organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[6-(1H-Indol-1-yl)pyridin-2-yl]-1H-indole-3-carbaldehyde

aDepartment of Physics, AMET University, Kanathur, Chennai 603 112, India, bPrincipal, Kundavai Nachiyar Govt College for Women, Thanjavur 613 007, India, cDepartment of Organic Chemistry, University of Madras, Guindy campus, Chennai 600 025, India, dDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203, Tamil Nadu, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: phdguna@gmail.com

(Received 13 December 2013; accepted 20 December 2013; online 4 January 2014)

In the title compound, C22H15N3O, the dihedral angle between the two indole units is 33.72 (3)°. The mol­ecular structure features a weak intra­molecular C—H⋯N inter­action. In the crystal, weak C—H⋯O and C—H⋯π inter­actions, forming a two-dimensional network parallel to the bc plane.

Related literature

For the biological activity of indole derivatives, see: Macor et al. (1992[Macor, J. E., Fox, C. B., Johnson, C., Koe, B. K., Lebel, L. A. & Zorn, S. H. (1992). J. Med. Chem. 35, 3625-3632.]); Andreani et al. (2001[Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167-174.]); Quetin-Leclercq (1994[Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.]); Mukhopadhyay et al. (1981[Mukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696-700.]); Singh et al. (2000[Singh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173-176.]). For related structures see: Dileep et al. (2012[Dileep, C. S., Abdoh, M. M. M., Chakravarthy, M. P., Mohana, K. N. & Sridhar, M. A. (2012). Acta Cryst. E68, o3135.]); Wu et al. (2012[Wu, Y., Ren, W., Wang, Q. & He, G. (2012). Acta Cryst. E68, o1151.])

[Scheme 1]

Experimental

Crystal data
  • C22H15N3O

  • Mr = 337.37

  • Orthorhombic, P n n a

  • a = 18.2208 (7) Å

  • b = 15.7672 (9) Å

  • c = 11.7034 (7) Å

  • V = 3362.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.987

  • 11189 measured reflections

  • 3521 independent reflections

  • 2072 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.00

  • 3521 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C16–C21 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.50 3.227 (3) 135
C12—H12⋯N1 0.93 2.41 2.931 (2) 116
C2—H2⋯Cg5ii 0.93 2.73 3.554 (2) 148
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of indole has been of increasing interest, since several compounds of this type possess diverse biological activities (Macor et al., 1992). These derivatives exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic and antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Dileep et al., 2012; Wu et al., 2012). The dihedral angle between the two indole moieties is 33.72 (3) °. The molecular structure is stabilized by weak intramolecular C—H···N interaction and the crystal packing is controlled by weak intermolecular C—H···O and C—H···π [C2—H2···Cg5(x, 1/2 - y, 1/2 - z) distance of 3.554 (2) Å, (Cg5 is the centroid of the ring defined by the atoms C16—C21)] interactions.

Related literature top

For the biological activity of indole derivatives, see: Macor et al. (1992); Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981); Singh et al. (2000). For related structures see: Dileep et al. (2012); Wu et al. (2012)

Experimental top

To a stirred solution of dimethylformamide (2.10g, 28.70 mmol) at 0°C, added phosphorous oxycholoride (1.10g, 7.17 mmol) drop wise under nitrogen atmosphere. 2,6-bis(N-indolyl)pyridine (1.0g, 3.23 mmol) in dimethylformamide was then added to the reaction at 0°C to 10°C. After the completion of addition, the reaction mixture was allow to attain room temperature and then stirred for additional one hour at 35°C. The reaction was then quenched by adding crushed ice (100 g) and further water (100 ml). Then the reaction mixture was then treated thrice with NaOH solution (1M). The reaction mixture was heated after adding one portion of NaOH solution and the rest of the two portions were added later with stirring. The reaction mixture was then kept in refrigerator overnight. The precipitate obtained was collected by filtration and then dissolved in chloroform (2 x 100 ml). The organic layer was then dried over (Na2SO4), filtered and solvent was evaporated under reduced pressure to give the residue which was then chromatographed over SiO2 using hexane: chloroform (1:4) as eluting solvent to give the mono aldehyde(27%) as a colourless solid and further elution with CHCl3: methanol (99:1) afforded the corresponding dialdehyde (55%).

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H.

Structure description top

The chemistry of indole has been of increasing interest, since several compounds of this type possess diverse biological activities (Macor et al., 1992). These derivatives exhibit antibacterial, antifungal (Singh et al., 2000) and antitumour activities (Andreani et al., 2001). Some of the indole alkaloids extracted from plants possess interesting cytotoxic and antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Dileep et al., 2012; Wu et al., 2012). The dihedral angle between the two indole moieties is 33.72 (3) °. The molecular structure is stabilized by weak intramolecular C—H···N interaction and the crystal packing is controlled by weak intermolecular C—H···O and C—H···π [C2—H2···Cg5(x, 1/2 - y, 1/2 - z) distance of 3.554 (2) Å, (Cg5 is the centroid of the ring defined by the atoms C16—C21)] interactions.

For the biological activity of indole derivatives, see: Macor et al. (1992); Andreani et al. (2001); Quetin-Leclercq (1994); Mukhopadhyay et al. (1981); Singh et al. (2000). For related structures see: Dileep et al. (2012); Wu et al. (2012)

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines.
1-[6-(1H-Indol-1-yl)pyridin-2-yl]-1H-indole-3-carbaldehyde top
Crystal data top
C22H15N3OF(000) = 1408
Mr = 337.37Dx = 1.333 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 3755 reflections
a = 18.2208 (7) Åθ = 2.0–26.6°
b = 15.7672 (9) ŵ = 0.08 mm1
c = 11.7034 (7) ÅT = 295 K
V = 3362.3 (3) Å3Block, colourless
Z = 80.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3521 independent reflections
Radiation source: fine-focus sealed tube2072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 0 pixels mm-1θmax = 26.7°, θmin = 2.1°
ω and φ scansh = 1422
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1913
Tmin = 0.980, Tmax = 0.987l = 1410
11189 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.3404P]
where P = (Fo2 + 2Fc2)/3
3521 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C22H15N3OV = 3362.3 (3) Å3
Mr = 337.37Z = 8
Orthorhombic, PnnaMo Kα radiation
a = 18.2208 (7) ŵ = 0.08 mm1
b = 15.7672 (9) ÅT = 295 K
c = 11.7034 (7) Å0.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3521 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2072 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.031
11189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
3521 reflectionsΔρmin = 0.16 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19452 (8)0.09535 (11)0.38032 (14)0.0407 (4)
C20.23265 (9)0.15297 (11)0.44461 (16)0.0493 (5)
H20.25990.19610.41090.059*
C30.22882 (10)0.14407 (12)0.56135 (16)0.0541 (5)
H30.25450.18120.60830.065*
C40.18729 (10)0.08067 (12)0.60890 (15)0.0506 (5)
H40.18400.07450.68770.061*
C50.15023 (8)0.02580 (10)0.53543 (14)0.0408 (4)
C60.10521 (10)0.06632 (14)0.69106 (16)0.0595 (5)
H60.13220.04130.74950.071*
C70.05930 (11)0.13186 (14)0.70475 (18)0.0658 (6)
H70.04950.15990.77300.079*
C80.02821 (9)0.15088 (12)0.59656 (16)0.0510 (5)
C90.02337 (10)0.21026 (13)0.55946 (19)0.0619 (6)
H90.04390.24840.61090.074*
C100.04334 (10)0.21191 (13)0.4474 (2)0.0639 (6)
H100.07710.25200.42220.077*
C110.01383 (10)0.15451 (13)0.37027 (18)0.0598 (5)
H110.02860.15650.29430.072*
C120.03711 (9)0.09435 (12)0.40377 (16)0.0500 (5)
H120.05640.05570.35180.060*
C130.05850 (9)0.09360 (10)0.51763 (15)0.0417 (4)
C140.13419 (11)0.07765 (11)0.19300 (16)0.0528 (5)
H140.08910.06040.22200.063*
C150.15005 (12)0.08533 (11)0.07958 (16)0.0579 (5)
C160.22504 (11)0.11196 (11)0.07240 (16)0.0530 (5)
C170.27264 (15)0.12907 (13)0.01922 (19)0.0745 (7)
H170.25660.12410.09430.089*
C180.34277 (16)0.15310 (15)0.0044 (2)0.0852 (8)
H180.37450.16510.05570.102*
C190.36810 (13)0.16008 (14)0.1154 (2)0.0807 (7)
H190.41640.17650.12830.097*
C200.32270 (11)0.14309 (12)0.20799 (19)0.0610 (5)
H200.33960.14700.28280.073*
C210.25168 (10)0.12027 (10)0.18389 (15)0.0489 (5)
C220.09838 (16)0.06891 (14)0.0091 (2)0.0804 (7)
H220.05180.05130.01290.096*
N10.15424 (7)0.03227 (8)0.42256 (11)0.0408 (4)
N20.10689 (7)0.04099 (9)0.57769 (11)0.0438 (4)
N30.19390 (8)0.09876 (9)0.25834 (12)0.0464 (4)
O10.10984 (12)0.07594 (11)0.11088 (14)0.1121 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0422 (9)0.0379 (10)0.0420 (10)0.0049 (8)0.0027 (8)0.0014 (8)
C20.0513 (11)0.0412 (10)0.0555 (12)0.0061 (9)0.0021 (9)0.0001 (9)
C30.0583 (12)0.0485 (11)0.0555 (12)0.0063 (10)0.0070 (9)0.0080 (10)
C40.0599 (11)0.0518 (12)0.0402 (11)0.0027 (10)0.0033 (9)0.0020 (9)
C50.0404 (9)0.0405 (10)0.0415 (10)0.0049 (8)0.0026 (8)0.0004 (8)
C60.0656 (12)0.0715 (14)0.0415 (11)0.0075 (11)0.0011 (9)0.0080 (10)
C70.0693 (13)0.0733 (15)0.0548 (13)0.0130 (12)0.0074 (10)0.0201 (11)
C80.0455 (10)0.0474 (11)0.0600 (12)0.0034 (9)0.0045 (9)0.0108 (10)
C90.0523 (12)0.0494 (13)0.0841 (16)0.0028 (10)0.0022 (11)0.0159 (11)
C100.0525 (12)0.0461 (13)0.0930 (18)0.0048 (10)0.0075 (12)0.0009 (12)
C110.0575 (12)0.0569 (13)0.0650 (13)0.0005 (11)0.0078 (10)0.0025 (11)
C120.0501 (10)0.0461 (11)0.0537 (12)0.0003 (9)0.0010 (9)0.0014 (9)
C130.0378 (9)0.0380 (10)0.0493 (11)0.0060 (8)0.0033 (8)0.0006 (9)
C140.0634 (12)0.0436 (11)0.0515 (12)0.0067 (10)0.0049 (10)0.0035 (9)
C150.0851 (15)0.0409 (11)0.0476 (12)0.0030 (11)0.0051 (11)0.0012 (9)
C160.0813 (14)0.0307 (10)0.0469 (12)0.0023 (10)0.0109 (10)0.0005 (9)
C170.117 (2)0.0508 (13)0.0559 (14)0.0038 (14)0.0237 (14)0.0006 (10)
C180.100 (2)0.0672 (16)0.088 (2)0.0025 (15)0.0469 (16)0.0001 (14)
C190.0740 (15)0.0641 (15)0.104 (2)0.0029 (12)0.0309 (15)0.0014 (14)
C200.0591 (12)0.0508 (12)0.0729 (14)0.0022 (10)0.0118 (11)0.0007 (10)
C210.0614 (12)0.0323 (10)0.0530 (12)0.0003 (9)0.0097 (10)0.0017 (9)
C220.125 (2)0.0581 (14)0.0584 (15)0.0025 (14)0.0222 (14)0.0043 (12)
N10.0427 (8)0.0375 (8)0.0422 (9)0.0005 (7)0.0031 (6)0.0023 (7)
N20.0475 (8)0.0438 (9)0.0400 (9)0.0009 (7)0.0039 (7)0.0025 (7)
N30.0538 (9)0.0405 (9)0.0448 (9)0.0051 (7)0.0049 (7)0.0043 (7)
O10.189 (2)0.0900 (13)0.0577 (12)0.0140 (13)0.0299 (12)0.0115 (9)
Geometric parameters (Å, º) top
C1—N11.331 (2)C11—H110.9300
C1—C21.369 (2)C12—C131.388 (2)
C1—N31.429 (2)C12—H120.9300
C2—C31.375 (2)C13—N21.400 (2)
C2—H20.9300C14—C151.364 (2)
C3—C41.372 (2)C14—N31.371 (2)
C3—H30.9300C14—H140.9300
C4—C51.394 (2)C15—C221.425 (3)
C4—H40.9300C15—C161.432 (3)
C5—N11.3269 (19)C16—C211.398 (2)
C5—N21.406 (2)C16—C171.405 (3)
C6—C71.339 (3)C17—C181.361 (3)
C6—N21.386 (2)C17—H170.9300
C6—H60.9300C18—C191.383 (3)
C7—C81.419 (3)C18—H180.9300
C7—H70.9300C19—C201.390 (3)
C8—C91.396 (3)C19—H190.9300
C8—C131.405 (2)C20—C211.372 (3)
C9—C101.362 (3)C20—H200.9300
C9—H90.9300C21—N31.408 (2)
C10—C111.386 (3)C22—O11.215 (3)
C10—H100.9300C22—H220.9300
C11—C121.384 (3)
N1—C1—C2124.85 (16)C12—C13—C8121.02 (17)
N1—C1—N3113.26 (15)N2—C13—C8107.35 (16)
C2—C1—N3121.88 (16)C15—C14—N3110.69 (17)
C1—C2—C3116.90 (17)C15—C14—H14124.7
C1—C2—H2121.5N3—C14—H14124.7
C3—C2—H2121.5C14—C15—C22123.6 (2)
C4—C3—C2120.36 (17)C14—C15—C16106.58 (17)
C4—C3—H3119.8C22—C15—C16129.9 (2)
C2—C3—H3119.8C21—C16—C17118.7 (2)
C3—C4—C5117.99 (17)C21—C16—C15107.70 (16)
C3—C4—H4121.0C17—C16—C15133.6 (2)
C5—C4—H4121.0C18—C17—C16118.6 (2)
N1—C5—C4122.65 (16)C18—C17—H17120.7
N1—C5—N2116.02 (15)C16—C17—H17120.7
C4—C5—N2121.32 (16)C17—C18—C19121.7 (2)
C7—C6—N2110.53 (17)C17—C18—H18119.1
C7—C6—H6124.7C19—C18—H18119.1
N2—C6—H6124.7C18—C19—C20121.2 (2)
C6—C7—C8107.79 (17)C18—C19—H19119.4
C6—C7—H7126.1C20—C19—H19119.4
C8—C7—H7126.1C21—C20—C19116.9 (2)
C9—C8—C13119.42 (18)C21—C20—H20121.6
C9—C8—C7133.48 (18)C19—C20—H20121.6
C13—C8—C7107.10 (17)C20—C21—C16122.93 (17)
C10—C9—C8119.50 (19)C20—C21—N3129.86 (18)
C10—C9—H9120.2C16—C21—N3107.17 (16)
C8—C9—H9120.2O1—C22—C15125.7 (3)
C9—C10—C11120.73 (19)O1—C22—H22117.1
C9—C10—H10119.6C15—C22—H22117.1
C11—C10—H10119.6C5—N1—C1117.23 (14)
C12—C11—C10121.54 (19)C6—N2—C13107.22 (14)
C12—C11—H11119.2C6—N2—C5124.40 (15)
C10—C11—H11119.2C13—N2—C5128.38 (14)
C11—C12—C13117.77 (17)C14—N3—C21107.86 (15)
C11—C12—H12121.1C14—N3—C1123.68 (14)
C13—C12—H12121.1C21—N3—C1128.43 (15)
C12—C13—N2131.59 (16)
N1—C1—C2—C30.3 (3)C19—C20—C21—N3179.32 (18)
N3—C1—C2—C3179.43 (15)C17—C16—C21—C201.1 (3)
C1—C2—C3—C41.1 (3)C15—C16—C21—C20178.44 (17)
C2—C3—C4—C50.6 (3)C17—C16—C21—N3179.34 (16)
C3—C4—C5—N10.6 (2)C15—C16—C21—N30.19 (19)
C3—C4—C5—N2179.67 (16)C14—C15—C22—O1179.0 (2)
N2—C6—C7—C80.6 (2)C16—C15—C22—O10.8 (4)
C6—C7—C8—C9178.4 (2)C4—C5—N1—C11.4 (2)
C6—C7—C8—C130.5 (2)N2—C5—N1—C1179.54 (13)
C13—C8—C9—C100.2 (3)C2—C1—N1—C50.9 (2)
C7—C8—C9—C10178.9 (2)N3—C1—N1—C5178.30 (13)
C8—C9—C10—C111.0 (3)C7—C6—N2—C130.6 (2)
C9—C10—C11—C120.6 (3)C7—C6—N2—C5179.48 (16)
C10—C11—C12—C130.6 (3)C12—C13—N2—C6177.36 (18)
C11—C12—C13—N2178.68 (16)C8—C13—N2—C60.26 (18)
C11—C12—C13—C81.3 (3)C12—C13—N2—C52.6 (3)
C9—C8—C13—C121.0 (3)C8—C13—N2—C5179.79 (15)
C7—C8—C13—C12178.03 (16)N1—C5—N2—C6169.29 (16)
C9—C8—C13—N2178.90 (15)C4—C5—N2—C69.8 (2)
C7—C8—C13—N20.11 (19)N1—C5—N2—C1310.8 (2)
N3—C14—C15—C22179.03 (18)C4—C5—N2—C13170.11 (16)
N3—C14—C15—C160.8 (2)C15—C14—N3—C210.7 (2)
C14—C15—C16—C210.6 (2)C15—C14—N3—C1178.77 (16)
C22—C15—C16—C21179.2 (2)C20—C21—N3—C14177.78 (18)
C14—C15—C16—C17178.8 (2)C16—C21—N3—C140.30 (19)
C22—C15—C16—C171.4 (4)C20—C21—N3—C10.2 (3)
C21—C16—C17—C180.0 (3)C16—C21—N3—C1178.24 (16)
C15—C16—C17—C18179.4 (2)N1—C1—N3—C1434.4 (2)
C16—C17—C18—C190.7 (3)C2—C1—N3—C14144.83 (17)
C17—C18—C19—C200.3 (4)N1—C1—N3—C21143.23 (16)
C18—C19—C20—C210.8 (3)C2—C1—N3—C2137.5 (3)
C19—C20—C21—C161.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.503.227 (3)135
C12—H12···N10.932.412.931 (2)116
C2—H2···Cg5ii0.932.733.554 (2)148
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C16–C21 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.503.227 (3)135.1
C12—H12···N10.932.412.931 (2)115.6
C2—H2···Cg5ii0.932.733.554 (2)148.0
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

CR acknowledge the AMET University management, India, for their kind support.

References

First citationAndreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174.  Web of Science PubMed CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDileep, C. S., Abdoh, M. M. M., Chakravarthy, M. P., Mohana, K. N. & Sridhar, M. A. (2012). Acta Cryst. E68, o3135.  CSD CrossRef IUCr Journals Google Scholar
First citationMacor, J. E., Fox, C. B., Johnson, C., Koe, B. K., Lebel, L. A. & Zorn, S. H. (1992). J. Med. Chem. 35, 3625–3632.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMukhopadhyay, S., Handy, G. A., Funayama, S. & Cordell, G. A. (1981). J. Nat. Prod. 44, 696–700.  CrossRef CAS PubMed Web of Science Google Scholar
First citationQuetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181–192.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, U. P., Sarma, B. K., Mishra, P. K. & Ray, A. B. (2000). Fol. Microbiol. 45, 173–176.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, Y., Ren, W., Wang, Q. & He, G. (2012). Acta Cryst. E68, o1151.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds