organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o182-o183

(±)-trans-6,6′-Dieth­­oxy-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenol monohydrate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 21 November 2013; accepted 11 January 2014; online 22 January 2014)

In the title hydrate, C24H30N2O4·H2O, the organic mol­ecule adopts an E conformation with respect to the azomethine double bonds. The cyclo­hexane ring is in a chair conformation. The dihedral angle between benzene rings is 79.6 (2)°. Two intra­molecular O—H⋯N hydrogen bonds are present. In the crystal, the components are linked by O–H⋯O hydrogen bonds and weak C—H⋯π inter­actions, generating a three-dimensional supramolecular architecture.

Related literature

For applications of Schiff bases, see: Franceschi et al. (1999[Franceschi, F., Solari, E., Floriani, C., Rosi, M., -Villa, A. C. & Rizzoli, C. (1999). Chem. Eur. J. 5, 708-721.]); Hwang et al. (1998[Hwang, C.-D., Hwang, D.-R. & Uang, B.-J. (1998). J. Org. Chem. 63, 6762-6763.]); Popović et al. (2002[Popović, Z., Pavlović, G., Calogović, D. M., Roje, V. & Leban, I. (2002). J. Mol. Struct. 615, 23-31.]); Jones et al. (1979[Jones, R. D., Summerville, D. A. & Basolo, F. (1979). Chem. Rev. 79, 139-179.]). For a related structure, see: Ambili et al. (2012[Ambili, K. U., Sreejith, S. S., Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2482.]). For the synthesis of Schiff bases, see: Tümer (2000[Tümer, M. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1139-1158.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H30N2O4·H2O

  • Mr = 428.52

  • Monoclinic, P 21 /c

  • a = 9.8241 (18) Å

  • b = 11.6975 (19) Å

  • c = 21.881 (4) Å

  • β = 111.144 (8)°

  • V = 2345.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.980

  • 16141 measured reflections

  • 5586 independent reflections

  • 2701 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.190

  • S = 1.01

  • 5586 reflections

  • 299 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3′⋯N2 0.85 (1) 1.77 (3) 2.550 (4) 152 (3)
O2—H2′⋯N1 0.84 (1) 1.85 (2) 2.584 (3) 144 (4)
O1W—H1B⋯O3 0.86 (5) 2.34 (7) 3.005 (5) 134 (8)
O1W—H1B⋯O4 0.86 (5) 2.38 (8) 3.052 (5) 135 (6)
C21—H21BCg 0.97 2.92 3.810 (4) 153

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff bases are an important class of ligands in molecular design devoted to energy storage such as molecular batteries (Franceschi, et al. 1999) and also in transition metal catalysis (Hwang, et al. 1998). Schiff base having intramolecular hydrogen bonding shows photophysical properties such as thermochromism and photochromism (Popović, et al. 2002). Schiff bases also have an ability to reversibly bind oxygen (Jones, et al.1979).

The title compound crystallizes in the monoclinic, P21/c space group. The bond lengths and the bond angles agree with the related structure (Ambili, et al., 2012). The torsional angle, 177.9 (3)° of the azomethine linkage, C9—N2—C14—C15 reveals that the title compound adopts E conformation (Fig. 1). The mean plane deviation calculations show that the molecule as a whole is non-planar. Ring puckering analysis (Cremer & Pople, 1975) and least square plane calculations show that the cyclohexyl ring adopts a chair conformation (QT = 0.565 (4) Å) with the equatorial substitution at C9 for N2 and axial substitution at C8 for N1.

Crystal system consists of intramolecular hydrogen bonds of lengths 1.79 (3) Å and 1.85 (3) Å which exists between the azomethine N atom and the neighbouring phenolic O atom leading to the formation of two six membered rings comprising of atoms C14—C15—C20—O3—H3'···N2 and C7—C6—C5—O2—H2'···N1 (Fig. 2). A C—H···π interaction between one of the hydrogen attached at C21 and the aromatic ring (C15—C20) with H···Cg distance of 2.92 Å (Fig. 3) dominates the packing of molecules in the lattice. Fig. 4 shows the packing diagram of the title compound along a axis.

Related literature top

For applications of Schiff bases, see: Franceschi et al. (1999); Hwang et al. (1998); Popović et al. (2002); Jones et al. (1979). For a related structure, see: Ambili et al. (2012). For the synthesis of Schiff bases, see: Tümer (2000). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by following the reported procedure (Tümer, 2000). 3-Ethoxy-2-hydroxybenzaldehyde (0.166 g,1 mmol) was dissolved in ethanol and an ethanolic solution of 1, 2-diaminocyclohexane (0.044 g, 0.5 mmol) was added to it. The mixture was refluxed for 5 h. Slow evaporation of the solution yielded 0.183 g (95%) yellow block type crystals of (±)-trans-6,6'-Diethoxy-2,2'-[cyclohexane-1,2-diylbis(nitrilomethanylylidene)]diphenol monohydrate. The compound melts at 115 °C.

IR (KBr, \v in cm-1): 1626, 3530, 2930, 1468, 1249 1H NMR (400 MHz, CDCl3, δ in p.p.m.): 13.871 (s, 2H), 8.231 (s, 2H), 4.093–4.041 (q, 4H), 1.442–1.477 (t, 6H), 6.679–6.686 (m, 6H), 1.589–1.953 (m, 10H)

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). The O bound H atoms were located in a difference Fourier map and their Uiso values tied to 1.5 times of O5 atom. The O–H distances of water molecule are restrained by DFIX and DANG instructions. The phenolic O–H distances, O2–H2' and O3–H3' were restrained to 0.084±0.001 Å. Omitting owing to bad disagreement were the reflections (0 0 2), (1 1 0) and (1 1 1).

Structure description top

Schiff bases are an important class of ligands in molecular design devoted to energy storage such as molecular batteries (Franceschi, et al. 1999) and also in transition metal catalysis (Hwang, et al. 1998). Schiff base having intramolecular hydrogen bonding shows photophysical properties such as thermochromism and photochromism (Popović, et al. 2002). Schiff bases also have an ability to reversibly bind oxygen (Jones, et al.1979).

The title compound crystallizes in the monoclinic, P21/c space group. The bond lengths and the bond angles agree with the related structure (Ambili, et al., 2012). The torsional angle, 177.9 (3)° of the azomethine linkage, C9—N2—C14—C15 reveals that the title compound adopts E conformation (Fig. 1). The mean plane deviation calculations show that the molecule as a whole is non-planar. Ring puckering analysis (Cremer & Pople, 1975) and least square plane calculations show that the cyclohexyl ring adopts a chair conformation (QT = 0.565 (4) Å) with the equatorial substitution at C9 for N2 and axial substitution at C8 for N1.

Crystal system consists of intramolecular hydrogen bonds of lengths 1.79 (3) Å and 1.85 (3) Å which exists between the azomethine N atom and the neighbouring phenolic O atom leading to the formation of two six membered rings comprising of atoms C14—C15—C20—O3—H3'···N2 and C7—C6—C5—O2—H2'···N1 (Fig. 2). A C—H···π interaction between one of the hydrogen attached at C21 and the aromatic ring (C15—C20) with H···Cg distance of 2.92 Å (Fig. 3) dominates the packing of molecules in the lattice. Fig. 4 shows the packing diagram of the title compound along a axis.

For applications of Schiff bases, see: Franceschi et al. (1999); Hwang et al. (1998); Popović et al. (2002); Jones et al. (1979). For a related structure, see: Ambili et al. (2012). For the synthesis of Schiff bases, see: Tümer (2000). For ring puckering analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.
[Figure 2] Fig. 2. Intramolecular hydrogen bonds present in the compound.
[Figure 3] Fig. 3. C—H···π interactions found in the title compound.
[Figure 4] Fig. 4. Packing diagram of the compound viewed along a axis.
(±)-trans-6,6'-Diethoxy-2,2'-[cyclohexane-1,2-diylbis(nitrilomethanylylidene)]diphenol monohydrate top
Crystal data top
C24H30N2O4·H2OF(000) = 920
Mr = 428.52Dx = 1.214 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3026 reflections
a = 9.8241 (18) Åθ = 2.8–23.5°
b = 11.6975 (19) ŵ = 0.09 mm1
c = 21.881 (4) ÅT = 293 K
β = 111.144 (8)°Block, yellow
V = 2345.2 (7) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5586 independent reflections
Radiation source: fine-focus sealed tube2701 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8.33 pixels mm-1θmax = 28.0°, θmin = 2.4°
ω and φ scanh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1515
Tmin = 0.977, Tmax = 0.980l = 2828
16141 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0561P)2 + 1.8063P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5586 reflectionsΔρmax = 0.24 e Å3
299 parametersΔρmin = 0.21 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (8)
Crystal data top
C24H30N2O4·H2OV = 2345.2 (7) Å3
Mr = 428.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8241 (18) ŵ = 0.09 mm1
b = 11.6975 (19) ÅT = 293 K
c = 21.881 (4) Å0.40 × 0.20 × 0.20 mm
β = 111.144 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
5586 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2701 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.980Rint = 0.048
16141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0685 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
5586 reflectionsΔρmin = 0.21 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7073 (2)0.08906 (17)0.34718 (12)0.0591 (6)
O20.8516 (2)0.28131 (19)0.35839 (14)0.0629 (7)
O30.7204 (3)0.4164 (2)0.18225 (11)0.0538 (6)
O40.5589 (2)0.32967 (18)0.06864 (10)0.0547 (6)
N10.8533 (3)0.5022 (2)0.35838 (12)0.0449 (6)
N20.9286 (3)0.5466 (2)0.24970 (12)0.0466 (6)
C10.4960 (3)0.3961 (3)0.34503 (16)0.0508 (8)
H10.44990.46580.34420.061*
C20.4199 (4)0.2961 (3)0.34086 (17)0.0574 (9)
H20.32320.29840.33800.069*
C30.4869 (3)0.1916 (3)0.34092 (15)0.0496 (8)
H30.43390.12430.33690.060*
C40.6311 (3)0.1869 (2)0.34687 (14)0.0420 (7)
C50.7104 (3)0.2888 (2)0.35266 (14)0.0400 (7)
C60.6415 (3)0.3937 (2)0.35044 (13)0.0382 (7)
C70.7186 (3)0.5000 (2)0.35060 (14)0.0424 (7)
H7A0.66770.56860.34480.051*
C80.9215 (3)0.6119 (2)0.35447 (16)0.0471 (8)
H80.84500.66780.33280.056*
C91.0171 (3)0.5952 (3)0.31316 (15)0.0462 (8)
H91.05330.67010.30580.055*
C101.1468 (3)0.5191 (3)0.34789 (16)0.0539 (8)
H10A1.20770.51350.32170.065*
H10B1.11250.44300.35240.065*
C111.2369 (4)0.5653 (3)0.41526 (18)0.0676 (10)
H11A1.27900.63840.41060.081*
H11B1.31620.51290.43690.081*
C121.1432 (4)0.5804 (3)0.45706 (18)0.0711 (11)
H12A1.10980.50630.46570.085*
H12B1.20130.61450.49870.085*
C131.0126 (4)0.6560 (3)0.42242 (18)0.0642 (10)
H13A1.04660.73260.41850.077*
H13B0.95170.66060.44870.077*
C140.9536 (3)0.5704 (3)0.19771 (16)0.0497 (8)
H141.02770.62170.20020.060*
C150.8699 (3)0.5199 (3)0.13530 (14)0.0426 (7)
C160.9044 (4)0.5437 (3)0.07977 (17)0.0597 (9)
H160.98100.59290.08300.072*
C170.8259 (4)0.4948 (3)0.02104 (17)0.0640 (10)
H170.85010.51000.01550.077*
C180.7098 (4)0.4224 (3)0.01536 (15)0.0535 (8)
H180.65670.38990.02500.064*
C190.6726 (3)0.3985 (2)0.06895 (15)0.0419 (7)
C200.7557 (3)0.4444 (2)0.13042 (14)0.0403 (7)
C210.4662 (4)0.2842 (3)0.00700 (16)0.0575 (9)
H21A0.52210.23650.01170.069*
H21B0.42220.34580.02350.069*
C220.3504 (4)0.2149 (3)0.0195 (2)0.0823 (12)
H22A0.29750.26270.03890.124*
H22B0.39510.15320.04870.124*
H22C0.28440.18460.02120.124*
C230.7313 (5)0.1081 (3)0.3322 (2)0.0803 (12)
H23A0.81030.11140.37370.120*
H23B0.76910.09180.29830.120*
H23C0.68140.18030.32340.120*
C240.6272 (4)0.0162 (3)0.33377 (19)0.0616 (9)
H24A0.54690.01180.29200.074*
H24B0.58780.03190.36770.074*
O1W0.5867 (5)0.1883 (3)0.1898 (2)0.1125 (13)
H3'0.786 (3)0.447 (3)0.2150 (13)0.108 (17)*
H2'0.890 (4)0.3467 (17)0.362 (2)0.091 (14)*
H1A0.635 (10)0.203 (8)0.2306 (13)0.32 (6)*
H1B0.573 (11)0.255 (3)0.172 (4)0.31 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0575 (15)0.0360 (12)0.0902 (17)0.0028 (11)0.0343 (13)0.0022 (11)
O20.0410 (13)0.0402 (14)0.118 (2)0.0047 (11)0.0407 (14)0.0023 (14)
O30.0549 (14)0.0642 (15)0.0469 (13)0.0202 (12)0.0240 (12)0.0055 (12)
O40.0559 (14)0.0564 (14)0.0502 (13)0.0196 (11)0.0172 (11)0.0078 (11)
N10.0388 (15)0.0399 (14)0.0600 (16)0.0007 (12)0.0225 (13)0.0034 (12)
N20.0411 (15)0.0477 (15)0.0517 (16)0.0072 (12)0.0175 (13)0.0053 (12)
C10.0396 (18)0.0480 (18)0.071 (2)0.0099 (15)0.0274 (17)0.0086 (16)
C20.0392 (18)0.062 (2)0.078 (2)0.0021 (17)0.0295 (17)0.0112 (18)
C30.0453 (19)0.0455 (18)0.062 (2)0.0063 (15)0.0246 (16)0.0087 (15)
C40.0448 (18)0.0382 (16)0.0466 (17)0.0036 (14)0.0207 (14)0.0044 (13)
C50.0339 (16)0.0414 (16)0.0485 (17)0.0059 (13)0.0193 (14)0.0030 (14)
C60.0351 (16)0.0401 (16)0.0422 (16)0.0070 (13)0.0173 (13)0.0034 (13)
C70.0432 (18)0.0379 (16)0.0493 (18)0.0074 (14)0.0204 (15)0.0012 (14)
C80.0428 (18)0.0366 (16)0.063 (2)0.0031 (14)0.0207 (16)0.0086 (15)
C90.0417 (18)0.0417 (17)0.0575 (19)0.0112 (14)0.0206 (15)0.0078 (15)
C100.0363 (18)0.060 (2)0.068 (2)0.0026 (16)0.0219 (16)0.0094 (17)
C110.045 (2)0.079 (3)0.071 (2)0.0057 (19)0.0107 (18)0.000 (2)
C120.069 (3)0.080 (3)0.060 (2)0.015 (2)0.017 (2)0.009 (2)
C130.071 (2)0.056 (2)0.074 (2)0.0132 (19)0.036 (2)0.0205 (19)
C140.0391 (18)0.0450 (18)0.068 (2)0.0075 (14)0.0234 (16)0.0032 (16)
C150.0343 (16)0.0479 (17)0.0481 (18)0.0030 (14)0.0178 (14)0.0008 (14)
C160.051 (2)0.073 (2)0.062 (2)0.0134 (18)0.0286 (18)0.0062 (18)
C170.061 (2)0.086 (3)0.054 (2)0.009 (2)0.0308 (19)0.005 (2)
C180.053 (2)0.064 (2)0.0451 (18)0.0004 (17)0.0188 (16)0.0038 (16)
C190.0383 (17)0.0400 (16)0.0498 (18)0.0002 (14)0.0187 (14)0.0014 (14)
C200.0406 (17)0.0381 (16)0.0467 (17)0.0015 (13)0.0209 (14)0.0029 (13)
C210.059 (2)0.053 (2)0.056 (2)0.0073 (17)0.0149 (17)0.0087 (17)
C220.080 (3)0.074 (3)0.086 (3)0.036 (2)0.020 (2)0.016 (2)
C230.098 (3)0.047 (2)0.101 (3)0.008 (2)0.042 (3)0.010 (2)
C240.068 (2)0.0397 (18)0.078 (2)0.0062 (17)0.028 (2)0.0051 (17)
O1W0.177 (4)0.085 (2)0.090 (2)0.048 (2)0.066 (3)0.0119 (18)
Geometric parameters (Å, º) top
O1—C41.366 (3)C11—H11A0.9700
O1—C241.433 (4)C11—H11B0.9700
O2—C51.350 (3)C12—C131.517 (5)
O2—H2'0.846 (10)C12—H12A0.9700
O3—C201.341 (3)C12—H12B0.9700
O3—H3'0.850 (10)C13—H13A0.9700
O4—C191.375 (3)C13—H13B0.9700
O4—C211.430 (4)C14—C151.442 (4)
N1—C71.272 (3)C14—H140.9300
N1—C81.465 (4)C15—C201.401 (4)
N2—C141.278 (4)C15—C161.402 (4)
N2—C91.461 (4)C16—C171.363 (5)
C1—C21.373 (4)C16—H160.9300
C1—C61.392 (4)C17—C181.389 (5)
C1—H10.9300C17—H170.9300
C2—C31.388 (4)C18—C191.377 (4)
C2—H20.9300C18—H180.9300
C3—C41.377 (4)C19—C201.404 (4)
C3—H30.9300C21—C221.501 (5)
C4—C51.405 (4)C21—H21A0.9700
C5—C61.394 (4)C21—H21B0.9700
C6—C71.455 (4)C22—H22A0.9600
C7—H7A0.9300C22—H22B0.9600
C8—C131.522 (5)C22—H22C0.9600
C8—C91.533 (4)C23—C241.493 (5)
C8—H80.9800C23—H23A0.9600
C9—C101.514 (4)C23—H23B0.9600
C9—H90.9800C23—H23C0.9600
C10—C111.519 (4)C24—H24A0.9700
C10—H10A0.9700C24—H24B0.9700
C10—H10B0.9700O1W—H1A0.864 (10)
C11—C121.524 (5)O1W—H1B0.866 (10)
C4—O1—C24117.3 (2)C11—C12—H12B109.5
C5—O2—H2'111 (3)H12A—C12—H12B108.1
C20—O3—H3'105 (3)C12—C13—C8112.6 (3)
C19—O4—C21117.5 (2)C12—C13—H13A109.1
C7—N1—C8119.0 (2)C8—C13—H13A109.1
C14—N2—C9121.5 (3)C12—C13—H13B109.1
C2—C1—C6120.5 (3)C8—C13—H13B109.1
C2—C1—H1119.8H13A—C13—H13B107.8
C6—C1—H1119.8N2—C14—C15121.8 (3)
C1—C2—C3120.2 (3)N2—C14—H14119.1
C1—C2—H2119.9C15—C14—H14119.1
C3—C2—H2119.9C20—C15—C16119.7 (3)
C4—C3—C2120.4 (3)C20—C15—C14119.8 (3)
C4—C3—H3119.8C16—C15—C14120.4 (3)
C2—C3—H3119.8C17—C16—C15120.2 (3)
O1—C4—C3125.2 (3)C17—C16—H16119.9
O1—C4—C5115.2 (2)C15—C16—H16119.9
C3—C4—C5119.6 (3)C16—C17—C18120.5 (3)
O2—C5—C6122.0 (3)C16—C17—H17119.8
O2—C5—C4118.1 (2)C18—C17—H17119.8
C6—C5—C4119.8 (2)C19—C18—C17120.6 (3)
C1—C6—C5119.4 (3)C19—C18—H18119.7
C1—C6—C7120.1 (3)C17—C18—H18119.7
C5—C6—C7120.4 (2)O4—C19—C18125.4 (3)
N1—C7—C6122.2 (3)O4—C19—C20114.8 (2)
N1—C7—H7A118.9C18—C19—C20119.8 (3)
C6—C7—H7A118.9O3—C20—C15122.3 (3)
N1—C8—C13111.1 (3)O3—C20—C19118.6 (3)
N1—C8—C9108.2 (2)C15—C20—C19119.1 (3)
C13—C8—C9110.5 (3)O4—C21—C22107.2 (3)
N1—C8—H8109.0O4—C21—H21A110.3
C13—C8—H8109.0C22—C21—H21A110.3
C9—C8—H8109.0O4—C21—H21B110.3
N2—C9—C10110.7 (2)C22—C21—H21B110.3
N2—C9—C8109.2 (2)H21A—C21—H21B108.5
C10—C9—C8111.3 (3)C21—C22—H22A109.5
N2—C9—H9108.6C21—C22—H22B109.5
C10—C9—H9108.6H22A—C22—H22B109.5
C8—C9—H9108.6C21—C22—H22C109.5
C9—C10—C11111.6 (3)H22A—C22—H22C109.5
C9—C10—H10A109.3H22B—C22—H22C109.5
C11—C10—H10A109.3C24—C23—H23A109.5
C9—C10—H10B109.3C24—C23—H23B109.5
C11—C10—H10B109.3H23A—C23—H23B109.5
H10A—C10—H10B108.0C24—C23—H23C109.5
C10—C11—C12110.9 (3)H23A—C23—H23C109.5
C10—C11—H11A109.5H23B—C23—H23C109.5
C12—C11—H11A109.5O1—C24—C23107.1 (3)
C10—C11—H11B109.5O1—C24—H24A110.3
C12—C11—H11B109.5C23—C24—H24A110.3
H11A—C11—H11B108.0O1—C24—H24B110.3
C13—C12—C11110.6 (3)C23—C24—H24B110.3
C13—C12—H12A109.5H24A—C24—H24B108.6
C11—C12—H12A109.5H1A—O1W—H1B103 (2)
C13—C12—H12B109.5
C6—C1—C2—C31.1 (5)C8—C9—C10—C1156.0 (3)
C1—C2—C3—C41.7 (5)C9—C10—C11—C1256.5 (4)
C24—O1—C4—C36.5 (4)C10—C11—C12—C1355.5 (4)
C24—O1—C4—C5172.9 (3)C11—C12—C13—C855.4 (4)
C2—C3—C4—O1179.7 (3)N1—C8—C13—C1265.6 (3)
C2—C3—C4—C50.2 (5)C9—C8—C13—C1254.6 (4)
O1—C4—C5—O20.5 (4)C9—N2—C14—C15177.9 (3)
C3—C4—C5—O2180.0 (3)N2—C14—C15—C201.4 (5)
O1—C4—C5—C6177.6 (3)N2—C14—C15—C16177.0 (3)
C3—C4—C5—C61.9 (4)C20—C15—C16—C170.9 (5)
C2—C1—C6—C51.0 (5)C14—C15—C16—C17179.3 (3)
C2—C1—C6—C7176.1 (3)C15—C16—C17—C180.9 (6)
O2—C5—C6—C1179.5 (3)C16—C17—C18—C190.3 (5)
C4—C5—C6—C12.5 (4)C21—O4—C19—C183.8 (4)
O2—C5—C6—C73.5 (4)C21—O4—C19—C20177.3 (3)
C4—C5—C6—C7174.6 (3)C17—C18—C19—O4179.0 (3)
C8—N1—C7—C6176.8 (3)C17—C18—C19—C202.2 (5)
C1—C6—C7—N1176.8 (3)C16—C15—C20—O3178.3 (3)
C5—C6—C7—N16.2 (4)C14—C15—C20—O30.1 (4)
C7—N1—C8—C13102.7 (3)C16—C15—C20—C193.3 (4)
C7—N1—C8—C9135.8 (3)C14—C15—C20—C19178.2 (3)
C14—N2—C9—C1089.5 (3)O4—C19—C20—O31.4 (4)
C14—N2—C9—C8147.7 (3)C18—C19—C20—O3177.6 (3)
N1—C8—C9—N254.9 (3)O4—C19—C20—C15177.1 (2)
C13—C8—C9—N2176.7 (3)C18—C19—C20—C154.0 (4)
N1—C8—C9—C1067.5 (3)C19—O4—C21—C22178.9 (3)
C13—C8—C9—C1054.3 (3)C4—O1—C24—C23176.0 (3)
N2—C9—C10—C11177.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.85 (1)1.77 (3)2.550 (4)152 (3)
O2—H2···N10.84 (1)1.85 (2)2.584 (3)144 (4)
O1W—H1B···O30.86 (5)2.34 (7)3.005 (5)134 (8)
O1W—H1B···O40.86 (5)2.38 (8)3.052 (5)135 (6)
C21—H21B···Cg0.972.923.810 (4)153
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3'···N20.850 (3)1.77 (3)2.550 (4)152 (3)
O2—H2'···N10.840 (3)1.85 (2)2.584 (3)144 (4)
O1W—H1B···O30.86 (5)2.34 (7)3.005 (5)134 (8)
O1W—H1B···O40.86 (5)2.38 (8)3.052 (5)135 (6)
C21—H21B···Cg0.97002.923.810 (4)153
 

Acknowledgements

We thank the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, for the diffraction measurements. MRPK, NM and SSS thank the Defence Research Development Organization, New Delhi, India, for financial support.

References

First citationAmbili, K. U., Sreejith, S. S., Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2482.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFranceschi, F., Solari, E., Floriani, C., Rosi, M., -Villa, A. C. & Rizzoli, C. (1999). Chem. Eur. J. 5, 708–721.  CrossRef CAS Google Scholar
First citationHwang, C.-D., Hwang, D.-R. & Uang, B.-J. (1998). J. Org. Chem. 63, 6762–6763.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJones, R. D., Summerville, D. A. & Basolo, F. (1979). Chem. Rev. 79, 139–179.  CrossRef CAS Web of Science Google Scholar
First citationPopović, Z., Pavlović, G., Calogović, D. M., Roje, V. & Leban, I. (2002). J. Mol. Struct. 615, 23–31.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTümer, M. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1139–1158.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o182-o183
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds