organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o226-o227

3-[2-(4-Fluoro­phen­yl)-2-oxoeth­yl]-5,5-di­phenyl­imidazolidine-2,4-dione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and dDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
*Correspondence e-mail: joelt@tulane.edu

(Received 31 December 2013; accepted 23 January 2014; online 31 January 2014)

The title compound, C23H17FN2O3, crystallizes with two independent mol­ecules in the asymmetric unit. The mol­ecules are connected by pairs of N—H⋯O hydrogen bonds and have slightly different conformations, as indicated by the dihedral angles between the central imidazolidine-2,4-dione ring and its three substituents. In one mol­ecule, these are 60.56 (1) and 82.66 (9)° to the phenyl rings and 84.35 (16)° to the 2-(4-fluoro­phen­yl)-2-oxoethyl side chain. In the other mol­ecule, the corresponding angles are 66.35 (10), 84.94 (9) and 86.31 (16)°. In the crystal, weak C—H⋯O inter­actions leading to a three-dimensional supramolecular architecture.

Related literature

For studies on the biological applications of hydantoin deriv­atives, see: El-Deeb et al. (2010[El-Deeb, I. M., Bayoumi, S. M., El-Sherbeny, M. A. & Abdel-Aziz, A. A.-M. (2010). Eur. J. Med. Chem. 45, 2516-2530.]); Rajic et al. (2006[Rajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837-848.]); Carmi et al. (2006[Carmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P. V., Alfieri, R. R., Petronini, P. G. & Mor, M. (2006). Bioorg. Med. Chem. Lett. 16, 4021-4025.]); Sergent et al. (2008[Sergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332-4335.]). For related crystal structures, see: Delgado et al. (2007[Delgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448-o450.]); Roszak & Weaver (1998[Roszak, A. W. & Weaver, D. F. (1998). Acta Cryst. C54, 1168-1170.]); Kashif et al. (2008[Kashif, M. K., Hussain, A., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008). Acta Cryst. E64, o444.]); Coquerel et al. (1993[Coquerel, G., Petit, M. N. & Robert, F. (1993). Acta Cryst. C49, 824-825.]); SethuSankar et al. (2002[SethuSankar, K., Thennarasu, S., Velmurugan, D. & Kim, M. J. (2002). Acta Cryst. C58, o715-o717.]); Eknoian et al. (1999[Eknoian, M. W., Webb, T. R., Worley, S. D., Braswell, A. & Hadley, J. (1999). Acta Cryst. C55, 405-407.]); Ciechanowicz-Rutkowska et al. (1994[Ciechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86-96.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17FN2O3

  • Mr = 388.39

  • Orthorhombic, P c a 21

  • a = 19.9622 (16) Å

  • b = 8.0484 (6) Å

  • c = 22.8969 (18) Å

  • V = 3678.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.28 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2009[Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.]) Tmin = 0.778, Tmax = 0.995

  • 29816 measured reflections

  • 8117 independent reflections

  • 6536 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.084

  • S = 1.04

  • 8117 reflections

  • 523 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.98 1.93 2.900 (3) 171
C16—H16A⋯O4i 0.99 2.52 3.385 (4) 146
C20—H20⋯O6ii 0.95 2.62 3.275 (4) 126
N4—H4⋯O1 0.95 1.98 2.931 (3) 174
C39—H39B⋯O1iii 0.99 2.57 3.403 (4) 141
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, y-1, z+{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydantoins comprise an important class of compounds which have long attracted attention owing to their remarkable biological and pharmacological properties including antitumor and antiviral activities, insulinotropic properties and EGFR inhibitors (El-Deeb et al., 2010; Rajic et al., 2006; Carmi et al., 2006; Sergent et al., 2008). As a continuation of our studies on hydantoin derivatives we report the successful synthesis of the title compound, 3-(2-(4-fluorophenyl)-2-oxoethyl)-5,5-diphenylimidazolidine-2,4-dione, by the reaction of 5,5-diphenylhydantoin and 4-fluorophenacyl chloride. The compound crystallizes with two independent molecules (A and B) in the asymmetric unit which are connected by pairwise N—H···O hydrogen bonds (Table 1). In addition there are weak C—H···O intermolecular interactions. The two molecules have somewhat different conformations as indicated by the dihedral angles between the central imidazolidine-2,4-dione ring and its three substituents. In molecule A these are 60.56 (1) and 82.66 (9)° to the phenyl rings based on C10 and C4, respectively and 84.35 (16)° to the 2-(4-fluorophenyl)-2-oxoethyl side chain. In molecule B, the corresponding angles are 66.35 (10), 84.94 (9) and 86.31 (16)°.

Related literature top

For studies on the biological applications of hydantoin derivatives, see: El-Deeb et al. (2010); Rajic et al. (2006); Carmi et al. (2006); Sergent et al. (2008). For related crystal structures, see: Delgado et al. (2007); Roszak & Weaver (1998); Kashif et al. (2008); Coquerel et al. (1993); SethuSankar et al. (2002); Eknoian et al. (1999); Ciechanowicz-Rutkowska et al. (1994).

Experimental top

A mixture of 5,5-diphenylhydantoin (1 mmol) and K2CO3 (1.1 mmol) was stirred in acetone (20 ml) at room temperature for 20 min. To the resulting mixture 4-fluorophenacyl chloride (1.0 mmol) in acetone (5 ml) was added dropwise over a period of 10 min. The reaction mixture was further stirred at room temperature for 6 h. The separated solid was then filtered, washed with cold water, dried and crystallized from MeOH/CHCl3. M. P. 251–252°C. Yield: 99%. 1H NMR (DMSO-d6): δ 9.78 (s, 1H, NH), 8.18–8.15 (q, 2H, J = 7.5 Hz, Ar—H), 7.47–7.39 (m, 12H, Ar—H), 5.08 (s, 2H, –CH2). 13C NMR (DMSO-d6): δ 190.89, 173.36, 166.57, 164.56, 154.84, 139.50, 131.38, 131.30, 130.72, 128.52, 128.23, 126.86, 126.54, 116.17, 116.00, 62.91, 44.77

Structure description top

Hydantoins comprise an important class of compounds which have long attracted attention owing to their remarkable biological and pharmacological properties including antitumor and antiviral activities, insulinotropic properties and EGFR inhibitors (El-Deeb et al., 2010; Rajic et al., 2006; Carmi et al., 2006; Sergent et al., 2008). As a continuation of our studies on hydantoin derivatives we report the successful synthesis of the title compound, 3-(2-(4-fluorophenyl)-2-oxoethyl)-5,5-diphenylimidazolidine-2,4-dione, by the reaction of 5,5-diphenylhydantoin and 4-fluorophenacyl chloride. The compound crystallizes with two independent molecules (A and B) in the asymmetric unit which are connected by pairwise N—H···O hydrogen bonds (Table 1). In addition there are weak C—H···O intermolecular interactions. The two molecules have somewhat different conformations as indicated by the dihedral angles between the central imidazolidine-2,4-dione ring and its three substituents. In molecule A these are 60.56 (1) and 82.66 (9)° to the phenyl rings based on C10 and C4, respectively and 84.35 (16)° to the 2-(4-fluorophenyl)-2-oxoethyl side chain. In molecule B, the corresponding angles are 66.35 (10), 84.94 (9) and 86.31 (16)°.

For studies on the biological applications of hydantoin derivatives, see: El-Deeb et al. (2010); Rajic et al. (2006); Carmi et al. (2006); Sergent et al. (2008). For related crystal structures, see: Delgado et al. (2007); Roszak & Weaver (1998); Kashif et al. (2008); Coquerel et al. (1993); SethuSankar et al. (2002); Eknoian et al. (1999); Ciechanowicz-Rutkowska et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the asymmetric unit showing the intermolecular N—H···O hydrogen bonds as dotted lines. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed along b with intermolecular N—H···O and C—H···O interactions shown as dotted lines.
3-[2-(4-Fluorophenyl)-2-oxoethyl]-5,5-diphenylimidazolidine-2,4-dione top
Crystal data top
C23H17FN2O3F(000) = 1616
Mr = 388.39Dx = 1.403 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 9958 reflections
a = 19.9622 (16) Åθ = 2.2–26.5°
b = 8.0484 (6) ŵ = 0.10 mm1
c = 22.8969 (18) ÅT = 100 K
V = 3678.7 (5) Å3Column, colourless
Z = 80.28 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8117 independent reflections
Radiation source: fine-focus sealed tube6536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 8.3660 pixels mm-1θmax = 27.2°, θmin = 1.8°
φ and ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
k = 1010
Tmin = 0.778, Tmax = 0.995l = 2929
29816 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.084H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0262P)2 + 0.2586P]
where P = (Fo2 + 2Fc2)/3
8117 reflections(Δ/σ)max < 0.001
523 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C23H17FN2O3V = 3678.7 (5) Å3
Mr = 388.39Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 19.9622 (16) ŵ = 0.10 mm1
b = 8.0484 (6) ÅT = 100 K
c = 22.8969 (18) Å0.28 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
8117 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
6536 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.995Rint = 0.061
29816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.084H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
8117 reflectionsΔρmin = 0.18 e Å3
523 parameters
Special details top

Experimental. The diffraction data were collected in three sets of 606 frames (0.3° width in ω) at φ = 0, 120 and 240°. A scan time of 60 sec/frame was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Friedel opposites were merged in the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.36506 (10)0.8027 (2)0.60459 (9)0.0357 (5)
O10.19858 (10)0.0057 (2)0.42585 (9)0.0190 (5)
O20.03918 (11)0.1218 (3)0.56297 (10)0.0259 (5)
O30.22739 (11)0.1078 (2)0.56211 (9)0.0225 (5)
N10.12052 (12)0.1090 (3)0.49185 (11)0.0164 (5)
N20.11049 (12)0.1514 (3)0.46195 (11)0.0164 (5)
H20.12230.25220.44020.020*
C10.14846 (15)0.0142 (4)0.45623 (13)0.0163 (6)
C20.05492 (15)0.1311 (3)0.50328 (13)0.0166 (6)
C30.06822 (15)0.0484 (4)0.52471 (13)0.0172 (7)
C40.06107 (15)0.2530 (4)0.55430 (13)0.0170 (6)
C50.11150 (16)0.2311 (4)0.59527 (14)0.0238 (7)
H50.14040.13770.59240.029*
C60.12004 (16)0.3443 (4)0.64032 (14)0.0258 (8)
H60.15460.32780.66830.031*
C70.07806 (16)0.4822 (4)0.64465 (14)0.0222 (7)
H70.08410.56030.67530.027*
C80.02776 (16)0.5045 (4)0.60409 (14)0.0215 (7)
H80.00110.59790.60710.026*
C90.01895 (15)0.3910 (3)0.55873 (14)0.0187 (7)
H90.01570.40760.53090.022*
C100.01380 (15)0.1376 (3)0.47312 (14)0.0181 (6)
C110.07052 (15)0.0907 (4)0.50442 (15)0.0218 (7)
H110.06620.05250.54350.026*
C120.13317 (16)0.0997 (4)0.47873 (16)0.0279 (8)
H120.17160.06470.49990.033*
C130.14007 (16)0.1593 (4)0.42243 (16)0.0296 (8)
H130.18330.16740.40530.036*
C140.08425 (17)0.2069 (4)0.39121 (16)0.0273 (8)
H140.08900.24810.35250.033*
C150.02101 (16)0.1946 (4)0.41633 (14)0.0223 (7)
H150.01750.22550.39450.027*
C160.15318 (14)0.2671 (3)0.50337 (14)0.0171 (6)
H16A0.16790.31710.46600.020*
H16B0.12080.34400.52190.020*
C170.21364 (15)0.2450 (4)0.54340 (13)0.0172 (6)
C180.25310 (15)0.3954 (4)0.55861 (14)0.0183 (6)
C190.30493 (16)0.3805 (4)0.59887 (15)0.0245 (7)
H190.31450.27510.61560.029*
C200.34283 (17)0.5176 (4)0.61489 (15)0.0280 (8)
H200.37820.50860.64250.034*
C210.32710 (16)0.6676 (4)0.58915 (14)0.0235 (7)
C220.27679 (16)0.6890 (4)0.54978 (14)0.0248 (7)
H220.26770.79500.53330.030*
C230.23913 (16)0.5508 (4)0.53446 (14)0.0221 (7)
H230.20350.56200.50730.027*
F20.00915 (10)1.2515 (3)0.20897 (10)0.0411 (6)
O40.15962 (10)0.4378 (2)0.39817 (9)0.0194 (5)
O50.31701 (11)0.5522 (3)0.25991 (10)0.0250 (5)
O60.13476 (10)0.5430 (3)0.25498 (10)0.0251 (5)
N30.23672 (12)0.5419 (3)0.33196 (11)0.0175 (6)
N40.25317 (12)0.2895 (3)0.36792 (11)0.0170 (5)
H40.23850.19250.38800.020*
C240.21119 (15)0.4210 (3)0.36944 (13)0.0153 (6)
C250.30877 (14)0.3122 (4)0.32701 (13)0.0180 (6)
C260.29022 (15)0.4827 (4)0.30006 (13)0.0167 (6)
C270.37645 (15)0.3334 (3)0.35772 (14)0.0200 (7)
C280.38363 (16)0.3039 (4)0.41717 (15)0.0227 (7)
H280.34600.27090.43970.027*
C290.44577 (17)0.3226 (4)0.44383 (16)0.0297 (8)
H290.45060.29950.48430.036*
C300.50060 (17)0.3748 (4)0.41166 (17)0.0307 (8)
H300.54270.39040.43010.037*
C310.49369 (16)0.4041 (4)0.35262 (16)0.0259 (8)
H310.53140.43920.33050.031*
C320.43241 (16)0.3827 (4)0.32518 (15)0.0231 (7)
H320.42840.40150.28440.028*
C330.30875 (15)0.1754 (4)0.28071 (13)0.0168 (6)
C340.35807 (16)0.0530 (4)0.27972 (14)0.0211 (7)
H340.39370.05670.30720.025*
C350.35537 (16)0.0742 (4)0.23886 (14)0.0234 (7)
H350.38900.15760.23860.028*
C360.30384 (17)0.0796 (4)0.19862 (14)0.0241 (7)
H360.30210.16720.17090.029*
C370.25469 (17)0.0418 (4)0.19852 (14)0.0238 (7)
H370.21960.03850.17050.029*
C380.25707 (16)0.1687 (4)0.23982 (14)0.0213 (7)
H380.22320.25150.24010.026*
C390.20369 (15)0.6984 (4)0.31980 (14)0.0183 (7)
H39A0.23690.77830.30430.022*
H39B0.18550.74450.35660.022*
C400.14699 (15)0.6786 (4)0.27591 (13)0.0176 (7)
C410.10893 (15)0.8310 (4)0.26019 (14)0.0183 (6)
C420.11861 (16)0.9804 (4)0.28937 (14)0.0216 (7)
H420.14900.98530.32120.026*
C430.08436 (16)1.1226 (4)0.27246 (15)0.0248 (7)
H430.09071.22490.29240.030*
C440.04113 (16)1.1111 (4)0.22618 (15)0.0273 (8)
C450.02944 (18)0.9670 (4)0.19629 (15)0.0311 (8)
H450.00100.96430.16440.037*
C460.06323 (17)0.8249 (4)0.21373 (15)0.0276 (8)
H460.05540.72280.19410.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0353 (11)0.0278 (11)0.0441 (13)0.0120 (9)0.0032 (10)0.0097 (10)
O10.0194 (11)0.0165 (11)0.0212 (11)0.0015 (8)0.0052 (10)0.0014 (9)
O20.0307 (13)0.0168 (11)0.0302 (13)0.0003 (9)0.0101 (11)0.0056 (10)
O30.0282 (13)0.0146 (11)0.0247 (12)0.0001 (9)0.0007 (10)0.0042 (9)
N10.0198 (13)0.0098 (12)0.0196 (14)0.0023 (10)0.0026 (11)0.0005 (10)
N20.0195 (13)0.0110 (12)0.0188 (14)0.0007 (10)0.0056 (11)0.0014 (10)
C10.0191 (16)0.0137 (15)0.0162 (15)0.0013 (12)0.0006 (13)0.0021 (12)
C20.0184 (15)0.0128 (15)0.0185 (15)0.0007 (12)0.0042 (13)0.0011 (13)
C30.0197 (16)0.0134 (15)0.0187 (16)0.0012 (12)0.0013 (13)0.0001 (13)
C40.0206 (16)0.0126 (14)0.0179 (15)0.0008 (12)0.0055 (13)0.0004 (12)
C50.0273 (18)0.0199 (17)0.0243 (17)0.0067 (14)0.0023 (15)0.0004 (14)
C60.0292 (19)0.0265 (19)0.0218 (18)0.0067 (14)0.0029 (15)0.0027 (14)
C70.0276 (17)0.0174 (16)0.0217 (17)0.0013 (13)0.0028 (14)0.0028 (13)
C80.0233 (17)0.0143 (15)0.0267 (17)0.0004 (12)0.0059 (15)0.0007 (13)
C90.0207 (17)0.0142 (15)0.0211 (16)0.0006 (12)0.0019 (14)0.0026 (13)
C100.0197 (16)0.0098 (14)0.0250 (17)0.0011 (12)0.0000 (14)0.0057 (13)
C110.0238 (18)0.0153 (16)0.0264 (18)0.0007 (13)0.0050 (14)0.0019 (13)
C120.0216 (18)0.0184 (17)0.044 (2)0.0017 (13)0.0065 (16)0.0054 (16)
C130.0221 (18)0.0186 (17)0.048 (2)0.0006 (13)0.0091 (17)0.0054 (16)
C140.0314 (19)0.0208 (18)0.0298 (19)0.0001 (14)0.0111 (16)0.0000 (15)
C150.0254 (17)0.0145 (15)0.0269 (18)0.0015 (13)0.0008 (15)0.0029 (13)
C160.0192 (15)0.0119 (15)0.0201 (16)0.0004 (12)0.0020 (13)0.0002 (12)
C170.0188 (16)0.0172 (15)0.0155 (15)0.0002 (12)0.0029 (12)0.0016 (12)
C180.0215 (16)0.0168 (15)0.0167 (15)0.0006 (12)0.0020 (13)0.0016 (12)
C190.0260 (18)0.0193 (17)0.0281 (18)0.0014 (13)0.0026 (15)0.0029 (14)
C200.0262 (19)0.033 (2)0.0250 (18)0.0032 (15)0.0048 (15)0.0013 (15)
C210.0254 (18)0.0201 (17)0.0249 (18)0.0091 (13)0.0029 (14)0.0063 (14)
C220.0309 (19)0.0139 (16)0.0294 (18)0.0018 (13)0.0009 (16)0.0013 (14)
C230.0249 (17)0.0179 (16)0.0236 (17)0.0013 (13)0.0013 (14)0.0013 (13)
F20.0370 (12)0.0305 (11)0.0559 (14)0.0110 (10)0.0066 (10)0.0189 (10)
O40.0199 (11)0.0165 (11)0.0219 (12)0.0017 (9)0.0046 (9)0.0008 (9)
O50.0319 (12)0.0170 (11)0.0260 (12)0.0001 (9)0.0091 (11)0.0056 (10)
O60.0298 (12)0.0166 (11)0.0291 (13)0.0006 (9)0.0014 (11)0.0060 (10)
N30.0185 (13)0.0133 (13)0.0208 (14)0.0026 (10)0.0037 (11)0.0024 (10)
N40.0194 (13)0.0116 (12)0.0198 (13)0.0026 (10)0.0054 (11)0.0037 (10)
C240.0180 (16)0.0135 (15)0.0142 (14)0.0001 (12)0.0028 (13)0.0016 (12)
C250.0194 (16)0.0145 (15)0.0201 (16)0.0004 (12)0.0044 (13)0.0013 (13)
C260.0197 (16)0.0123 (15)0.0180 (15)0.0015 (12)0.0017 (13)0.0012 (12)
C270.0228 (16)0.0107 (14)0.0265 (18)0.0011 (12)0.0003 (14)0.0040 (13)
C280.0255 (17)0.0143 (15)0.0284 (19)0.0003 (13)0.0002 (15)0.0019 (13)
C290.036 (2)0.0209 (18)0.033 (2)0.0017 (15)0.0112 (16)0.0033 (14)
C300.0240 (18)0.0220 (18)0.046 (2)0.0022 (14)0.0094 (17)0.0061 (16)
C310.0183 (17)0.0204 (17)0.039 (2)0.0012 (13)0.0044 (15)0.0076 (15)
C320.0262 (17)0.0169 (16)0.0262 (18)0.0028 (13)0.0034 (15)0.0054 (14)
C330.0191 (16)0.0120 (15)0.0194 (15)0.0026 (12)0.0051 (13)0.0014 (12)
C340.0233 (17)0.0148 (15)0.0253 (17)0.0014 (13)0.0033 (14)0.0019 (13)
C350.0302 (18)0.0136 (16)0.0264 (18)0.0004 (13)0.0057 (15)0.0013 (13)
C360.037 (2)0.0158 (16)0.0192 (16)0.0038 (14)0.0039 (15)0.0020 (13)
C370.0273 (18)0.0221 (17)0.0220 (17)0.0043 (14)0.0032 (14)0.0002 (14)
C380.0224 (16)0.0164 (15)0.0250 (17)0.0002 (13)0.0015 (14)0.0023 (13)
C390.0213 (16)0.0119 (15)0.0216 (16)0.0020 (12)0.0012 (13)0.0014 (12)
C400.0202 (16)0.0159 (15)0.0167 (16)0.0012 (12)0.0045 (13)0.0029 (12)
C410.0174 (15)0.0177 (16)0.0197 (16)0.0010 (12)0.0009 (14)0.0027 (13)
C420.0225 (17)0.0204 (17)0.0219 (17)0.0005 (13)0.0025 (13)0.0037 (13)
C430.0238 (17)0.0172 (16)0.034 (2)0.0012 (13)0.0009 (15)0.0044 (14)
C440.0227 (18)0.0266 (19)0.033 (2)0.0081 (14)0.0036 (15)0.0137 (16)
C450.0270 (19)0.036 (2)0.030 (2)0.0045 (16)0.0083 (16)0.0057 (17)
C460.0282 (19)0.0264 (19)0.0281 (19)0.0007 (14)0.0044 (15)0.0010 (15)
Geometric parameters (Å, º) top
F1—C211.371 (3)F2—C441.357 (4)
O1—C11.229 (3)O4—C241.229 (3)
O2—C31.205 (3)O5—C261.202 (3)
O3—C171.216 (3)O6—C401.217 (3)
N1—C31.376 (4)N3—C261.379 (4)
N1—C11.400 (4)N3—C241.394 (4)
N1—C161.454 (3)N3—C391.449 (4)
N2—C11.345 (4)N4—C241.350 (4)
N2—C21.467 (4)N4—C251.464 (4)
N2—H20.9814N4—H40.9521
C2—C41.530 (4)C25—C331.528 (4)
C2—C101.537 (4)C25—C271.533 (4)
C2—C31.549 (4)C25—C261.550 (4)
C4—C51.387 (4)C27—C281.389 (4)
C4—C91.397 (4)C27—C321.400 (4)
C5—C61.387 (4)C28—C291.391 (5)
C5—H50.9500C28—H280.9500
C6—C71.395 (4)C29—C301.385 (5)
C6—H60.9500C29—H290.9500
C7—C81.379 (4)C30—C311.379 (5)
C7—H70.9500C30—H300.9500
C8—C91.394 (4)C31—C321.386 (5)
C8—H80.9500C31—H310.9500
C9—H90.9500C32—H320.9500
C10—C151.386 (4)C33—C341.393 (4)
C10—C111.392 (4)C33—C381.394 (4)
C11—C121.384 (4)C34—C351.388 (4)
C11—H110.9500C34—H340.9500
C12—C131.382 (5)C35—C361.382 (5)
C12—H120.9500C35—H350.9500
C13—C141.378 (5)C36—C371.385 (5)
C13—H130.9500C36—H360.9500
C14—C151.391 (4)C37—C381.393 (4)
C14—H140.9500C37—H370.9500
C15—H150.9500C38—H380.9500
C16—C171.526 (4)C39—C401.522 (4)
C16—H16A0.9900C39—H39A0.9900
C16—H16B0.9900C39—H39B0.9900
C17—C181.486 (4)C40—C411.487 (4)
C18—C191.391 (4)C41—C421.389 (4)
C18—C231.395 (4)C41—C461.402 (4)
C19—C201.388 (5)C42—C431.388 (4)
C19—H190.9500C42—H420.9500
C20—C211.379 (5)C43—C441.370 (5)
C20—H200.9500C43—H430.9500
C21—C221.361 (5)C44—C451.366 (5)
C22—C231.388 (4)C45—C461.386 (5)
C22—H220.9500C45—H450.9500
C23—H230.9500C46—H460.9500
C3—N1—C1111.7 (2)C26—N3—C24111.6 (2)
C3—N1—C16123.4 (2)C26—N3—C39123.4 (2)
C1—N1—C16123.2 (2)C24—N3—C39124.0 (2)
C1—N2—C2113.4 (2)C24—N4—C25112.9 (2)
C1—N2—H2119.6C24—N4—H4116.1
C2—N2—H2126.9C25—N4—H4130.1
O1—C1—N2128.4 (3)O4—C24—N4128.3 (3)
O1—C1—N1124.2 (3)O4—C24—N3124.0 (3)
N2—C1—N1107.5 (2)N4—C24—N3107.7 (2)
N2—C2—C4111.1 (2)N4—C25—C33110.7 (2)
N2—C2—C10112.4 (2)N4—C25—C27112.9 (2)
C4—C2—C10113.1 (2)C33—C25—C27113.5 (2)
N2—C2—C3100.3 (2)N4—C25—C26100.6 (2)
C4—C2—C3110.0 (2)C33—C25—C26111.2 (2)
C10—C2—C3109.1 (2)C27—C25—C26107.1 (2)
O2—C3—N1126.1 (3)O5—C26—N3126.1 (3)
O2—C3—C2127.2 (3)O5—C26—C25127.7 (3)
N1—C3—C2106.7 (2)N3—C26—C25106.3 (2)
C5—C4—C9119.3 (3)C28—C27—C32119.2 (3)
C5—C4—C2119.5 (3)C28—C27—C25121.4 (3)
C9—C4—C2121.1 (3)C32—C27—C25119.4 (3)
C6—C5—C4120.6 (3)C27—C28—C29120.2 (3)
C6—C5—H5119.7C27—C28—H28119.9
C4—C5—H5119.7C29—C28—H28119.9
C5—C6—C7120.1 (3)C30—C29—C28120.3 (3)
C5—C6—H6119.9C30—C29—H29119.9
C7—C6—H6119.9C28—C29—H29119.9
C8—C7—C6119.5 (3)C31—C30—C29119.6 (3)
C8—C7—H7120.2C31—C30—H30120.2
C6—C7—H7120.2C29—C30—H30120.2
C7—C8—C9120.6 (3)C30—C31—C32120.8 (3)
C7—C8—H8119.7C30—C31—H31119.6
C9—C8—H8119.7C32—C31—H31119.6
C8—C9—C4119.9 (3)C31—C32—C27119.9 (3)
C8—C9—H9120.0C31—C32—H32120.1
C4—C9—H9120.0C27—C32—H32120.1
C15—C10—C11119.2 (3)C34—C33—C38119.0 (3)
C15—C10—C2121.7 (3)C34—C33—C25121.4 (3)
C11—C10—C2119.0 (3)C38—C33—C25119.6 (3)
C12—C11—C10120.1 (3)C35—C34—C33120.3 (3)
C12—C11—H11119.9C35—C34—H34119.8
C10—C11—H11119.9C33—C34—H34119.8
C13—C12—C11120.3 (3)C36—C35—C34120.1 (3)
C13—C12—H12119.8C36—C35—H35119.9
C11—C12—H12119.8C34—C35—H35119.9
C14—C13—C12120.0 (3)C35—C36—C37120.4 (3)
C14—C13—H13120.0C35—C36—H36119.8
C12—C13—H13120.0C37—C36—H36119.8
C13—C14—C15120.0 (3)C36—C37—C38119.5 (3)
C13—C14—H14120.0C36—C37—H37120.3
C15—C14—H14120.0C38—C37—H37120.3
C10—C15—C14120.4 (3)C37—C38—C33120.7 (3)
C10—C15—H15119.8C37—C38—H38119.7
C14—C15—H15119.8C33—C38—H38119.7
N1—C16—C17111.2 (2)N3—C39—C40112.0 (2)
N1—C16—H16A109.4N3—C39—H39A109.2
C17—C16—H16A109.4C40—C39—H39A109.2
N1—C16—H16B109.4N3—C39—H39B109.2
C17—C16—H16B109.4C40—C39—H39B109.2
H16A—C16—H16B108.0H39A—C39—H39B107.9
O3—C17—C18122.5 (3)O6—C40—C41122.8 (3)
O3—C17—C16119.8 (3)O6—C40—C39120.2 (3)
C18—C17—C16117.7 (2)C41—C40—C39117.0 (3)
C19—C18—C23119.2 (3)C42—C41—C46119.0 (3)
C19—C18—C17118.7 (3)C42—C41—C40121.8 (3)
C23—C18—C17122.1 (3)C46—C41—C40119.2 (3)
C20—C19—C18120.8 (3)C43—C42—C41120.7 (3)
C20—C19—H19119.6C43—C42—H42119.6
C18—C19—H19119.6C41—C42—H42119.6
C21—C20—C19117.3 (3)C44—C43—C42118.0 (3)
C21—C20—H20121.3C44—C43—H43121.0
C19—C20—H20121.3C42—C43—H43121.0
C22—C21—F1118.6 (3)F2—C44—C45118.7 (3)
C22—C21—C20124.2 (3)F2—C44—C43117.7 (3)
F1—C21—C20117.2 (3)C45—C44—C43123.5 (3)
C21—C22—C23117.8 (3)C44—C45—C46118.2 (3)
C21—C22—H22121.1C44—C45—H45120.9
C23—C22—H22121.1C46—C45—H45120.9
C22—C23—C18120.7 (3)C45—C46—C41120.4 (3)
C22—C23—H23119.7C45—C46—H46119.8
C18—C23—H23119.7C41—C46—H46119.8
C2—N2—C1—O1178.8 (3)C25—N4—C24—O4178.3 (3)
C2—N2—C1—N11.5 (3)C25—N4—C24—N32.2 (3)
C3—N1—C1—O1174.8 (3)C26—N3—C24—O4172.6 (3)
C16—N1—C1—O19.1 (5)C39—N3—C24—O43.5 (4)
C3—N1—C1—N25.5 (3)C26—N3—C24—N47.9 (3)
C16—N1—C1—N2171.1 (2)C39—N3—C24—N4177.0 (3)
C1—N2—C2—C4118.8 (3)C24—N4—C25—C33121.1 (3)
C1—N2—C2—C10113.3 (3)C24—N4—C25—C27110.4 (3)
C1—N2—C2—C32.5 (3)C24—N4—C25—C263.4 (3)
C1—N1—C3—O2172.5 (3)C24—N3—C26—O5170.9 (3)
C16—N1—C3—O26.9 (5)C39—N3—C26—O51.8 (5)
C1—N1—C3—C26.9 (3)C24—N3—C26—C259.9 (3)
C16—N1—C3—C2172.5 (2)C39—N3—C26—C25179.0 (2)
N2—C2—C3—O2174.0 (3)N4—C25—C26—O5173.0 (3)
C4—C2—C3—O256.8 (4)C33—C25—C26—O555.7 (4)
C10—C2—C3—O267.8 (4)C27—C25—C26—O568.8 (4)
N2—C2—C3—N15.5 (3)N4—C25—C26—N37.8 (3)
C4—C2—C3—N1122.6 (3)C33—C25—C26—N3125.1 (3)
C10—C2—C3—N1112.7 (3)C27—C25—C26—N3110.3 (3)
N2—C2—C4—C570.1 (3)N4—C25—C27—C2810.6 (4)
C10—C2—C4—C5162.3 (3)C33—C25—C27—C28116.5 (3)
C3—C2—C4—C540.0 (4)C26—C25—C27—C28120.4 (3)
N2—C2—C4—C9106.5 (3)N4—C25—C27—C32169.8 (3)
C10—C2—C4—C921.0 (4)C33—C25—C27—C3263.2 (3)
C3—C2—C4—C9143.3 (3)C26—C25—C27—C3260.0 (3)
C9—C4—C5—C60.2 (5)C32—C27—C28—C290.3 (4)
C2—C4—C5—C6176.9 (3)C25—C27—C28—C29179.4 (3)
C4—C5—C6—C70.4 (5)C27—C28—C29—C301.6 (5)
C5—C6—C7—C80.5 (5)C28—C29—C30—C311.7 (5)
C6—C7—C8—C90.5 (5)C29—C30—C31—C320.4 (5)
C7—C8—C9—C40.3 (5)C30—C31—C32—C271.0 (5)
C5—C4—C9—C80.2 (5)C28—C27—C32—C311.0 (4)
C2—C4—C9—C8176.9 (3)C25—C27—C32—C31179.3 (3)
N2—C2—C10—C1513.9 (4)N4—C25—C33—C34110.1 (3)
C4—C2—C10—C15113.0 (3)C27—C25—C33—C3418.1 (4)
C3—C2—C10—C15124.2 (3)C26—C25—C33—C34139.0 (3)
N2—C2—C10—C11168.5 (2)N4—C25—C33—C3867.5 (3)
C4—C2—C10—C1164.6 (3)C27—C25—C33—C38164.3 (3)
C3—C2—C10—C1158.2 (3)C26—C25—C33—C3843.5 (4)
C15—C10—C11—C120.6 (4)C38—C33—C34—C350.5 (4)
C2—C10—C11—C12178.3 (3)C25—C33—C34—C35177.1 (3)
C10—C11—C12—C131.7 (5)C33—C34—C35—C360.4 (5)
C11—C12—C13—C141.3 (5)C34—C35—C36—C370.3 (5)
C12—C13—C14—C150.1 (5)C35—C36—C37—C380.8 (5)
C11—C10—C15—C140.8 (4)C36—C37—C38—C330.7 (5)
C2—C10—C15—C14176.7 (3)C34—C33—C38—C370.1 (4)
C13—C14—C15—C101.2 (5)C25—C33—C38—C37177.7 (3)
C3—N1—C16—C1792.3 (3)C26—N3—C39—C4088.8 (3)
C1—N1—C16—C1771.7 (3)C24—N3—C39—C4079.0 (3)
N1—C16—C17—O31.8 (4)N3—C39—C40—O60.9 (4)
N1—C16—C17—C18179.1 (2)N3—C39—C40—C41179.6 (2)
O3—C17—C18—C194.5 (5)O6—C40—C41—C42172.6 (3)
C16—C17—C18—C19174.7 (3)C39—C40—C41—C428.0 (4)
O3—C17—C18—C23176.5 (3)O6—C40—C41—C469.0 (4)
C16—C17—C18—C234.4 (4)C39—C40—C41—C46170.4 (3)
C23—C18—C19—C200.3 (5)C46—C41—C42—C430.9 (5)
C17—C18—C19—C20179.4 (3)C40—C41—C42—C43177.5 (3)
C18—C19—C20—C210.3 (5)C41—C42—C43—C440.3 (5)
C19—C20—C21—C220.6 (5)C42—C43—C44—F2178.3 (3)
C19—C20—C21—F1179.4 (3)C42—C43—C44—C450.8 (5)
F1—C21—C22—C23179.7 (3)F2—C44—C45—C46179.0 (3)
C20—C21—C22—C230.3 (5)C43—C44—C45—C460.1 (5)
C21—C22—C23—C180.4 (5)C44—C45—C46—C411.1 (5)
C19—C18—C23—C220.7 (5)C42—C41—C46—C451.6 (5)
C17—C18—C23—C22179.7 (3)C40—C41—C46—C45176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.981.932.900 (3)171
C16—H16A···O4i0.992.523.385 (4)146
C20—H20···O6ii0.952.623.275 (4)126
N4—H4···O10.951.982.931 (3)174
C39—H39B···O1iii0.992.573.403 (4)141
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.981.932.900 (3)171
C16—H16A···O4i0.992.523.385 (4)146
C20—H20···O6ii0.952.623.275 (4)126
N4—H4···O10.951.982.931 (3)174
C39—H39B···O1iii0.992.573.403 (4)141
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1, z+1/2; (iii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

The authors extend their appreciation to the Research Center of Pharmacy, King Saud University, for funding this work and to Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P. V., Alfieri, R. R., Petronini, P. G. & Mor, M. (2006). Bioorg. Med. Chem. Lett. 16, 4021–4025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCiechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86–96.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoquerel, G., Petit, M. N. & Robert, F. (1993). Acta Cryst. C49, 824–825.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDelgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448–o450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEknoian, M. W., Webb, T. R., Worley, S. D., Braswell, A. & Hadley, J. (1999). Acta Cryst. C55, 405–407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Deeb, I. M., Bayoumi, S. M., El-Sherbeny, M. A. & Abdel-Aziz, A. A.-M. (2010). Eur. J. Med. Chem. 45, 2516–2530.  Web of Science CAS PubMed Google Scholar
First citationKashif, M. K., Hussain, A., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008). Acta Cryst. E64, o444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837–848.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoszak, A. W. & Weaver, D. F. (1998). Acta Cryst. C54, 1168–1170.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332–4335.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSethuSankar, K., Thennarasu, S., Velmurugan, D. & Kim, M. J. (2002). Acta Cryst. C58, o715–o717.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o226-o227
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds