organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(4-Hy­dr­oxy­anilino)methyl­­idene]naphthalen-2(1H)-one

aLaboratoire d'Electrochimie, d'Ingenierie Moléculaire et de Catalyse Redox, Departement de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Sétif, Algeria
*Correspondence e-mail: s_marouani20012002@yahoo.fr

(Received 20 November 2013; accepted 23 December 2013; online 4 January 2014)

The title Schiff base, C17H13NO2, crystallizes in the zwitterionic form and an N—H⋯O hydrogen bond closes an S(6) ring. The dihedral angle between the aromatic ring systems is 15.62 (9)°. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into C(11) chains propagating in [010].

Related literature

For the tautomeric and photochromic properties of Schiff bases, see: Ünver et al. (2002[Ünver, H., Kendi, E., Güven, K. & Durlu, T. (2002). Z. Naturforsch. Teil B, 57, 685-690.]); Blagus et al. (2010[Blagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117-138.]); Alpaslan et al. (2011[Alpaslan, G., Macit, M., Erdönmez, A. & Büyükgüngör, O. (2011). Struct. Chem. 22, 681-690.]). For related structures, see: Özek et al. (2004[Özek, A., Yüce, S., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o828-o830.]); Odabaşoğlu et al. (2004[Odabaşoǧlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142-o144.]); Yüce et al. (2004[Yüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1217-o1218.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO2

  • Mr = 263.28

  • Orthorhombic, P 21 21 21

  • a = 6.1997 (7) Å

  • b = 12.9145 (15) Å

  • c = 16.5910 (19) Å

  • V = 1328.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.2 × 0.05 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.746

  • 13010 measured reflections

  • 1791 independent reflections

  • 1445 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.11

  • 1791 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2A⋯O2 0.98 (3) 1.75 (3) 2.563 (2) 138 (2)
O1—H1A⋯O2i 0.89 (3) 1.80 (3) 2.680 (2) 171 (3)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The tautomerism of Schiff bases has been studied by (Alpaslan et al., 2011; Blagus et al., 2010; Ünver et al., 2002). It demonstrated that the stabilization of the Keto-amino tautomer in the crystal depend mostly on the parent o-hydroxyl aldehyde, the type of the N-substituent, the electron withdrawing or donating of the N-substituent, their position and stereo chemistry (Blagus et al., 2010). In order to expand this field of research, the title Schiff base (I) derived from an aromatic amine and 2-hydroxy-1-naphthaldehyde, has been synthesized and its crystal structure is reported herein. The Keto-amine tautomer is the favored form for this compound in solid state (Fig. 1 and Table 1). The short C9—O2 and C7—C8 bonds can be considered as C=O and C=C double bonds, respectively. The very short C10—C11 bond, suggests the presence of a significant quinoidal effect which was observed for 1-[(2-hydroxy-5-methylphenylamino)-methylene]naphthalene-2-(1H)-one [C=O =1.281 (2) Å; Özek et al., 2004], 1-[N-(p-hydroxyphenyl)-aminomethylidene]naphthalen-2(1H)-one propan-1-ol hemisolvate [C=O = 1.292 (2) and 1.295 (2) Å; Odabaşoǧlu et al., 2004] and 1-[(4-Acetylphenylamino)methylene]-naphthalen-2(1H)-one [C=O = 1.2822 (17) Å; Yüce et al., 2004]. The intramolecular N1—H1···O2 hydrogen bond (Table2) stabilizes this crystallographic structure in solid state. The title compound prepared by the condensation of 4-aminophenol and 2-hydroxy-1-naphthaldehyde crystallizes in the chiral space group P212121. The crystal is photochromic in the solid state (Ünver et al., 2002; Blagus et al., 2010). The dihedral angle between the planes defined by O(1)—C(1)—C(2)—C(3)—C(4)—C(5)—C(6)—N(1) and C(7)—C(8)—C(9)—C(10)—C(11)—C(12)—C(13)—C(14)—C(15)—C(16)—C(17) is equal to 14.79 (7)°. The small value of bond N1—C7 (1.309 (3) Å) in comparison to bond N1—C1 (1.414 (3) Å) results in a significant change in the bond angle C1—N1—C7 of 125.97 (18)°.

Related literature top

For the tautomeric and photochromic properties of Schiff bases, see: Ünver et al. (2002); Blagus et al. (2010); Alpaslan et al. (2011). For related structures, see: Özek et al. (2004); Odabaşoǧlu et al. (2004); Yüce et al. (2004).

Experimental top

The compound is prepared by condensation of 4-aminophenol with 2-hydroxy-1-naphthaldehyde. To an ethanol solution (5 ml) of (0.109 g, 1 mmol) of 4-aminophenol was slowly added a ethanol solution (5 ml) of 2-hydroxy-1-naphthaldehyde (0.172 g, 1 mmol). The mixture was stirred under a nitrogen atmosphere and refluxed for 5 h. The red precipitate was collected by filtration and recrystallized from heated ethanoloic solution to yield red needles.

Refinement top

Excepted for those attached to N atoms, witch were freely refined, all H atoms treated using a riding model with a C—H distance of 0.93 Å for aromatic H atoms. H atoms attached to the N and O atoms were located in a difference map and refined freely [N—H = 0.98 (3) Å and O—H = 0.89 (3) Å]

Structure description top

The tautomerism of Schiff bases has been studied by (Alpaslan et al., 2011; Blagus et al., 2010; Ünver et al., 2002). It demonstrated that the stabilization of the Keto-amino tautomer in the crystal depend mostly on the parent o-hydroxyl aldehyde, the type of the N-substituent, the electron withdrawing or donating of the N-substituent, their position and stereo chemistry (Blagus et al., 2010). In order to expand this field of research, the title Schiff base (I) derived from an aromatic amine and 2-hydroxy-1-naphthaldehyde, has been synthesized and its crystal structure is reported herein. The Keto-amine tautomer is the favored form for this compound in solid state (Fig. 1 and Table 1). The short C9—O2 and C7—C8 bonds can be considered as C=O and C=C double bonds, respectively. The very short C10—C11 bond, suggests the presence of a significant quinoidal effect which was observed for 1-[(2-hydroxy-5-methylphenylamino)-methylene]naphthalene-2-(1H)-one [C=O =1.281 (2) Å; Özek et al., 2004], 1-[N-(p-hydroxyphenyl)-aminomethylidene]naphthalen-2(1H)-one propan-1-ol hemisolvate [C=O = 1.292 (2) and 1.295 (2) Å; Odabaşoǧlu et al., 2004] and 1-[(4-Acetylphenylamino)methylene]-naphthalen-2(1H)-one [C=O = 1.2822 (17) Å; Yüce et al., 2004]. The intramolecular N1—H1···O2 hydrogen bond (Table2) stabilizes this crystallographic structure in solid state. The title compound prepared by the condensation of 4-aminophenol and 2-hydroxy-1-naphthaldehyde crystallizes in the chiral space group P212121. The crystal is photochromic in the solid state (Ünver et al., 2002; Blagus et al., 2010). The dihedral angle between the planes defined by O(1)—C(1)—C(2)—C(3)—C(4)—C(5)—C(6)—N(1) and C(7)—C(8)—C(9)—C(10)—C(11)—C(12)—C(13)—C(14)—C(15)—C(16)—C(17) is equal to 14.79 (7)°. The small value of bond N1—C7 (1.309 (3) Å) in comparison to bond N1—C1 (1.414 (3) Å) results in a significant change in the bond angle C1—N1—C7 of 125.97 (18)°.

For the tautomeric and photochromic properties of Schiff bases, see: Ünver et al. (2002); Blagus et al. (2010); Alpaslan et al. (2011). For related structures, see: Özek et al. (2004); Odabaşoǧlu et al. (2004); Yüce et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
1-[(4-Hydroxyanilino)methylidene]naphthalen-2(1H)-one top
Crystal data top
C17H13NO2Dx = 1.316 Mg m3
Mr = 263.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2615 reflections
a = 6.1997 (7) Åθ = 2.5–21.5°
b = 12.9145 (15) ŵ = 0.09 mm1
c = 16.5910 (19) ÅT = 296 K
V = 1328.4 (3) Å3Needle, red
Z = 40.2 × 0.05 × 0.03 mm
F(000) = 552
Data collection top
Bruker SMART APEXII CCD
diffractometer
1445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.6°, θmin = 2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.685, Tmax = 0.746k = 1616
13010 measured reflectionsl = 2121
1791 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.116P]
where P = (Fo2 + 2Fc2)/3
1791 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C17H13NO2V = 1328.4 (3) Å3
Mr = 263.28Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1997 (7) ŵ = 0.09 mm1
b = 12.9145 (15) ÅT = 296 K
c = 16.5910 (19) Å0.2 × 0.05 × 0.03 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1791 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1445 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.746Rint = 0.038
13010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.13 e Å3
1791 reflectionsΔρmin = 0.13 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2416 (3)0.52850 (13)0.64329 (11)0.0426 (4)
C10.0629 (3)0.59631 (15)0.63842 (12)0.0404 (4)
C60.0379 (4)0.62556 (18)0.70911 (12)0.0473 (5)
H6A0.01040.59920.75810.057*
O20.4696 (3)0.40484 (13)0.72890 (9)0.0576 (5)
C70.3805 (4)0.50983 (16)0.58565 (12)0.0428 (5)
H7A0.36040.54320.53650.051*
O10.4464 (3)0.80231 (15)0.63093 (10)0.0715 (6)
C30.1847 (4)0.70162 (17)0.56461 (13)0.0500 (6)
H3A0.23540.72650.51550.06*
C40.2810 (4)0.73383 (16)0.63555 (13)0.0481 (5)
C80.5570 (4)0.44303 (16)0.59304 (12)0.0412 (5)
C130.7034 (4)0.42826 (15)0.52628 (12)0.0434 (5)
C20.0154 (4)0.63339 (16)0.56591 (12)0.0445 (5)
H2B0.04710.61190.51780.053*
C100.7924 (4)0.33537 (17)0.67694 (16)0.0557 (6)
H10A0.82360.30410.72610.067*
C120.8923 (4)0.36913 (17)0.53822 (15)0.0503 (6)
C50.2098 (4)0.69353 (18)0.70775 (13)0.0526 (6)
H5A0.27770.71210.75560.063*
C90.5988 (4)0.39470 (16)0.66886 (13)0.0464 (5)
C171.0411 (5)0.3575 (2)0.47485 (17)0.0664 (7)
H17A1.16540.31860.48310.08*
C110.9298 (4)0.32388 (18)0.61540 (16)0.0588 (6)
H11A1.05420.2850.62320.071*
C140.6711 (4)0.47165 (18)0.44906 (12)0.0533 (6)
H14A0.5460.50920.43880.064*
C150.8204 (5)0.4596 (2)0.38897 (15)0.0621 (7)
H15A0.79690.49030.3390.075*
C161.0062 (5)0.4021 (2)0.40172 (17)0.0709 (8)
H16A1.10650.39420.36050.085*
H2A0.279 (5)0.4942 (19)0.6938 (15)0.073 (8)*
H1A0.468 (5)0.834 (2)0.6777 (19)0.095 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0417 (10)0.0478 (10)0.0382 (9)0.0024 (8)0.0015 (8)0.0029 (8)
C10.0408 (11)0.0415 (10)0.0389 (10)0.0046 (9)0.0015 (10)0.0003 (9)
C60.0496 (12)0.0583 (13)0.0340 (10)0.0034 (12)0.0005 (10)0.0025 (9)
O20.0603 (10)0.0677 (10)0.0449 (8)0.0001 (9)0.0016 (8)0.0134 (7)
C70.0435 (11)0.0460 (11)0.0389 (10)0.0051 (10)0.0008 (9)0.0029 (9)
O10.0824 (14)0.0850 (13)0.0471 (10)0.0380 (12)0.0090 (10)0.0152 (9)
C30.0622 (14)0.0518 (12)0.0360 (10)0.0058 (12)0.0034 (11)0.0019 (9)
C40.0522 (13)0.0480 (11)0.0440 (11)0.0067 (11)0.0031 (11)0.0082 (10)
C80.0411 (11)0.0416 (10)0.0410 (10)0.0048 (10)0.0005 (9)0.0000 (8)
C130.0437 (12)0.0409 (10)0.0457 (11)0.0070 (10)0.0002 (10)0.0062 (9)
C20.0538 (13)0.0461 (11)0.0336 (10)0.0009 (10)0.0036 (10)0.0014 (9)
C100.0585 (15)0.0498 (13)0.0587 (14)0.0003 (12)0.0100 (13)0.0093 (11)
C120.0467 (13)0.0414 (11)0.0626 (14)0.0014 (10)0.0000 (11)0.0095 (10)
C50.0567 (14)0.0665 (14)0.0348 (10)0.0083 (13)0.0035 (11)0.0059 (10)
C90.0483 (12)0.0444 (11)0.0464 (11)0.0071 (11)0.0035 (11)0.0025 (9)
C170.0545 (15)0.0622 (15)0.0825 (19)0.0053 (14)0.0095 (15)0.0211 (14)
C110.0522 (14)0.0492 (13)0.0748 (16)0.0047 (12)0.0093 (14)0.0009 (11)
C140.0525 (13)0.0622 (14)0.0451 (12)0.0027 (12)0.0023 (11)0.0043 (10)
C150.0671 (16)0.0740 (16)0.0452 (12)0.0105 (15)0.0096 (12)0.0115 (12)
C160.0662 (18)0.0805 (18)0.0659 (16)0.0034 (16)0.0202 (15)0.0203 (15)
Geometric parameters (Å, º) top
N1—C71.309 (3)C13—C141.413 (3)
N1—C11.414 (3)C13—C121.412 (3)
N1—H2A0.98 (3)C2—H2B0.93
C1—C61.382 (3)C10—C111.338 (3)
C1—C21.383 (3)C10—C91.431 (3)
C6—C51.381 (3)C10—H10A0.93
C6—H6A0.93C12—C171.407 (3)
O2—C91.285 (3)C12—C111.427 (3)
C7—C81.399 (3)C5—H5A0.93
C7—H7A0.93C17—C161.360 (4)
O1—C41.356 (3)C17—H17A0.93
O1—H1A0.89 (3)C11—H11A0.93
C3—C21.371 (3)C14—C151.370 (3)
C3—C41.384 (3)C14—H14A0.93
C3—H3A0.93C15—C161.386 (4)
C4—C51.379 (3)C15—H15A0.93
C8—C91.428 (3)C16—H16A0.93
C8—C131.445 (3)
C7—N1—C1125.97 (18)C11—C10—C9121.5 (2)
C7—N1—H2A112.8 (16)C11—C10—H10A119.3
C1—N1—H2A121.1 (16)C9—C10—H10A119.3
C6—C1—C2119.00 (19)C17—C12—C13119.8 (2)
C6—C1—N1118.38 (17)C17—C12—C11121.4 (2)
C2—C1—N1122.62 (18)C13—C12—C11118.8 (2)
C5—C6—C1120.61 (19)C6—C5—C4120.1 (2)
C5—C6—H6A119.7C6—C5—H5A120
C1—C6—H6A119.7C4—C5—H5A120
N1—C7—C8124.34 (19)O2—C9—C8121.7 (2)
N1—C7—H7A117.8O2—C9—C10120.32 (19)
C8—C7—H7A117.8C8—C9—C10118.0 (2)
C4—O1—H1A112 (2)C16—C17—C12121.1 (3)
C2—C3—C4120.7 (2)C16—C17—H17A119.4
C2—C3—H3A119.7C12—C17—H17A119.4
C4—C3—H3A119.7C10—C11—C12122.4 (2)
O1—C4—C5122.51 (19)C10—C11—H11A118.8
O1—C4—C3118.31 (19)C12—C11—H11A118.8
C5—C4—C3119.2 (2)C15—C14—C13121.3 (2)
C7—C8—C9119.26 (19)C15—C14—H14A119.4
C7—C8—C13120.38 (18)C13—C14—H14A119.4
C9—C8—C13120.25 (19)C14—C15—C16120.8 (2)
C14—C13—C12117.3 (2)C14—C15—H15A119.6
C14—C13—C8123.6 (2)C16—C15—H15A119.6
C12—C13—C8119.01 (19)C17—C16—C15119.7 (3)
C3—C2—C1120.35 (19)C17—C16—H16A120.2
C3—C2—H2B119.8C15—C16—H16A120.2
C1—C2—H2B119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O20.98 (3)1.75 (3)2.563 (2)138 (2)
O1—H1A···O2i0.89 (3)1.80 (3)2.680 (2)171 (3)
Symmetry code: (i) x, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2A···O20.98 (3)1.75 (3)2.563 (2)138 (2)
O1—H1A···O2i0.89 (3)1.80 (3)2.680 (2)171 (3)
Symmetry code: (i) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Algerian Ministry of Higher Education and Scientific Research for financial support

References

First citationAlpaslan, G., Macit, M., Erdönmez, A. & Büyükgüngör, O. (2011). Struct. Chem. 22, 681–690.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlagus, A., Cinčić, D., Friščić, T., Kaitner, B. & Stilinović, V. (2010). Maced. J. Chem. Chem. Eng. 29, 117–138.  CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOdabaşoǧlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142–o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Yüce, S., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o828–o830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÜnver, H., Kendi, E., Güven, K. & Durlu, T. (2002). Z. Naturforsch. Teil B, 57, 685–690.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYüce, S., Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, o1217–o1218.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds