organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Carb­­oxy­naphthalen-2-yl acetate monohydrate

aDepto. de Química – Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: bruno.souza@ufsc.br

(Received 2 December 2013; accepted 20 December 2013; online 4 January 2014)

In the title compound, C13H10O4·H2O, both the carboxylic acid [Car—Car—C—O = −121.1 (2)°, where ar = aromatic] and the ester [Car—Car—O—C = −104.4 (3)°] groups lie out of the mean plane of the conjugated aromatic system. In the crystal, the organic mol­ecule is hydrogen bonded to water mol­ecules through the ester and carb­oxy moieties, forming chains along the a-axis direction. The methyl H atoms of the acet­oxy group are disordered over two equally occupied sites.

Related literature

For the synthesis, see: Chattaway (1931[Chattaway, F. D. (1931). J. Chem. Soc. pp. 495-2496.]). For related structures, see: Souza et al. (2007[Souza, B. S., Bortoluzzi, A. J. & Nome, F. (2007). Acta Cryst. E63, o4523.], 2010[Souza, B. S., Vitto, R., Nome, F., Kirby, A. J. & Bortoluzzi, A. J. (2010). Acta Cryst. E66, o2848.]); Fitzgerald & Gerkin (1993[Fitzgerald, L. J. & Gerkin, R. E. (1993). Acta Cryst. C49, 1952-1958.]). For effects of the spatial relationship between reacting groups on the mechanism and speed of intra­molecular reactions, see: Orth et al. (2010[Orth, E. S., Brandão, T. A. S., Souza, B. S., Pliego, J. R., Vaz, B. G., Eberlin, M. N., Kirby, A. J. & Nome, F. (2010). J. Am. Chem. Soc. 132, 8513-8523.]). For hydrolysis mechanisms, see: Souza & Nome (2010[Souza, B. S. & Nome, F. (2010). J. Org. Chem. 75, 7186-7193.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O4·H2O

  • Mr = 248.23

  • Monoclinic, P 21 /n

  • a = 9.0539 (4) Å

  • b = 11.6668 (6) Å

  • c = 11.8297 (19) Å

  • β = 94.863 (10)°

  • V = 1245.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.43 × 0.33 × 0.26 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2405 measured reflections

  • 2294 independent reflections

  • 1298 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.125

  • S = 1.05

  • 2294 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1W 0.96 (4) 1.64 (4) 2.585 (3) 167 (3)
O1W—H1WA⋯O2i 0.91 (4) 1.81 (4) 2.697 (3) 165 (3)
O1W—H1WB⋯O4ii 0.87 (4) 1.93 (4) 2.754 (3) 158 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996[Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

It has been extensively shown that the spatial relationship between reacting groups have drastic effects on the mechanism and speed of intramolecular reactions (Orth et al., 2010). Recently, we have reported the structure of 2-carboxy-1-naphtyl acetate (Souza et al., 2007) and 3-acetoxy-2-naphthoic acid (Souza et al., 2010), constitutional isomers of the title compound. In a detailed experimental and theoretical investigation, it has been shown that although 2-carboxy-1-naphthyl acetate and 3-acetoxy-2-naphthoic acid show similar structures, they display very different hydrolysis mechanisms (Souza & Nome, 2010). In the current report, we show the crystal structure of 1-carboxy-2-naphthyl acetate (I) which may be a useful molecule for further investigations related to proximity and orientation effects.

A projection of the crystal structure of (I) is shown in Fig. 1. The carboxy group lies out of the mean aromatic plane, with a C1—C2—C13—O3 torsion angle of -121.1 (2)°, while in the structure of 1-naphthoic acid the equivalent torsion is 7.73° (Fitzgerald & Gerkin, 1993). Similarly, the acetyl group lies almost perpendicular to the aromatic ring, with C2—C1—O1—C11 tosrion angle of -104.4 (3)°. The organic fragment is hydrogen bonded to water molecules with interactions centered in both the COOH group and the acetyl group forming one-dimensional polymeric structure parallel to crystallographic a axis (Fig. 2).

Related literature top

For the synthesis, see: Chattaway (1931). For related structures, see: Souza et al. (2007, 2010); Fitzgerald & Gerkin (1993). For effects of the spatial relationship between reacting groups on the mechanism and speed of intramolecular reactions, see: Orth et al. (2010). For hydrolysis mechanisms, see: Souza & Nome (2010).

Experimental top

The title compound was prepared by following the procedure reported in the literature (Chattaway, 1931). In an Erlenmeyr flask containing a magnetic bar, 100 ml of water, 1.40 g of KOH and 2.24 g of 2-hydroxy-1-naphthoic acid were dissolved. The liquid was cooled and mixed with crushed ice. Under vigorous mixing, 1.40 ml of acetic anhydride was quickly added, forming a white precipitate. The reaction was allowed to warm to room temperature, acidified with aqueous HCl, and the white material was filtered. After recrystallization in aqueous ethanol a white powder that melts at 375–376 K was obtained. Crystals suitable for X-ray diffraction were obtained by dissolving about 10 mg of the as prepared material in 5 ml of CHCl3 in a 10 ml glass vial and the flask was kept in a saturated petroleum ether atmosphere at 293 K.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed at their idealized positions with distances of 0.93 Å for C—HAr and 0.96 Å for CH3 group. Their Ueq were fixed at 1.2 and 1.5 times Uiso of the preceding atom for aromatic and methyl group, respectively. H atoms of the methyl group were added as idealized disordered over two positions. The hydrogen atoms of the acid group and water molecule were located from the Fourier difference map and treated as free atoms.

Structure description top

It has been extensively shown that the spatial relationship between reacting groups have drastic effects on the mechanism and speed of intramolecular reactions (Orth et al., 2010). Recently, we have reported the structure of 2-carboxy-1-naphtyl acetate (Souza et al., 2007) and 3-acetoxy-2-naphthoic acid (Souza et al., 2010), constitutional isomers of the title compound. In a detailed experimental and theoretical investigation, it has been shown that although 2-carboxy-1-naphthyl acetate and 3-acetoxy-2-naphthoic acid show similar structures, they display very different hydrolysis mechanisms (Souza & Nome, 2010). In the current report, we show the crystal structure of 1-carboxy-2-naphthyl acetate (I) which may be a useful molecule for further investigations related to proximity and orientation effects.

A projection of the crystal structure of (I) is shown in Fig. 1. The carboxy group lies out of the mean aromatic plane, with a C1—C2—C13—O3 torsion angle of -121.1 (2)°, while in the structure of 1-naphthoic acid the equivalent torsion is 7.73° (Fitzgerald & Gerkin, 1993). Similarly, the acetyl group lies almost perpendicular to the aromatic ring, with C2—C1—O1—C11 tosrion angle of -104.4 (3)°. The organic fragment is hydrogen bonded to water molecules with interactions centered in both the COOH group and the acetyl group forming one-dimensional polymeric structure parallel to crystallographic a axis (Fig. 2).

For the synthesis, see: Chattaway (1931). For related structures, see: Souza et al. (2007, 2010); Fitzgerald & Gerkin (1993). For effects of the spatial relationship between reacting groups on the mechanism and speed of intramolecular reactions, see: Orth et al. (2010). For hydrolysis mechanisms, see: Souza & Nome (2010).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling scheme. Displacement ellipsoids are shown at the 40% probability level.
[Figure 2] Fig. 2. One-dimensional polymer parallel to a axis formed by hydrogen bonds.
1-Carboxynaphthalen-2-yl acetate monohydrate top
Crystal data top
C13H10O4·H2OF(000) = 520
Mr = 248.23Dx = 1.324 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0539 (4) ÅCell parameters from 25 reflections
b = 11.6668 (6) Åθ = 6.9–15.5°
c = 11.8297 (19) ŵ = 0.10 mm1
β = 94.863 (10)°T = 293 K
V = 1245.1 (2) Å3Irregular block, colorless
Z = 40.43 × 0.33 × 0.26 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
θmax = 25.5°, θmin = 2.5°
Radiation source: fine-focus sealed tubeh = 1010
ω–2θ scansk = 140
2405 measured reflectionsl = 140
2294 independent reflections3 standard reflections every 200 reflections
1298 reflections with I > 2σ(I) intensity decay: 1%
Rint = 0.021
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.2858P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2294 reflectionsΔρmax = 0.15 e Å3
175 parametersΔρmin = 0.12 e Å3
Crystal data top
C13H10O4·H2OV = 1245.1 (2) Å3
Mr = 248.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0539 (4) ŵ = 0.10 mm1
b = 11.6668 (6) ÅT = 293 K
c = 11.8297 (19) Å0.43 × 0.33 × 0.26 mm
β = 94.863 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.021
2405 measured reflections3 standard reflections every 200 reflections
2294 independent reflections intensity decay: 1%
1298 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
2294 reflectionsΔρmin = 0.12 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0923 (3)0.2036 (2)0.23934 (19)0.0595 (6)
C20.1906 (2)0.12872 (19)0.19971 (18)0.0539 (6)
C30.1849 (2)0.1063 (2)0.08057 (18)0.0551 (6)
C40.2802 (3)0.0283 (2)0.0315 (2)0.0692 (7)
H40.35200.01050.07750.083*
C50.2677 (3)0.0094 (3)0.0827 (2)0.0823 (8)
H50.33190.04180.11360.099*
C60.1608 (4)0.0655 (3)0.1536 (2)0.0860 (9)
H60.15390.05180.23130.103*
C70.0673 (3)0.1397 (3)0.1098 (2)0.0798 (8)
H70.00430.17650.15780.096*
C80.0757 (3)0.1627 (2)0.0079 (2)0.0623 (7)
C90.0210 (3)0.2410 (2)0.0553 (2)0.0756 (8)
H90.09150.27940.00760.091*
C100.0136 (3)0.2617 (2)0.1685 (2)0.0725 (8)
H100.07790.31360.19830.087*
C110.0021 (3)0.1791 (2)0.4176 (2)0.0693 (7)
C120.0281 (3)0.2029 (3)0.5404 (2)0.0893 (9)
H12A0.11430.25040.55410.134*0.5
H12B0.04330.13190.58090.134*0.5
H12C0.05640.24160.56600.134*0.5
H12D0.04680.16560.57990.134*0.5
H12E0.02410.28400.55310.134*0.5
H12F0.12390.17430.56800.134*0.5
C130.3018 (3)0.0725 (2)0.2822 (2)0.0618 (7)
O10.10370 (18)0.22872 (15)0.35630 (13)0.0694 (5)
O20.0957 (2)0.1226 (2)0.37330 (17)0.1085 (8)
O1W0.6442 (2)0.0245 (2)0.4136 (2)0.0825 (6)
O30.4388 (2)0.09187 (19)0.26311 (16)0.0817 (6)
O40.2668 (2)0.0182 (2)0.36196 (17)0.1059 (8)
H1WA0.727 (4)0.068 (3)0.407 (3)0.118 (12)*
H1WB0.647 (4)0.012 (3)0.486 (3)0.127 (14)*
H30.504 (4)0.063 (3)0.325 (3)0.141 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0575 (15)0.0678 (17)0.0537 (14)0.0080 (13)0.0062 (12)0.0035 (12)
C20.0487 (13)0.0602 (15)0.0528 (14)0.0071 (12)0.0043 (11)0.0028 (11)
C30.0535 (14)0.0590 (15)0.0530 (14)0.0050 (12)0.0053 (11)0.0028 (11)
C40.0688 (17)0.0746 (18)0.0646 (17)0.0084 (14)0.0089 (13)0.0004 (13)
C50.098 (2)0.084 (2)0.0668 (19)0.0066 (17)0.0193 (16)0.0065 (16)
C60.112 (3)0.096 (2)0.0515 (16)0.001 (2)0.0101 (17)0.0051 (16)
C70.091 (2)0.091 (2)0.0554 (16)0.0025 (17)0.0053 (14)0.0094 (15)
C80.0632 (16)0.0653 (17)0.0583 (15)0.0013 (13)0.0042 (12)0.0086 (12)
C90.0721 (18)0.081 (2)0.0727 (18)0.0140 (15)0.0005 (14)0.0116 (15)
C100.0676 (18)0.0748 (19)0.0755 (19)0.0118 (14)0.0079 (14)0.0024 (14)
C110.0619 (16)0.085 (2)0.0627 (16)0.0018 (15)0.0152 (14)0.0094 (14)
C120.100 (2)0.106 (2)0.0635 (17)0.0008 (19)0.0171 (16)0.0147 (16)
C130.0554 (16)0.0776 (18)0.0527 (14)0.0008 (13)0.0065 (11)0.0023 (13)
O10.0672 (11)0.0819 (12)0.0603 (11)0.0111 (9)0.0124 (9)0.0138 (9)
O20.0853 (14)0.162 (2)0.0806 (14)0.0544 (15)0.0216 (11)0.0253 (14)
O1W0.0611 (13)0.1075 (16)0.0773 (14)0.0148 (12)0.0026 (10)0.0156 (12)
O30.0539 (11)0.1188 (17)0.0716 (12)0.0007 (11)0.0001 (9)0.0153 (11)
O40.0798 (14)0.153 (2)0.0846 (15)0.0001 (14)0.0071 (11)0.0543 (14)
Geometric parameters (Å, º) top
C1—C21.359 (3)C9—H90.9300
C1—C101.394 (3)C10—H100.9300
C1—O11.409 (3)C11—O21.190 (3)
C2—C31.430 (3)C11—O11.349 (3)
C2—C131.493 (3)C11—C121.478 (3)
C3—C41.412 (3)C12—H12A0.9600
C3—C81.416 (3)C12—H12B0.9600
C4—C51.364 (4)C12—H12C0.9600
C4—H40.9300C12—H12D0.9600
C5—C61.390 (4)C12—H12E0.9600
C5—H50.9300C12—H12F0.9600
C6—C71.345 (4)C13—O41.201 (3)
C6—H60.9300C13—O31.299 (3)
C7—C81.414 (3)O1W—H1WA0.91 (4)
C7—H70.9300O1W—H1WB0.87 (4)
C8—C91.413 (4)O3—H30.96 (4)
C9—C101.357 (4)
C2—C1—C10122.9 (2)O2—C11—O1121.1 (2)
C2—C1—O1118.5 (2)O2—C11—C12126.0 (3)
C10—C1—O1118.6 (2)O1—C11—C12112.9 (2)
C1—C2—C3119.2 (2)C11—C12—H12A109.5
C1—C2—C13118.8 (2)C11—C12—H12B109.5
C3—C2—C13122.0 (2)H12A—C12—H12B109.5
C4—C3—C8118.0 (2)C11—C12—H12C109.5
C4—C3—C2123.4 (2)H12A—C12—H12C109.5
C8—C3—C2118.6 (2)H12B—C12—H12C109.5
C5—C4—C3120.6 (3)C11—C12—H12D109.5
C5—C4—H4119.7H12A—C12—H12D141.1
C3—C4—H4119.7H12B—C12—H12D56.3
C4—C5—C6121.1 (3)H12C—C12—H12D56.3
C4—C5—H5119.4C11—C12—H12E109.5
C6—C5—H5119.4H12A—C12—H12E56.3
C7—C6—C5119.9 (3)H12B—C12—H12E141.1
C7—C6—H6120.0H12C—C12—H12E56.3
C5—C6—H6120.0H12D—C12—H12E109.5
C6—C7—C8121.3 (3)C11—C12—H12F109.5
C6—C7—H7119.4H12A—C12—H12F56.3
C8—C7—H7119.4H12B—C12—H12F56.3
C9—C8—C7122.0 (2)H12C—C12—H12F141.1
C9—C8—C3119.0 (2)H12D—C12—H12F109.5
C7—C8—C3119.1 (2)H12E—C12—H12F109.5
C10—C9—C8121.7 (2)O4—C13—O3123.2 (2)
C10—C9—H9119.1O4—C13—C2122.5 (2)
C8—C9—H9119.1O3—C13—C2114.2 (2)
C9—C10—C1118.7 (2)C11—O1—C1116.24 (19)
C9—C10—H10120.6H1WA—O1W—H1WB103 (3)
C1—C10—H10120.6C13—O3—H3110 (2)
C10—C1—C2—C31.1 (3)C2—C3—C8—C91.5 (3)
O1—C1—C2—C3177.20 (19)C4—C3—C8—C70.5 (3)
C10—C1—C2—C13178.8 (2)C2—C3—C8—C7178.9 (2)
O1—C1—C2—C132.7 (3)C7—C8—C9—C10179.1 (3)
C1—C2—C3—C4178.7 (2)C3—C8—C9—C101.3 (4)
C13—C2—C3—C41.4 (3)C8—C9—C10—C10.1 (4)
C1—C2—C3—C80.4 (3)C2—C1—C10—C91.3 (4)
C13—C2—C3—C8179.7 (2)O1—C1—C10—C9177.5 (2)
C8—C3—C4—C50.7 (4)C1—C2—C13—O455.8 (4)
C2—C3—C4—C5179.1 (2)C3—C2—C13—O4124.3 (3)
C3—C4—C5—C60.5 (4)C1—C2—C13—O3121.1 (2)
C4—C5—C6—C70.1 (5)C3—C2—C13—O358.8 (3)
C5—C6—C7—C80.4 (5)O2—C11—O1—C13.9 (4)
C6—C7—C8—C9179.5 (3)C12—C11—O1—C1175.8 (2)
C6—C7—C8—C30.1 (4)C2—C1—O1—C11104.4 (3)
C4—C3—C8—C9179.9 (2)C10—C1—O1—C1179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1W0.96 (4)1.64 (4)2.585 (3)167 (3)
O1W—H1WA···O2i0.91 (4)1.81 (4)2.697 (3)165 (3)
O1W—H1WB···O4ii0.87 (4)1.93 (4)2.754 (3)158 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1W0.96 (4)1.64 (4)2.585 (3)167 (3)
O1W—H1WA···O2i0.91 (4)1.81 (4)2.697 (3)165 (3)
O1W—H1WB···O4ii0.87 (4)1.93 (4)2.754 (3)158 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), the Financiadora de Estudos e Projetos (FINEP) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChattaway, F. D. (1931). J. Chem. Soc. pp. 495–2496.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFitzgerald, L. J. & Gerkin, R. E. (1993). Acta Cryst. C49, 1952–1958.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOrth, E. S., Brandão, T. A. S., Souza, B. S., Pliego, J. R., Vaz, B. G., Eberlin, M. N., Kirby, A. J. & Nome, F. (2010). J. Am. Chem. Soc. 132, 8513–8523.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, B. S., Bortoluzzi, A. J. & Nome, F. (2007). Acta Cryst. E63, o4523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, B. S. & Nome, F. (2010). J. Org. Chem. 75, 7186–7193.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSouza, B. S., Vitto, R., Nome, F., Kirby, A. J. & Bortoluzzi, A. J. (2010). Acta Cryst. E66, o2848.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds