organic compounds
1-Carboxynaphthalen-2-yl acetate monohydrate
aDepto. de Química – Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: bruno.souza@ufsc.br
In the title compound, C13H10O4·H2O, both the carboxylic acid [Car—Car—C—O = −121.1 (2)°, where ar = aromatic] and the ester [Car—Car—O—C = −104.4 (3)°] groups lie out of the mean plane of the conjugated aromatic system. In the crystal, the organic molecule is hydrogen bonded to water molecules through the ester and carboxy moieties, forming chains along the a-axis direction. The methyl H atoms of the acetoxy group are disordered over two equally occupied sites.
CCDC reference: 978267
Related literature
For the synthesis, see: Chattaway (1931). For related structures, see: Souza et al. (2007, 2010); Fitzgerald & Gerkin (1993). For effects of the spatial relationship between reacting groups on the mechanism and speed of intramolecular reactions, see: Orth et al. (2010). For hydrolysis mechanisms, see: Souza & Nome (2010).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013.
Supporting information
CCDC reference: 978267
10.1107/S1600536813034338/hg5366sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813034338/hg5366Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813034338/hg5366Isup3.cdx
Supporting information file. DOI: 10.1107/S1600536813034338/hg5366Isup4.cml
The title compound was prepared by following the procedure reported in the literature (Chattaway, 1931). In an Erlenmeyr flask containing a magnetic bar, 100 ml of water, 1.40 g of KOH and 2.24 g of 2-hydroxy-1-naphthoic acid were dissolved. The liquid was cooled and mixed with crushed ice. Under vigorous mixing, 1.40 ml of acetic anhydride was quickly added, forming a white precipitate. The reaction was allowed to warm to room temperature, acidified with aqueous HCl, and the white material was filtered. After recrystallization in aqueous ethanol a white powder that melts at 375–376 K was obtained. Crystals suitable for X-ray diffraction were obtained by dissolving about 10 mg of the as prepared material in 5 ml of CHCl3 in a 10 ml glass vial and the flask was kept in a saturated petroleum ether atmosphere at 293 K.
All non-H atoms were refined with anisotropic displacement parameters. H atoms were placed at their idealized positions with distances of 0.93 Å for C—HAr and 0.96 Å for CH3 group. Their Ueq were fixed at 1.2 and 1.5 times Uiso of the preceding atom for aromatic and methyl group, respectively. H atoms of the methyl group were added as idealized disordered over two positions. The hydrogen atoms of the acid group and water molecule were located from the Fourier difference map and treated as free atoms.
It has been extensively shown that the spatial relationship between reacting groups have drastic effects on the mechanism and speed of intramolecular reactions (Orth et al., 2010). Recently, we have reported the structure of 2-carboxy-1-naphtyl acetate (Souza et al., 2007) and 3-acetoxy-2-naphthoic acid (Souza et al., 2010), constitutional isomers of the title compound. In a detailed experimental and theoretical investigation, it has been shown that although 2-carboxy-1-naphthyl acetate and 3-acetoxy-2-naphthoic acid show similar structures, they display very different hydrolysis mechanisms (Souza & Nome, 2010). In the current report, we show the
of 1-carboxy-2-naphthyl acetate (I) which may be a useful molecule for further investigations related to proximity and orientation effects.A projection of the
of (I) is shown in Fig. 1. The carboxy group lies out of the mean aromatic plane, with a C1—C2—C13—O3 torsion angle of -121.1 (2)°, while in the structure of 1-naphthoic acid the equivalent torsion is 7.73° (Fitzgerald & Gerkin, 1993). Similarly, the acetyl group lies almost perpendicular to the aromatic ring, with C2—C1—O1—C11 tosrion angle of -104.4 (3)°. The organic fragment is hydrogen bonded to water molecules with interactions centered in both the COOH group and the acetyl group forming one-dimensional polymeric structure parallel to crystallographic a axis (Fig. 2).For the synthesis, see: Chattaway (1931). For related structures, see: Souza et al. (2007, 2010); Fitzgerald & Gerkin (1993). For effects of the spatial relationship between reacting groups on the mechanism and speed of intramolecular reactions, see: Orth et al. (2010). For hydrolysis mechanisms, see: Souza & Nome (2010).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
SET4 in CAD-4 Software (Enraf–Nonius, 1989); data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with labeling scheme. Displacement ellipsoids are shown at the 40% probability level. | |
Fig. 2. One-dimensional polymer parallel to a axis formed by hydrogen bonds. |
C13H10O4·H2O | F(000) = 520 |
Mr = 248.23 | Dx = 1.324 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0539 (4) Å | Cell parameters from 25 reflections |
b = 11.6668 (6) Å | θ = 6.9–15.5° |
c = 11.8297 (19) Å | µ = 0.10 mm−1 |
β = 94.863 (10)° | T = 293 K |
V = 1245.1 (2) Å3 | Irregular block, colorless |
Z = 4 | 0.43 × 0.33 × 0.26 mm |
Enraf–Nonius CAD-4 diffractometer | θmax = 25.5°, θmin = 2.5° |
Radiation source: fine-focus sealed tube | h = −10→10 |
ω–2θ scans | k = −14→0 |
2405 measured reflections | l = −14→0 |
2294 independent reflections | 3 standard reflections every 200 reflections |
1298 reflections with I > 2σ(I) | intensity decay: 1% |
Rint = 0.021 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0419P)2 + 0.2858P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2294 reflections | Δρmax = 0.15 e Å−3 |
175 parameters | Δρmin = −0.12 e Å−3 |
C13H10O4·H2O | V = 1245.1 (2) Å3 |
Mr = 248.23 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.0539 (4) Å | µ = 0.10 mm−1 |
b = 11.6668 (6) Å | T = 293 K |
c = 11.8297 (19) Å | 0.43 × 0.33 × 0.26 mm |
β = 94.863 (10)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.021 |
2405 measured reflections | 3 standard reflections every 200 reflections |
2294 independent reflections | intensity decay: 1% |
1298 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.125 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.15 e Å−3 |
2294 reflections | Δρmin = −0.12 e Å−3 |
175 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.0923 (3) | 0.2036 (2) | 0.23934 (19) | 0.0595 (6) | |
C2 | 0.1906 (2) | 0.12872 (19) | 0.19971 (18) | 0.0539 (6) | |
C3 | 0.1849 (2) | 0.1063 (2) | 0.08057 (18) | 0.0551 (6) | |
C4 | 0.2802 (3) | 0.0283 (2) | 0.0315 (2) | 0.0692 (7) | |
H4 | 0.3520 | −0.0105 | 0.0775 | 0.083* | |
C5 | 0.2677 (3) | 0.0094 (3) | −0.0827 (2) | 0.0823 (8) | |
H5 | 0.3319 | −0.0418 | −0.1136 | 0.099* | |
C6 | 0.1608 (4) | 0.0655 (3) | −0.1536 (2) | 0.0860 (9) | |
H6 | 0.1539 | 0.0518 | −0.2313 | 0.103* | |
C7 | 0.0673 (3) | 0.1397 (3) | −0.1098 (2) | 0.0798 (8) | |
H7 | −0.0043 | 0.1765 | −0.1578 | 0.096* | |
C8 | 0.0757 (3) | 0.1627 (2) | 0.0079 (2) | 0.0623 (7) | |
C9 | −0.0210 (3) | 0.2410 (2) | 0.0553 (2) | 0.0756 (8) | |
H9 | −0.0915 | 0.2794 | 0.0076 | 0.091* | |
C10 | −0.0136 (3) | 0.2617 (2) | 0.1685 (2) | 0.0725 (8) | |
H10 | −0.0779 | 0.3136 | 0.1983 | 0.087* | |
C11 | 0.0021 (3) | 0.1791 (2) | 0.4176 (2) | 0.0693 (7) | |
C12 | 0.0281 (3) | 0.2029 (3) | 0.5404 (2) | 0.0893 (9) | |
H12A | 0.1143 | 0.2504 | 0.5541 | 0.134* | 0.5 |
H12B | 0.0433 | 0.1319 | 0.5809 | 0.134* | 0.5 |
H12C | −0.0564 | 0.2416 | 0.5660 | 0.134* | 0.5 |
H12D | −0.0468 | 0.1656 | 0.5799 | 0.134* | 0.5 |
H12E | 0.0241 | 0.2840 | 0.5531 | 0.134* | 0.5 |
H12F | 0.1239 | 0.1743 | 0.5680 | 0.134* | 0.5 |
C13 | 0.3018 (3) | 0.0725 (2) | 0.2822 (2) | 0.0618 (7) | |
O1 | 0.10370 (18) | 0.22872 (15) | 0.35630 (13) | 0.0694 (5) | |
O2 | −0.0957 (2) | 0.1226 (2) | 0.37330 (17) | 0.1085 (8) | |
O1W | 0.6442 (2) | 0.0245 (2) | 0.4136 (2) | 0.0825 (6) | |
O3 | 0.4388 (2) | 0.09187 (19) | 0.26311 (16) | 0.0817 (6) | |
O4 | 0.2668 (2) | 0.0182 (2) | 0.36196 (17) | 0.1059 (8) | |
H1WA | 0.727 (4) | 0.068 (3) | 0.407 (3) | 0.118 (12)* | |
H1WB | 0.647 (4) | 0.012 (3) | 0.486 (3) | 0.127 (14)* | |
H3 | 0.504 (4) | 0.063 (3) | 0.325 (3) | 0.141 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0575 (15) | 0.0678 (17) | 0.0537 (14) | −0.0080 (13) | 0.0062 (12) | −0.0035 (12) |
C2 | 0.0487 (13) | 0.0602 (15) | 0.0528 (14) | −0.0071 (12) | 0.0043 (11) | 0.0028 (11) |
C3 | 0.0535 (14) | 0.0590 (15) | 0.0530 (14) | −0.0050 (12) | 0.0053 (11) | 0.0028 (11) |
C4 | 0.0688 (17) | 0.0746 (18) | 0.0646 (17) | 0.0084 (14) | 0.0089 (13) | 0.0004 (13) |
C5 | 0.098 (2) | 0.084 (2) | 0.0668 (19) | 0.0066 (17) | 0.0193 (16) | −0.0065 (16) |
C6 | 0.112 (3) | 0.096 (2) | 0.0515 (16) | −0.001 (2) | 0.0101 (17) | −0.0051 (16) |
C7 | 0.091 (2) | 0.091 (2) | 0.0554 (16) | −0.0025 (17) | −0.0053 (14) | 0.0094 (15) |
C8 | 0.0632 (16) | 0.0653 (17) | 0.0583 (15) | −0.0013 (13) | 0.0042 (12) | 0.0086 (12) |
C9 | 0.0721 (18) | 0.081 (2) | 0.0727 (18) | 0.0140 (15) | −0.0005 (14) | 0.0116 (15) |
C10 | 0.0676 (18) | 0.0748 (19) | 0.0755 (19) | 0.0118 (14) | 0.0079 (14) | −0.0024 (14) |
C11 | 0.0619 (16) | 0.085 (2) | 0.0627 (16) | −0.0018 (15) | 0.0152 (14) | −0.0094 (14) |
C12 | 0.100 (2) | 0.106 (2) | 0.0635 (17) | −0.0008 (19) | 0.0171 (16) | −0.0147 (16) |
C13 | 0.0554 (16) | 0.0776 (18) | 0.0527 (14) | 0.0008 (13) | 0.0065 (11) | 0.0023 (13) |
O1 | 0.0672 (11) | 0.0819 (12) | 0.0603 (11) | −0.0111 (9) | 0.0124 (9) | −0.0138 (9) |
O2 | 0.0853 (14) | 0.162 (2) | 0.0806 (14) | −0.0544 (15) | 0.0216 (11) | −0.0253 (14) |
O1W | 0.0611 (13) | 0.1075 (16) | 0.0773 (14) | −0.0148 (12) | −0.0026 (10) | 0.0156 (12) |
O3 | 0.0539 (11) | 0.1188 (17) | 0.0716 (12) | −0.0007 (11) | −0.0001 (9) | 0.0153 (11) |
O4 | 0.0798 (14) | 0.153 (2) | 0.0846 (15) | −0.0001 (14) | 0.0071 (11) | 0.0543 (14) |
C1—C2 | 1.359 (3) | C9—H9 | 0.9300 |
C1—C10 | 1.394 (3) | C10—H10 | 0.9300 |
C1—O1 | 1.409 (3) | C11—O2 | 1.190 (3) |
C2—C3 | 1.430 (3) | C11—O1 | 1.349 (3) |
C2—C13 | 1.493 (3) | C11—C12 | 1.478 (3) |
C3—C4 | 1.412 (3) | C12—H12A | 0.9600 |
C3—C8 | 1.416 (3) | C12—H12B | 0.9600 |
C4—C5 | 1.364 (4) | C12—H12C | 0.9600 |
C4—H4 | 0.9300 | C12—H12D | 0.9600 |
C5—C6 | 1.390 (4) | C12—H12E | 0.9600 |
C5—H5 | 0.9300 | C12—H12F | 0.9600 |
C6—C7 | 1.345 (4) | C13—O4 | 1.201 (3) |
C6—H6 | 0.9300 | C13—O3 | 1.299 (3) |
C7—C8 | 1.414 (3) | O1W—H1WA | 0.91 (4) |
C7—H7 | 0.9300 | O1W—H1WB | 0.87 (4) |
C8—C9 | 1.413 (4) | O3—H3 | 0.96 (4) |
C9—C10 | 1.357 (4) | ||
C2—C1—C10 | 122.9 (2) | O2—C11—O1 | 121.1 (2) |
C2—C1—O1 | 118.5 (2) | O2—C11—C12 | 126.0 (3) |
C10—C1—O1 | 118.6 (2) | O1—C11—C12 | 112.9 (2) |
C1—C2—C3 | 119.2 (2) | C11—C12—H12A | 109.5 |
C1—C2—C13 | 118.8 (2) | C11—C12—H12B | 109.5 |
C3—C2—C13 | 122.0 (2) | H12A—C12—H12B | 109.5 |
C4—C3—C8 | 118.0 (2) | C11—C12—H12C | 109.5 |
C4—C3—C2 | 123.4 (2) | H12A—C12—H12C | 109.5 |
C8—C3—C2 | 118.6 (2) | H12B—C12—H12C | 109.5 |
C5—C4—C3 | 120.6 (3) | C11—C12—H12D | 109.5 |
C5—C4—H4 | 119.7 | H12A—C12—H12D | 141.1 |
C3—C4—H4 | 119.7 | H12B—C12—H12D | 56.3 |
C4—C5—C6 | 121.1 (3) | H12C—C12—H12D | 56.3 |
C4—C5—H5 | 119.4 | C11—C12—H12E | 109.5 |
C6—C5—H5 | 119.4 | H12A—C12—H12E | 56.3 |
C7—C6—C5 | 119.9 (3) | H12B—C12—H12E | 141.1 |
C7—C6—H6 | 120.0 | H12C—C12—H12E | 56.3 |
C5—C6—H6 | 120.0 | H12D—C12—H12E | 109.5 |
C6—C7—C8 | 121.3 (3) | C11—C12—H12F | 109.5 |
C6—C7—H7 | 119.4 | H12A—C12—H12F | 56.3 |
C8—C7—H7 | 119.4 | H12B—C12—H12F | 56.3 |
C9—C8—C7 | 122.0 (2) | H12C—C12—H12F | 141.1 |
C9—C8—C3 | 119.0 (2) | H12D—C12—H12F | 109.5 |
C7—C8—C3 | 119.1 (2) | H12E—C12—H12F | 109.5 |
C10—C9—C8 | 121.7 (2) | O4—C13—O3 | 123.2 (2) |
C10—C9—H9 | 119.1 | O4—C13—C2 | 122.5 (2) |
C8—C9—H9 | 119.1 | O3—C13—C2 | 114.2 (2) |
C9—C10—C1 | 118.7 (2) | C11—O1—C1 | 116.24 (19) |
C9—C10—H10 | 120.6 | H1WA—O1W—H1WB | 103 (3) |
C1—C10—H10 | 120.6 | C13—O3—H3 | 110 (2) |
C10—C1—C2—C3 | −1.1 (3) | C2—C3—C8—C9 | 1.5 (3) |
O1—C1—C2—C3 | −177.20 (19) | C4—C3—C8—C7 | −0.5 (3) |
C10—C1—C2—C13 | 178.8 (2) | C2—C3—C8—C7 | −178.9 (2) |
O1—C1—C2—C13 | 2.7 (3) | C7—C8—C9—C10 | 179.1 (3) |
C1—C2—C3—C4 | −178.7 (2) | C3—C8—C9—C10 | −1.3 (4) |
C13—C2—C3—C4 | 1.4 (3) | C8—C9—C10—C1 | −0.1 (4) |
C1—C2—C3—C8 | −0.4 (3) | C2—C1—C10—C9 | 1.3 (4) |
C13—C2—C3—C8 | 179.7 (2) | O1—C1—C10—C9 | 177.5 (2) |
C8—C3—C4—C5 | 0.7 (4) | C1—C2—C13—O4 | 55.8 (4) |
C2—C3—C4—C5 | 179.1 (2) | C3—C2—C13—O4 | −124.3 (3) |
C3—C4—C5—C6 | −0.5 (4) | C1—C2—C13—O3 | −121.1 (2) |
C4—C5—C6—C7 | −0.1 (5) | C3—C2—C13—O3 | 58.8 (3) |
C5—C6—C7—C8 | 0.4 (5) | O2—C11—O1—C1 | −3.9 (4) |
C6—C7—C8—C9 | 179.5 (3) | C12—C11—O1—C1 | 175.8 (2) |
C6—C7—C8—C3 | −0.1 (4) | C2—C1—O1—C11 | −104.4 (3) |
C4—C3—C8—C9 | 179.9 (2) | C10—C1—O1—C11 | 79.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1W | 0.96 (4) | 1.64 (4) | 2.585 (3) | 167 (3) |
O1W—H1WA···O2i | 0.91 (4) | 1.81 (4) | 2.697 (3) | 165 (3) |
O1W—H1WB···O4ii | 0.87 (4) | 1.93 (4) | 2.754 (3) | 158 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1W | 0.96 (4) | 1.64 (4) | 2.585 (3) | 167 (3) |
O1W—H1WA···O2i | 0.91 (4) | 1.81 (4) | 2.697 (3) | 165 (3) |
O1W—H1WB···O4ii | 0.87 (4) | 1.93 (4) | 2.754 (3) | 158 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1. |
Acknowledgements
The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), the Financiadora de Estudos e Projetos (FINEP) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chattaway, F. D. (1931). J. Chem. Soc. pp. 495–2496. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Fitzgerald, L. J. & Gerkin, R. E. (1993). Acta Cryst. C49, 1952–1958. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Orth, E. S., Brandão, T. A. S., Souza, B. S., Pliego, J. R., Vaz, B. G., Eberlin, M. N., Kirby, A. J. & Nome, F. (2010). J. Am. Chem. Soc. 132, 8513–8523. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Souza, B. S., Bortoluzzi, A. J. & Nome, F. (2007). Acta Cryst. E63, o4523. Web of Science CSD CrossRef IUCr Journals Google Scholar
Souza, B. S. & Nome, F. (2010). J. Org. Chem. 75, 7186–7193. Web of Science CrossRef CAS PubMed Google Scholar
Souza, B. S., Vitto, R., Nome, F., Kirby, A. J. & Bortoluzzi, A. J. (2010). Acta Cryst. E66, o2848. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
It has been extensively shown that the spatial relationship between reacting groups have drastic effects on the mechanism and speed of intramolecular reactions (Orth et al., 2010). Recently, we have reported the structure of 2-carboxy-1-naphtyl acetate (Souza et al., 2007) and 3-acetoxy-2-naphthoic acid (Souza et al., 2010), constitutional isomers of the title compound. In a detailed experimental and theoretical investigation, it has been shown that although 2-carboxy-1-naphthyl acetate and 3-acetoxy-2-naphthoic acid show similar structures, they display very different hydrolysis mechanisms (Souza & Nome, 2010). In the current report, we show the crystal structure of 1-carboxy-2-naphthyl acetate (I) which may be a useful molecule for further investigations related to proximity and orientation effects.
A projection of the crystal structure of (I) is shown in Fig. 1. The carboxy group lies out of the mean aromatic plane, with a C1—C2—C13—O3 torsion angle of -121.1 (2)°, while in the structure of 1-naphthoic acid the equivalent torsion is 7.73° (Fitzgerald & Gerkin, 1993). Similarly, the acetyl group lies almost perpendicular to the aromatic ring, with C2—C1—O1—C11 tosrion angle of -104.4 (3)°. The organic fragment is hydrogen bonded to water molecules with interactions centered in both the COOH group and the acetyl group forming one-dimensional polymeric structure parallel to crystallographic a axis (Fig. 2).