organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­methyl­phenyl quinoline-2-carb­oxy­l­ate

aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and dP.P.S.F.T. Department, Central Food Technplogy Research institute, Mysore 570 005, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 7 January 2014; accepted 8 January 2014; online 15 January 2014)

In the title compound, C18H15NO2, the dihedral angle between the mean planes of the quinoline ring system and the phenyl ring is 78.8 (1)°. The mean plane of the carboxyl­ate group is twisted from the mean planes of the quinoline ring system and phenyl ring by 1.5 (9) and 77.6 (4)°, respectively. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions, generating C(8) chains along [001]. Weak ππ stacking inter­actions are also observed [centroid–centroid separation = 3.6238 (12) Å].

Related literature

For related structures and background to quinoline derivatives, see: Fazal et al. (2014[Fazal, E., Jasinski, J. P., Anderson, B. J., Sudha, B. S. & Nagarajan, S. (2014). Acta Cryst. E70, o35-o36.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO2

  • Mr = 277.31

  • Orthorhombic, P 21 21 21

  • a = 8.2261 (3) Å

  • b = 11.6007 (5) Å

  • c = 14.5738 (5) Å

  • V = 1390.76 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.69 mm−1

  • T = 173 K

  • 0.46 × 0.34 × 0.18 mm

Data collection
  • Agilent Gemini EOS diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.711, Tmax = 1.000

  • 8332 measured reflections

  • 2721 independent reflections

  • 2585 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.05

  • 2721 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack parameter determined using 1049 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.04 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯O1i 0.98 2.49 3.389 (3) 152
Symmetry code: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Following our recent report on 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate (Fazal et al., 2014), we now describe the crystal structure of the title compound, (I), The synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have also been reported.

The dihedral angle between the mean planes of the quinoline ring and the phenyl ring is 78.8 (1)° (Fig. 1). The mean plane of the carboxylate group is twisted from the mean planes of the quinoline ring and phenyl ring by 1.5 (9)° and 77.6 (4)°, respectively. The crystal packing is influenced by weak C17—H17B···O1 interactions making chains along [0 0 1](Fig. 2). In addition, weak Cg2–Cg3 ππ interactions are observed (Cg2–Cg3 = 3.6238 (12)Å; Cg2 = C5–C10; Cg3 = C11–C16; 1/2 + x, 1/2 - y, 1 - z).

Related literature top

For related structures and background to quinoline derivatives, see: Fazal et al. (2014); Jasinski et al. (2010).

Experimental top

To a mixture of 1.73 g (10 mmole) of quinaldic acid and 1.56 g (10 mmole) of 2,5-dimethylphenol in a round-bottomed flask fitted with a reflux condenser with a drying tube was added 0.15 g (10 mmole) of phosphorous oxychloride. The mixture was heated with occasional swirling, and temperature maintained at 348-353 K. At the end of eight hours the reaction mixture was poured in to a solution of 2 g of sodium bicarbonate in 25 ml of water. The precipitated ester was collected on a filter and washed with water. The yield of crude, air dried 2,5-dimethylphenyl quinoline-2-carboxylate was 1.71 to 1.85 g (65-70 %). Irregular colourless chunks were obtained by recrystallization from absolute ethanol solution by slow evaporation.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.

Structure description top

Following our recent report on 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate (Fazal et al., 2014), we now describe the crystal structure of the title compound, (I), The synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have also been reported.

The dihedral angle between the mean planes of the quinoline ring and the phenyl ring is 78.8 (1)° (Fig. 1). The mean plane of the carboxylate group is twisted from the mean planes of the quinoline ring and phenyl ring by 1.5 (9)° and 77.6 (4)°, respectively. The crystal packing is influenced by weak C17—H17B···O1 interactions making chains along [0 0 1](Fig. 2). In addition, weak Cg2–Cg3 ππ interactions are observed (Cg2–Cg3 = 3.6238 (12)Å; Cg2 = C5–C10; Cg3 = C11–C16; 1/2 + x, 1/2 - y, 1 - z).

For related structures and background to quinoline derivatives, see: Fazal et al. (2014); Jasinski et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C18H15NO2) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate weak C17—H17B···O1 intermolecular interactions making chains along [0 0 1] and influence the crystal packing. The remaining H atoms have been removed for clarity.
2,5-Dimethylphenyl quinoline-2-carboxylate top
Crystal data top
C18H15NO2Dx = 1.324 Mg m3
Mr = 277.31Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 3982 reflections
a = 8.2261 (3) Åθ = 3.0–72.4°
b = 11.6007 (5) ŵ = 0.69 mm1
c = 14.5738 (5) ÅT = 173 K
V = 1390.76 (9) Å3Irregular, colourless
Z = 40.46 × 0.34 × 0.18 mm
F(000) = 584
Data collection top
Agilent Gemini EOS
diffractometer
2721 independent reflections
Radiation source: Enhance (Cu) X-ray Source2585 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.031
ω scansθmax = 72.6°, θmin = 4.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 610
Tmin = 0.711, Tmax = 1.000k = 1413
8332 measured reflectionsl = 1717
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1748P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035(Δ/σ)max = 0.008
wR(F2) = 0.101Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.16 e Å3
2721 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
193 parametersExtinction coefficient: 0.0027 (7)
0 restraintsAbsolute structure: Flack parameter determined using 1049 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (16)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C18H15NO2V = 1390.76 (9) Å3
Mr = 277.31Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.2261 (3) ŵ = 0.69 mm1
b = 11.6007 (5) ÅT = 173 K
c = 14.5738 (5) Å0.46 × 0.34 × 0.18 mm
Data collection top
Agilent Gemini EOS
diffractometer
2721 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2585 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 1.000Rint = 0.031
8332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.16 e Å3
2721 reflectionsAbsolute structure: Flack parameter determined using 1049 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
193 parametersAbsolute structure parameter: 0.04 (16)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4090 (2)0.00776 (14)0.45505 (11)0.0439 (4)
O20.5803 (2)0.13777 (12)0.39481 (9)0.0330 (4)
N10.3984 (2)0.13265 (14)0.61466 (11)0.0259 (4)
C10.4863 (2)0.09441 (16)0.46254 (13)0.0274 (4)
C20.4902 (2)0.16990 (15)0.54669 (12)0.0248 (4)
C30.5847 (2)0.27162 (16)0.54988 (13)0.0276 (4)
H30.64680.29560.49840.033*
C40.5840 (3)0.33438 (17)0.62920 (14)0.0292 (4)
H40.64640.40310.63340.035*
C50.4907 (3)0.29728 (16)0.70485 (13)0.0265 (4)
C60.4872 (3)0.35546 (17)0.79056 (14)0.0321 (4)
H60.55020.42320.79920.038*
C70.3934 (3)0.31404 (19)0.86066 (14)0.0349 (5)
H70.39270.35290.91800.042*
C80.2979 (3)0.21456 (19)0.84884 (14)0.0334 (5)
H80.23230.18770.89810.040*
C90.2982 (3)0.15600 (17)0.76741 (14)0.0296 (4)
H90.23250.08930.76010.035*
C100.3968 (2)0.19518 (16)0.69387 (13)0.0252 (4)
C110.5828 (2)0.07494 (17)0.31151 (12)0.0271 (4)
C120.6794 (2)0.02221 (17)0.30398 (14)0.0286 (4)
C130.6803 (3)0.07618 (18)0.21885 (14)0.0318 (4)
H130.74450.14350.21070.038*
C140.5903 (3)0.03456 (18)0.14550 (14)0.0326 (5)
H140.59320.07400.08840.039*
C150.4960 (2)0.06388 (18)0.15446 (13)0.0313 (4)
C160.4932 (3)0.11850 (17)0.23933 (14)0.0294 (4)
H160.42940.18600.24770.035*
C170.4019 (3)0.1117 (2)0.07440 (16)0.0452 (6)
H17A0.34270.18090.09380.068*
H17B0.32450.05370.05250.068*
H17C0.47720.13180.02480.068*
C180.7792 (3)0.0662 (2)0.38316 (16)0.0400 (5)
H18A0.82970.00110.41510.060*
H18B0.86400.11800.36010.060*
H18C0.70880.10830.42580.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0543 (10)0.0445 (9)0.0330 (8)0.0212 (8)0.0128 (8)0.0122 (7)
O20.0444 (8)0.0311 (7)0.0235 (7)0.0073 (6)0.0076 (6)0.0061 (5)
N10.0281 (8)0.0265 (8)0.0232 (8)0.0012 (7)0.0003 (7)0.0005 (6)
C10.0283 (9)0.0294 (9)0.0246 (9)0.0001 (8)0.0006 (8)0.0011 (7)
C20.0270 (8)0.0262 (9)0.0211 (8)0.0032 (8)0.0015 (8)0.0008 (7)
C30.0305 (9)0.0273 (9)0.0251 (9)0.0009 (8)0.0008 (8)0.0019 (7)
C40.0327 (9)0.0237 (9)0.0311 (10)0.0010 (8)0.0015 (8)0.0002 (8)
C50.0308 (9)0.0238 (9)0.0248 (9)0.0061 (8)0.0032 (8)0.0015 (7)
C60.0415 (11)0.0251 (9)0.0296 (10)0.0033 (9)0.0039 (9)0.0041 (7)
C70.0453 (11)0.0359 (11)0.0234 (9)0.0113 (10)0.0012 (9)0.0056 (8)
C80.0372 (10)0.0397 (11)0.0232 (9)0.0093 (9)0.0029 (9)0.0028 (8)
C90.0302 (9)0.0321 (10)0.0264 (10)0.0025 (8)0.0001 (8)0.0021 (8)
C100.0269 (9)0.0255 (9)0.0234 (8)0.0052 (8)0.0015 (7)0.0004 (7)
C110.0336 (10)0.0254 (9)0.0222 (8)0.0067 (8)0.0048 (8)0.0033 (7)
C120.0289 (9)0.0281 (9)0.0288 (10)0.0035 (8)0.0038 (8)0.0017 (8)
C130.0338 (10)0.0272 (9)0.0344 (10)0.0004 (9)0.0087 (9)0.0026 (8)
C140.0377 (10)0.0345 (11)0.0256 (9)0.0093 (9)0.0046 (9)0.0091 (8)
C150.0300 (9)0.0375 (10)0.0263 (9)0.0080 (9)0.0015 (9)0.0012 (8)
C160.0316 (9)0.0271 (9)0.0296 (10)0.0012 (9)0.0056 (8)0.0005 (7)
C170.0443 (12)0.0608 (15)0.0306 (11)0.0007 (12)0.0047 (10)0.0035 (10)
C180.0411 (12)0.0450 (12)0.0338 (11)0.0028 (10)0.0004 (10)0.0049 (10)
Geometric parameters (Å, º) top
O1—C11.194 (2)C9—H90.9500
O2—C11.351 (2)C9—C101.419 (3)
O2—C111.416 (2)C11—C121.383 (3)
N1—C21.319 (2)C11—C161.380 (3)
N1—C101.363 (2)C12—C131.390 (3)
C1—C21.507 (2)C12—C181.505 (3)
C2—C31.414 (3)C13—H130.9500
C3—H30.9500C13—C141.387 (3)
C3—C41.366 (3)C14—H140.9500
C4—H40.9500C14—C151.387 (3)
C4—C51.411 (3)C15—C161.390 (3)
C5—C61.420 (2)C15—C171.507 (3)
C5—C101.423 (3)C16—H160.9500
C6—H60.9500C17—H17A0.9800
C6—C71.368 (3)C17—H17B0.9800
C7—H70.9500C17—H17C0.9800
C7—C81.407 (3)C18—H18A0.9800
C8—H80.9500C18—H18B0.9800
C8—C91.367 (3)C18—H18C0.9800
C1—O2—C11116.31 (15)C9—C10—C5119.47 (17)
C2—N1—C10117.84 (16)C12—C11—O2119.72 (17)
O1—C1—O2123.44 (18)C16—C11—O2117.19 (17)
O1—C1—C2125.08 (18)C16—C11—C12123.00 (17)
O2—C1—C2111.47 (16)C11—C12—C13116.18 (18)
N1—C2—C1114.13 (16)C11—C12—C18121.93 (18)
N1—C2—C3124.32 (17)C13—C12—C18121.89 (19)
C3—C2—C1121.55 (17)C12—C13—H13119.1
C2—C3—H3121.0C14—C13—C12121.88 (19)
C4—C3—C2118.05 (18)C14—C13—H13119.1
C4—C3—H3121.0C13—C14—H14119.6
C3—C4—H4120.0C15—C14—C13120.84 (18)
C3—C4—C5120.07 (18)C15—C14—H14119.6
C5—C4—H4120.0C14—C15—C16117.95 (19)
C4—C5—C6123.59 (18)C14—C15—C17121.20 (19)
C4—C5—C10117.47 (16)C16—C15—C17120.8 (2)
C6—C5—C10118.93 (17)C11—C16—C15120.15 (19)
C5—C6—H6120.0C11—C16—H16119.9
C7—C6—C5120.08 (19)C15—C16—H16119.9
C7—C6—H6120.0C15—C17—H17A109.5
C6—C7—H7119.6C15—C17—H17B109.5
C6—C7—C8120.80 (18)C15—C17—H17C109.5
C8—C7—H7119.6H17A—C17—H17B109.5
C7—C8—H8119.6H17A—C17—H17C109.5
C9—C8—C7120.9 (2)H17B—C17—H17C109.5
C9—C8—H8119.6C12—C18—H18A109.5
C8—C9—H9120.1C12—C18—H18B109.5
C8—C9—C10119.82 (19)C12—C18—H18C109.5
C10—C9—H9120.1H18A—C18—H18B109.5
N1—C10—C5122.21 (17)H18A—C18—H18C109.5
N1—C10—C9118.32 (17)H18B—C18—H18C109.5
O1—C1—C2—N10.1 (3)C6—C5—C10—C92.1 (3)
O1—C1—C2—C3179.8 (2)C6—C7—C8—C90.9 (3)
O2—C1—C2—N1178.98 (16)C7—C8—C9—C100.5 (3)
O2—C1—C2—C30.7 (3)C8—C9—C10—N1177.87 (18)
O2—C11—C12—C13177.39 (17)C8—C9—C10—C51.9 (3)
O2—C11—C12—C182.0 (3)C10—N1—C2—C1179.07 (16)
O2—C11—C16—C15177.19 (17)C10—N1—C2—C31.3 (3)
N1—C2—C3—C41.5 (3)C10—C5—C6—C70.8 (3)
C1—O2—C11—C1279.9 (2)C11—O2—C1—O10.5 (3)
C1—O2—C11—C16103.4 (2)C11—O2—C1—C2178.63 (15)
C1—C2—C3—C4178.88 (17)C11—C12—C13—C140.3 (3)
C2—N1—C10—C50.3 (3)C12—C11—C16—C150.6 (3)
C2—N1—C10—C9179.87 (17)C12—C13—C14—C150.5 (3)
C2—C3—C4—C50.1 (3)C13—C14—C15—C160.8 (3)
C3—C4—C5—C6177.96 (18)C13—C14—C15—C17178.1 (2)
C3—C4—C5—C101.4 (3)C14—C15—C16—C110.2 (3)
C4—C5—C6—C7179.9 (2)C16—C11—C12—C130.9 (3)
C4—C5—C10—N11.6 (3)C16—C11—C12—C18178.5 (2)
C4—C5—C10—C9178.58 (18)C17—C15—C16—C11178.65 (19)
C5—C6—C7—C80.7 (3)C18—C12—C13—C14179.00 (19)
C6—C5—C10—N1177.74 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.982.493.389 (3)152
Symmetry code: (i) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O1i0.982.493.389 (3)152
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

EF thanks the CFTRI, Mysore and Yuvaraja's College, UOM, for providing research facilities. EF is grateful to Mr J. R. Manjunatha, PPSFT, CFTRI for the NMR spectra. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFazal, E., Jasinski, J. P., Anderson, B. J., Sudha, B. S. & Nagarajan, S. (2014). Acta Cryst. E70, o35–o36.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds