organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-[4-(Azido­meth­yl)phen­yl]-9H-carbazole-3-carbo­nitrile

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bPrincipal, Kundavai Nachiyar Govt College for Women, Thanjavur 613 007, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist., Chennai 603 203, Tamil Nadu, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com, crystallography2010@gmail.com

(Received 16 January 2014; accepted 20 January 2014; online 25 January 2014)

In the title compound C20H13N5, the dihedral angle between the carbazole ring system (r.m.s. deviation = 0.027 Å) and the pendant benzene ring is 55.08 (6)°. One of the azide N atoms is disordered over two positions in a 0.65 (2):0.35 (2) ratio. In the crystal, aromatic ππ stacking is observed [minimum centroid–centroid separation = 3.6499 (13) Å] as well as inversion-dimers connected by pairs of weak C—H⋯π inter­actions.

Related literature

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]); Tachibana et al. (2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]); Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-127.]). For related structures, see: Velmurugan et al. (2010[Velmurugan, R., Sekar, M., Chandramohan, A., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o2965.]); Ramathilagam et al. (2011[Ramathilagam, C., Venkatesan, N., Rajakumar, P., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o2796.])

[Scheme 1]

Experimental

Crystal data
  • C20H13N5

  • Mr = 323.35

  • Monoclinic, P 21 /c

  • a = 9.8457 (2) Å

  • b = 8.4032 (2) Å

  • c = 19.9127 (5) Å

  • β = 90.970 (2)°

  • V = 1647.25 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.984

  • 15375 measured reflections

  • 4076 independent reflections

  • 2676 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.230

  • S = 1.07

  • 4076 reflections

  • 236 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg3i 0.93 2.91 3.673 (2) 140
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbazole derivatives possess antioxidative (Tachibana et al., 2001), antitumor (Itoigawa et al., 2000), anti-inflammatory and antimutagenic (Ramsewak et al., 1999)activities. These derivatives also exhibit electroactivity and luminescence properties and are considered to be potential candidates for electronics such as colour display, organic semiconductor lasers and solar cells (Friend et al., 1999).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure(Velmurugan et al., 2010; Ramathilagam et al., 2011). Phenyl ring makes the dihedral angle of 55.08 (6) ° with the carbazole ring system. In azidomethyl group one of the nitrogen atom is disordered over two position with site occupancies of 0.35 (2) and 0.65 (2). The sum of bond angles around the atom N1 [359.81 (17) °] indicates sp2 hybridized. The crystal packing features weak C—H···π [C14—H14···Cg3(1 - x, 1 - y, -z) distance of 3.672 (7) Å, (Cg3 and is the centroid of the ring defined by the atoms C7—C12)] interactions.

Related literature top

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999); Tachibana et al. (2001); Itoigawa et al. (2000); Friend et al. (1999). For related structures, see: Velmurugan et al. (2010); Ramathilagam et al. (2011)

Experimental top

9-(4-(bromomethyl)phenyl)-9H-carbazole-3-carbonitrile (1.0 mmol, 1.0 equiv) was dissolved in acetone/water (4:1, 8 ml). NaN3 (1.5 mmol, 1.5 equiv.) was added and the mixture was heated at 60 ° C for 5 h. The reaction mixture was cooled to room temperature, acetone was evaporated and the reaction mixture was diluted with H2O (100 ml) and extracted with CHCl3 (2 x 100 ml). The organic layer was washed with saturated NaCl (50 ml), dried over Na2SO4 and evaporated gave 9-(4-(azidomethyl)phenyl) -9H-carbazole-3-carbonitrile as pale yellow blocks with a yield of 84% and melting point 148 ° C.

Refinement top

In azidomethyl group one of the nitrogen atom is disordered over two position. The site occupancy factors of disordered nitrogen atoms were refined as N3 = 0.35 (2) and N3A = 0.65 (2) during anisotropic refinement. The N3A—N4 bond distance was restrained to be 1.1500 (1) Å. The atom N3A exhibited elongation of the thermal elipsoid and have been restrained (ISOR) to be more isotropic. The components of the anisotropic displacement parameters in direction of the bond N3—N4 and N4—N5, were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL (Sheldrick, 2008). H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2.

Structure description top

Carbazole derivatives possess antioxidative (Tachibana et al., 2001), antitumor (Itoigawa et al., 2000), anti-inflammatory and antimutagenic (Ramsewak et al., 1999)activities. These derivatives also exhibit electroactivity and luminescence properties and are considered to be potential candidates for electronics such as colour display, organic semiconductor lasers and solar cells (Friend et al., 1999).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure(Velmurugan et al., 2010; Ramathilagam et al., 2011). Phenyl ring makes the dihedral angle of 55.08 (6) ° with the carbazole ring system. In azidomethyl group one of the nitrogen atom is disordered over two position with site occupancies of 0.35 (2) and 0.65 (2). The sum of bond angles around the atom N1 [359.81 (17) °] indicates sp2 hybridized. The crystal packing features weak C—H···π [C14—H14···Cg3(1 - x, 1 - y, -z) distance of 3.672 (7) Å, (Cg3 and is the centroid of the ring defined by the atoms C7—C12)] interactions.

For the biological activity of carbazole derivatives, see: Ramsewak et al. (1999); Tachibana et al. (2001); Itoigawa et al. (2000); Friend et al. (1999). For related structures, see: Velmurugan et al. (2010); Ramathilagam et al. (2011)

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
9-[4-(Azidomethyl)phenyl]-9H-carbazole-3-carbonitrile top
Crystal data top
C20H13N5F(000) = 672
Mr = 323.35Dx = 1.304 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4076 reflections
a = 9.8457 (2) Åθ = 2.0–28.3°
b = 8.4032 (2) ŵ = 0.08 mm1
c = 19.9127 (5) ÅT = 295 K
β = 90.970 (2)°Block, pale yellow
V = 1647.25 (7) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker kappa APEXII CCD
diffractometer
4076 independent reflections
Radiation source: fine-focus sealed tube2676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω and φ scansh = 1213
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1011
Tmin = 0.958, Tmax = 0.984l = 2626
15375 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1219P)2 + 0.4961P]
where P = (Fo2 + 2Fc2)/3
4076 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.67 e Å3
10 restraintsΔρmin = 0.32 e Å3
Crystal data top
C20H13N5V = 1647.25 (7) Å3
Mr = 323.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8457 (2) ŵ = 0.08 mm1
b = 8.4032 (2) ÅT = 295 K
c = 19.9127 (5) Å0.25 × 0.20 × 0.20 mm
β = 90.970 (2)°
Data collection top
Bruker kappa APEXII CCD
diffractometer
4076 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2676 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.984Rint = 0.023
15375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06510 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.07Δρmax = 0.67 e Å3
4076 reflectionsΔρmin = 0.32 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1427 (2)0.6443 (3)0.02437 (10)0.0462 (5)
C20.0810 (2)0.7908 (3)0.03579 (11)0.0532 (5)
H20.08910.87280.00460.064*
C30.0079 (3)0.8108 (3)0.09424 (12)0.0584 (6)
H30.03550.90730.10250.070*
C40.0026 (2)0.6891 (3)0.14171 (11)0.0554 (6)
C50.0600 (2)0.5431 (3)0.13083 (10)0.0502 (5)
H50.05330.46270.16280.060*
C60.1326 (2)0.5191 (2)0.07139 (10)0.0453 (5)
C70.2076 (2)0.3867 (3)0.04382 (11)0.0473 (5)
C80.2302 (2)0.2308 (3)0.06541 (12)0.0541 (5)
H80.19610.19620.10670.065*
C90.3039 (2)0.1295 (3)0.02440 (13)0.0602 (6)
H90.32020.02580.03840.072*
C100.3538 (3)0.1802 (3)0.03750 (13)0.0638 (6)
H100.40190.10890.06460.077*
C110.3343 (3)0.3342 (3)0.06016 (12)0.0591 (6)
H110.36870.36770.10160.071*
C120.2609 (2)0.4363 (3)0.01842 (11)0.0491 (5)
C130.2663 (2)0.6895 (2)0.08503 (10)0.0470 (5)
C140.4037 (2)0.7025 (3)0.09936 (12)0.0559 (6)
H140.46660.65110.07260.067*
C150.4469 (3)0.7928 (3)0.15393 (13)0.0607 (6)
H150.53930.80000.16400.073*
C160.3556 (3)0.8719 (3)0.19349 (11)0.0600 (6)
C170.2184 (3)0.8588 (3)0.17812 (11)0.0585 (6)
H170.15560.91190.20440.070*
C180.1733 (2)0.7679 (3)0.12418 (11)0.0535 (5)
H180.08090.75960.11440.064*
C190.0782 (3)0.7148 (3)0.20322 (13)0.0720 (7)
C200.4028 (4)0.9678 (4)0.25333 (15)0.0909 (10)
H20A0.49850.99110.24790.109*
H20B0.35481.06860.25230.109*
N10.22210 (19)0.5936 (2)0.02970 (9)0.0501 (5)
N20.1372 (4)0.7353 (4)0.25201 (14)0.1079 (10)
N30.4560 (12)0.8595 (18)0.3064 (5)0.106 (4)0.35 (2)
N3A0.3867 (14)0.9011 (9)0.3169 (3)0.134 (4)0.65 (2)
N40.3659 (4)0.7676 (7)0.32487 (16)0.1170 (13)
N50.3230 (6)0.6426 (7)0.3378 (3)0.186 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0527 (11)0.0444 (11)0.0414 (10)0.0050 (9)0.0002 (8)0.0002 (8)
C20.0671 (13)0.0423 (12)0.0502 (12)0.0001 (10)0.0010 (10)0.0016 (9)
C30.0714 (15)0.0498 (13)0.0538 (12)0.0052 (11)0.0009 (11)0.0063 (10)
C40.0656 (14)0.0580 (14)0.0425 (11)0.0009 (10)0.0018 (10)0.0077 (9)
C50.0591 (12)0.0503 (12)0.0413 (10)0.0080 (9)0.0015 (9)0.0012 (9)
C60.0499 (11)0.0430 (11)0.0431 (10)0.0062 (8)0.0037 (8)0.0002 (8)
C70.0513 (11)0.0444 (11)0.0462 (11)0.0047 (8)0.0020 (8)0.0014 (8)
C80.0584 (12)0.0478 (12)0.0561 (13)0.0058 (10)0.0016 (10)0.0078 (10)
C90.0661 (14)0.0428 (12)0.0717 (15)0.0011 (10)0.0036 (12)0.0033 (10)
C100.0712 (15)0.0511 (14)0.0688 (15)0.0082 (11)0.0046 (12)0.0065 (11)
C110.0697 (14)0.0531 (14)0.0540 (13)0.0034 (11)0.0085 (11)0.0006 (10)
C120.0547 (11)0.0431 (11)0.0496 (11)0.0034 (9)0.0000 (9)0.0013 (9)
C130.0587 (12)0.0416 (11)0.0405 (10)0.0067 (9)0.0041 (8)0.0005 (8)
C140.0579 (13)0.0554 (13)0.0543 (12)0.0036 (10)0.0004 (10)0.0017 (10)
C150.0632 (14)0.0579 (14)0.0606 (13)0.0114 (11)0.0123 (11)0.0004 (11)
C160.0848 (17)0.0479 (13)0.0468 (12)0.0102 (11)0.0128 (11)0.0002 (9)
C170.0772 (16)0.0525 (13)0.0458 (12)0.0007 (11)0.0028 (11)0.0061 (10)
C180.0587 (12)0.0504 (13)0.0512 (12)0.0028 (10)0.0015 (10)0.0019 (10)
C190.096 (2)0.0680 (17)0.0518 (14)0.0063 (14)0.0078 (13)0.0073 (12)
C200.123 (3)0.083 (2)0.0659 (18)0.0031 (18)0.0312 (17)0.0208 (15)
N10.0608 (11)0.0419 (10)0.0472 (10)0.0001 (8)0.0076 (8)0.0047 (7)
N20.157 (3)0.102 (2)0.0629 (15)0.021 (2)0.0350 (17)0.0106 (15)
N30.074 (5)0.200 (7)0.044 (5)0.028 (5)0.013 (3)0.012 (5)
N3A0.157 (8)0.172 (6)0.073 (3)0.066 (5)0.018 (4)0.039 (4)
N40.112 (3)0.176 (4)0.0636 (17)0.046 (3)0.0171 (17)0.027 (2)
N50.194 (5)0.181 (4)0.187 (5)0.079 (3)0.087 (4)0.105 (4)
Geometric parameters (Å, º) top
C1—N11.387 (3)C12—N11.395 (3)
C1—C21.389 (3)C13—C181.380 (3)
C1—C61.411 (3)C13—C141.382 (3)
C2—C31.368 (3)C13—N11.427 (3)
C2—H20.9300C14—C151.386 (3)
C3—C41.396 (3)C14—H140.9300
C3—H30.9300C15—C161.377 (4)
C4—C51.389 (3)C15—H150.9300
C4—C191.439 (3)C16—C171.385 (4)
C5—C61.387 (3)C16—C201.505 (3)
C5—H50.9300C17—C181.385 (3)
C6—C71.439 (3)C17—H170.9300
C7—C81.397 (3)C18—H180.9300
C7—C121.401 (3)C19—N21.137 (4)
C8—C91.378 (3)C20—N3A1.397 (8)
C8—H80.9300C20—N31.483 (11)
C9—C101.387 (4)C20—H20A0.9700
C9—H90.9300C20—H20B0.9700
C10—C111.385 (4)N3—N41.237 (14)
C10—H100.9300N3A—N41.1513 (10)
C11—C121.389 (3)N4—N51.163 (7)
C11—H110.9300
N1—C1—C2129.68 (19)C18—C13—C14120.1 (2)
N1—C1—C6108.53 (18)C18—C13—N1120.60 (19)
C2—C1—C6121.78 (19)C14—C13—N1119.3 (2)
C3—C2—C1118.0 (2)C13—C14—C15119.5 (2)
C3—C2—H2121.0C13—C14—H14120.3
C1—C2—H2121.0C15—C14—H14120.3
C2—C3—C4121.2 (2)C16—C15—C14121.2 (2)
C2—C3—H3119.4C16—C15—H15119.4
C4—C3—H3119.4C14—C15—H15119.4
C5—C4—C3120.9 (2)C15—C16—C17118.6 (2)
C5—C4—C19119.2 (2)C15—C16—C20121.1 (3)
C3—C4—C19119.9 (2)C17—C16—C20120.3 (3)
C6—C5—C4118.9 (2)C16—C17—C18120.9 (2)
C6—C5—H5120.6C16—C17—H17119.5
C4—C5—H5120.6C18—C17—H17119.5
C5—C6—C1119.2 (2)C13—C18—C17119.6 (2)
C5—C6—C7133.7 (2)C13—C18—H18120.2
C1—C6—C7107.10 (18)C17—C18—H18120.2
C8—C7—C12119.5 (2)N2—C19—C4179.6 (4)
C8—C7—C6133.7 (2)N3A—C20—C16117.7 (3)
C12—C7—C6106.80 (19)N3—C20—C16109.6 (6)
C9—C8—C7118.8 (2)N3A—C20—H20A107.9
C9—C8—H8120.6N3—C20—H20A82.6
C7—C8—H8120.6C16—C20—H20A107.9
C8—C9—C10120.8 (2)N3A—C20—H20B107.9
C8—C9—H9119.6N3—C20—H20B135.8
C10—C9—H9119.6C16—C20—H20B107.9
C11—C10—C9121.8 (2)H20A—C20—H20B107.2
C11—C10—H10119.1C1—N1—C12108.59 (17)
C9—C10—H10119.1C1—N1—C13125.89 (18)
C10—C11—C12117.1 (2)C12—N1—C13125.34 (18)
C10—C11—H11121.4N4—N3—C20110.4 (7)
C12—C11—H11121.4N4—N3A—C20122.6 (6)
C11—C12—N1129.1 (2)N3A—N4—N5167.6 (8)
C11—C12—C7121.9 (2)N5—N4—N3153.5 (8)
N1—C12—C7108.97 (19)
N1—C1—C2—C3179.5 (2)C14—C15—C16—C170.5 (4)
C6—C1—C2—C30.7 (3)C14—C15—C16—C20179.1 (2)
C1—C2—C3—C41.1 (4)C15—C16—C17—C180.1 (4)
C2—C3—C4—C50.5 (4)C20—C16—C17—C18178.4 (2)
C2—C3—C4—C19178.9 (2)C14—C13—C18—C170.4 (3)
C3—C4—C5—C60.6 (3)N1—C13—C18—C17179.3 (2)
C19—C4—C5—C6180.0 (2)C16—C17—C18—C130.2 (3)
C4—C5—C6—C11.0 (3)C15—C16—C20—N3A103.0 (8)
C4—C5—C6—C7179.6 (2)C17—C16—C20—N3A75.6 (8)
N1—C1—C6—C5178.63 (18)C15—C16—C20—N369.1 (6)
C2—C1—C6—C50.4 (3)C17—C16—C20—N3109.5 (6)
N1—C1—C6—C70.9 (2)C2—C1—N1—C12180.0 (2)
C2—C1—C6—C7179.95 (19)C6—C1—N1—C121.1 (2)
C5—C6—C7—C83.3 (4)C2—C1—N1—C134.8 (4)
C1—C6—C7—C8177.3 (2)C6—C1—N1—C13174.15 (19)
C5—C6—C7—C12179.1 (2)C11—C12—N1—C1176.2 (2)
C1—C6—C7—C120.4 (2)C7—C12—N1—C10.9 (2)
C12—C7—C8—C90.5 (3)C11—C12—N1—C138.5 (4)
C6—C7—C8—C9176.9 (2)C7—C12—N1—C13174.42 (19)
C7—C8—C9—C100.6 (4)C18—C13—N1—C157.2 (3)
C8—C9—C10—C111.1 (4)C14—C13—N1—C1123.1 (2)
C9—C10—C11—C120.6 (4)C18—C13—N1—C12128.3 (2)
C10—C11—C12—N1177.2 (2)C14—C13—N1—C1251.3 (3)
C10—C11—C12—C70.5 (4)N3A—C20—N3—N450.2 (7)
C8—C7—C12—C111.0 (3)C16—C20—N3—N461.0 (11)
C6—C7—C12—C11177.0 (2)N3—C20—N3A—N466.7 (13)
C8—C7—C12—N1178.34 (19)C16—C20—N3A—N416.2 (17)
C6—C7—C12—N10.3 (2)C20—N3A—N4—N5118 (3)
C18—C13—C14—C151.0 (3)C20—N3A—N4—N368.5 (11)
N1—C13—C14—C15178.6 (2)C20—N3—N4—N3A51.9 (9)
C13—C14—C15—C161.1 (4)C20—N3—N4—N5131.1 (12)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg3i0.932.913.673 (2)140
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg3i0.932.913.673 (2)140
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

CR acknowledge AMET University management, India, for their kind support.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.  Web of Science CrossRef CAS Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamathilagam, C., Venkatesan, N., Rajakumar, P., Umarani, P. R. & Manivannan, V. (2011). Acta Cryst. E67, o2796.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVelmurugan, R., Sekar, M., Chandramohan, A., Ramesh, P. & Ponnuswamy, M. N. (2010). Acta Cryst. E66, o2965.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds