Lanfranchi, M., Marchio, L., Pellinghelli, M. A., Tegoni, M. & Cammi, R. (2006). Inorg. Chem. 45, 3456–3466.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kondo, M., Kawata, S., Wada, S., Maekawa, M. & Munakata, M. (1995). Inorg. Chem. 34, 1455–1465.  CSD CrossRef CAS Web of Science Google Scholar
First citationLobana, T. S. & Castineiras, A. (2002). Polyhedron, 21, 1603–1611.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaper, E. S. (1994). Coord. Chem. Rev. 129, 91–156.  CrossRef CAS Web of Science Google Scholar
First citationSchneider, J., Lee, Y. A., Pérez, J., Brennessel, W. W., Flaschenriem, C. & Eisenberg, R. (2008). Inorg. Chem. 47, 957–968.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds