organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ethyl-2,2-di­methyl-N-(3-methyl­phen­yl)propanamide

aDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India, and eTadimety Aromatics Pvt Ltd, Hirehally Industrial Area, Tumkur, Karnataka 572 168, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 24 December 2013; accepted 23 January 2014; online 29 January 2014)

In the title compound, C14H21NO, the conformation across the N—C(O) bond is syn-periplanar, the C—N—C—C torsion being −5.9 (5)°. The atoms of the ethyl group attached to the N atom are disordered over two sets of sites with occupancy ratios of 0.65 (2):0.35 (2) (CH2) and 0.689 (14):0.311 (14) (CH3)are linked by very weak C—H⋯O inter­actions forming C(8) chains along [001]. C—H⋯π inter­actions link the mol­ecules along the c-axis direction.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological activity of amides, see: Manojkumar et al. (2013a[Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem. 2, 730-737.],b[Manojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). Molbank, M803, doi:10.3390/M803.]). Amide groups can provide structural rigidity to mol­ecules, see: Sreenivasa et al. (2013[Sreenivasa, S., ManojKumar, K. E., Kempaiah, A., Suchetan, P. A. & Palakshamurthy, B. S. (2013). Acta Cryst. E69, o761.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21NO

  • Mr = 219.32

  • Monoclinic, P 21

  • a = 7.631 (4) Å

  • b = 10.878 (7) Å

  • c = 8.350 (3) Å

  • β = 105.60 (2)°

  • V = 667.6 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.52 mm−1

  • T = 294 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.921

  • 3786 measured reflections

  • 2016 independent reflections

  • 1883 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.160

  • S = 1.06

  • 2016 reflections

  • 172 parameters

  • 55 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centoid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Oi 0.93 2.62 3.481 (2) 153
C14—H14ACgii 0.96 2.85 3.769 (8) 161
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Amides are very common in nature, formed easily and provides structural rigidity to the molecules (Sreenivasa et al. 2013). Amides show a broad spectrum of pharmacological properties, including antibacterial (Manojkumar et al. 2013a), anti-inflammatory, antioxidant, analgesic and antiviral activity (Manojkumar et al. 2013b). Keeping this in mind, the crystal structure of the title compound was determined.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological activity of amides, see: Manojkumar et al. (2013a,b). Amide groups can provide structural rigidity to molecules, see: Sreenivasa et al. (2013).

Experimental top

N-Ethyl-3-methylaniline (1.00g,7.4 mmol) was taken in dry dichloromethane (10 mL) and the solution was cooled to 0 oC. To this reaction mixture 2,2-dimethylpropanoyl chloride (0.888 g, 7.4 mmol) in dichloromethane and triethylamine (1.49g, 1.48 mmol) were added slowly and the mixture was heated to 50oC for 4 hours. Reaction was monitored by TLC. Reaction mixture was cooled and washed with 10% NaHCO3 solution. The organic layer was separated, dried and concentrated to obtained crude product which was purified by column chromatography using petroleum ether: ethyl acetate (7:3) as eluent. Yellow prisms of the title compound were obtained from slow evapouration of the solution of the compound in petroleum ether: ethyl acetate (7:3).

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C-H = 0.93-0.96Å. All H atoms were refined with isotropic displacement parameters (set to 1.2-1.5 times of the Ueq of the parent atom). Flack parameter value (Flack, 1983) of 0.5 (5) was obtained in the final structure factor calculation, the presence of pseudosymmetry can lead to uncertainties about the correct space group, especially in the presence of twinning.

The C8 and C9 atoms of the ethyl group attached to N atom are disordered with site occupation factors of 0.65 (2):0.35 (2) and 0.689 (14):0.311 (14) respectively.

Structure description top

Amides are very common in nature, formed easily and provides structural rigidity to the molecules (Sreenivasa et al. 2013). Amides show a broad spectrum of pharmacological properties, including antibacterial (Manojkumar et al. 2013a), anti-inflammatory, antioxidant, analgesic and antiviral activity (Manojkumar et al. 2013b). Keeping this in mind, the crystal structure of the title compound was determined.

For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biological activity of amides, see: Manojkumar et al. (2013a,b). Amide groups can provide structural rigidity to molecules, see: Sreenivasa et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Only the major components of the disordered atoms are shown.
[Figure 2] Fig. 2. Molecular packing foming C(8) chains with hydrogen bonding shown as dashed lines.
[Figure 3] Fig. 3. Stacking of molecules along c axis through C—H···Cg interactions. Cg is the centroid of the benzene ring. H-atoms not involved in H-bonding are ommitted for clarity.
N-Ethyl-2,2-dimethyl-N-(3-methylphenyl)propanamide top
Crystal data top
C14H21NOPrism
Mr = 219.32Dx = 1.091 Mg m3
Monoclinic, P21Melting point: 492 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54178 Å
a = 7.631 (4) ÅCell parameters from 172 reflections
b = 10.878 (7) Åθ = 5.5–65.5°
c = 8.350 (3) ŵ = 0.52 mm1
β = 105.60 (2)°T = 294 K
V = 667.6 (6) Å3Prism, yellow
Z = 20.22 × 0.20 × 0.16 mm
F(000) = 240
Data collection top
Bruker APEXII
diffractometer
1883 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 65.5°, θmin = 5.5°
phi and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1112
Tmin = 0.893, Tmax = 0.921l = 99
3786 measured reflections1012 standard reflections every 2 reflections
2016 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.093P)2 + 0.1495P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2016 reflectionsΔρmax = 0.34 e Å3
172 parametersΔρmin = 0.16 e Å3
55 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.018 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H21NOV = 667.6 (6) Å3
Mr = 219.32Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.631 (4) ŵ = 0.52 mm1
b = 10.878 (7) ÅT = 294 K
c = 8.350 (3) Å0.22 × 0.20 × 0.16 mm
β = 105.60 (2)°
Data collection top
Bruker APEXII
diffractometer
1883 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
Rint = 0.034
Tmin = 0.893, Tmax = 0.9211012 standard reflections every 2 reflections
3786 measured reflections intensity decay: 1%
2016 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05755 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
2016 reflectionsΔρmin = 0.16 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O0.2284 (2)0.7636 (3)0.6964 (2)0.0725 (7)
N0.4145 (3)0.7530 (3)0.9461 (2)0.0670 (8)
C110.5373 (3)0.7418 (3)0.6942 (3)0.0489 (6)
C60.8300 (4)0.8185 (3)1.2843 (3)0.0494 (6)
C100.3855 (3)0.7522 (3)0.7806 (3)0.0452 (6)
C40.5820 (3)0.7342 (3)1.0730 (3)0.0487 (7)
C50.6765 (4)0.8340 (3)1.1519 (3)0.0520 (7)
H50.63740.91281.11640.062*
C30.6371 (4)0.6191 (3)1.1298 (3)0.0586 (8)
H30.57160.55101.07890.070*
C20.7875 (4)0.6028 (3)1.2607 (4)0.0602 (8)
H20.82490.52391.29750.072*
C10.8829 (4)0.7029 (3)1.3376 (3)0.0520 (7)
H10.98480.69161.42710.062*
C70.9325 (5)0.9283 (4)1.3690 (5)0.0834 (11)
H7A0.98200.91091.48510.125*
H7B0.85150.99741.35630.125*
H7C1.02950.94721.32000.125*
C140.4518 (6)0.7552 (8)0.5111 (5)0.129 (2)
H14A0.54540.76080.45420.193*
H14B0.37870.82830.49080.193*
H14C0.37660.68490.47100.193*
C130.6307 (11)0.6209 (5)0.7262 (9)0.136 (3)
H13A0.54170.55640.70790.205*
H13B0.70440.61780.83920.205*
H13C0.70660.61030.65230.205*
C120.6785 (8)0.8393 (6)0.7487 (7)0.135 (3)
H12A0.73240.83250.86630.202*
H12B0.62300.91870.72370.202*
H12C0.77080.82930.69100.202*
C8A0.2598 (9)0.7879 (9)1.0135 (7)0.052 (2)0.65 (2)
H8A10.17440.83950.93480.063*0.65 (2)
H8A20.30350.83291.11690.063*0.65 (2)
C8B0.2459 (15)0.7104 (19)1.0046 (14)0.059 (4)0.35 (2)
H8B10.15290.67420.91420.070*0.35 (2)
H8B20.28010.65221.09580.070*0.35 (2)
C9A0.1691 (10)0.6700 (7)1.0428 (8)0.087 (2)0.689 (14)
H9A10.12890.62560.94000.131*0.689 (14)
H9A20.06640.68871.08430.131*0.689 (14)
H9A30.25420.62071.12260.131*0.689 (14)
C9B0.1877 (19)0.8243 (14)1.0567 (15)0.071 (4)0.311 (14)
H9B10.28830.86361.13370.107*0.311 (14)
H9B20.09250.80961.10960.107*0.311 (14)
H9B30.14290.87650.96170.107*0.311 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0395 (10)0.130 (2)0.0405 (9)0.0096 (12)0.0029 (8)0.0003 (11)
N0.0294 (10)0.136 (2)0.0338 (10)0.0065 (14)0.0055 (8)0.0032 (14)
C110.0481 (13)0.0608 (15)0.0394 (12)0.0028 (13)0.0147 (10)0.0013 (11)
C60.0429 (14)0.0613 (17)0.0417 (12)0.0053 (13)0.0072 (10)0.0004 (12)
C100.0375 (12)0.0603 (14)0.0343 (11)0.0002 (12)0.0038 (9)0.0004 (11)
C40.0336 (12)0.0806 (19)0.0298 (10)0.0034 (13)0.0051 (9)0.0036 (12)
C50.0456 (15)0.0645 (17)0.0427 (13)0.0073 (13)0.0063 (11)0.0077 (12)
C30.0559 (17)0.0689 (19)0.0469 (15)0.0075 (15)0.0067 (13)0.0085 (13)
C20.0631 (18)0.0565 (17)0.0542 (15)0.0061 (14)0.0040 (14)0.0069 (13)
C10.0417 (15)0.0677 (18)0.0404 (12)0.0050 (13)0.0003 (11)0.0069 (12)
C70.079 (2)0.073 (2)0.083 (3)0.0182 (19)0.0049 (19)0.0069 (18)
C140.086 (3)0.254 (7)0.0529 (18)0.027 (4)0.0323 (19)0.021 (3)
C130.189 (6)0.118 (4)0.150 (5)0.083 (4)0.126 (5)0.052 (3)
C120.134 (4)0.178 (5)0.125 (4)0.087 (4)0.091 (4)0.062 (4)
C8A0.038 (3)0.075 (5)0.045 (2)0.006 (3)0.0115 (19)0.008 (3)
C8B0.037 (5)0.083 (10)0.054 (5)0.014 (6)0.009 (4)0.001 (5)
C9A0.066 (4)0.110 (5)0.101 (4)0.013 (3)0.049 (3)0.001 (4)
C9B0.057 (7)0.095 (8)0.073 (7)0.006 (6)0.035 (5)0.003 (6)
Geometric parameters (Å, º) top
O—C101.222 (3)C7—H7C0.9600
N—C101.339 (3)C14—H14A0.9600
N—C41.439 (3)C14—H14B0.9600
N—C8A1.488 (7)C14—H14C0.9600
N—C8B1.564 (12)C13—H13A0.9600
C11—C131.486 (5)C13—H13B0.9600
C11—C121.493 (5)C13—H13C0.9600
C11—C141.499 (5)C12—H12A0.9600
C11—C101.525 (3)C12—H12B0.9600
C6—C11.359 (4)C12—H12C0.9600
C6—C51.388 (4)C8A—C9A1.508 (13)
C6—C71.497 (5)C8A—H8A10.9700
C4—C31.364 (4)C8A—H8A20.9700
C4—C51.370 (4)C8B—C9B1.42 (3)
C5—H50.9300C8B—H8B10.9700
C3—C21.367 (4)C8B—H8B20.9700
C3—H30.9300C9A—H9A10.9600
C2—C11.370 (4)C9A—H9A20.9600
C2—H20.9300C9A—H9A30.9600
C1—H10.9300C9B—H9B10.9600
C7—H7A0.9600C9B—H9B20.9600
C7—H7B0.9600C9B—H9B30.9600
C10—N—C4128.83 (19)H7B—C7—H7C109.5
C10—N—C8A117.7 (3)C11—C14—H14A109.5
C4—N—C8A113.3 (2)C11—C14—H14B109.5
C10—N—C8B113.5 (5)H14A—C14—H14B109.5
C4—N—C8B111.7 (4)C11—C14—H14C109.5
C13—C11—C12107.6 (5)H14A—C14—H14C109.5
C13—C11—C14109.0 (4)H14B—C14—H14C109.5
C12—C11—C14108.8 (4)C11—C13—H13A109.5
C13—C11—C10111.7 (3)C11—C13—H13B109.5
C12—C11—C10112.4 (3)H13A—C13—H13B109.5
C14—C11—C10107.3 (2)C11—C13—H13C109.5
C1—C6—C5119.1 (3)H13A—C13—H13C109.5
C1—C6—C7120.8 (3)H13B—C13—H13C109.5
C5—C6—C7120.1 (3)C11—C12—H12A109.5
O—C10—N117.2 (2)C11—C12—H12B109.5
O—C10—C11119.2 (2)H12A—C12—H12B109.5
N—C10—C11123.6 (2)C11—C12—H12C109.5
C3—C4—C5119.1 (2)H12A—C12—H12C109.5
C3—C4—N121.1 (3)H12B—C12—H12C109.5
C5—C4—N119.3 (3)N—C8A—C9A106.8 (6)
C4—C5—C6120.6 (3)N—C8A—H8A1110.4
C4—C5—H5119.7C9A—C8A—H8A1110.4
C6—C5—H5119.7N—C8A—H8A2110.4
C4—C3—C2120.7 (3)C9A—C8A—H8A2110.4
C4—C3—H3119.6H8A1—C8A—H8A2108.6
C2—C3—H3119.6C9B—C8B—N100.9 (13)
C3—C2—C1119.9 (3)C9B—C8B—H8B1111.6
C3—C2—H2120.1N—C8B—H8B1111.6
C1—C2—H2120.1C9B—C8B—H8B2111.6
C6—C1—C2120.6 (2)N—C8B—H8B2111.6
C6—C1—H1119.7H8B1—C8B—H8B2109.4
C2—C1—H1119.7C8A—C9A—H9A1109.5
C6—C7—H7A109.5C8A—C9A—H9A2109.5
C6—C7—H7B109.5H9A1—C9A—H9A2109.5
H7A—C7—H7B109.5C8A—C9A—H9A3109.5
C6—C7—H7C109.5H9A1—C9A—H9A3109.5
H7A—C7—H7C109.5H9A2—C9A—H9A3109.5
C4—N—C10—O175.9 (3)C8B—N—C4—C5109.8 (9)
C8A—N—C10—O9.8 (6)C3—C4—C5—C62.2 (4)
C8B—N—C10—O25.7 (9)N—C4—C5—C6174.5 (2)
C4—N—C10—C115.9 (5)C1—C6—C5—C41.7 (4)
C8A—N—C10—C11168.3 (5)C7—C6—C5—C4179.8 (3)
C8B—N—C10—C11156.1 (9)C5—C4—C3—C21.8 (4)
C13—C11—C10—O116.5 (5)N—C4—C3—C2174.0 (3)
C12—C11—C10—O122.5 (4)C4—C3—C2—C10.9 (5)
C14—C11—C10—O2.9 (5)C5—C6—C1—C20.8 (4)
C13—C11—C10—N65.3 (5)C7—C6—C1—C2179.3 (3)
C12—C11—C10—N55.7 (5)C3—C2—C1—C60.4 (4)
C14—C11—C10—N175.2 (4)C10—N—C8A—C9A94.8 (5)
C10—N—C4—C388.2 (4)C4—N—C8A—C9A90.0 (5)
C8A—N—C4—C397.3 (5)C8B—N—C8A—C9A4.1 (8)
C8B—N—C4—C362.4 (9)C10—N—C8B—C9B107.2 (7)
C10—N—C4—C599.6 (4)C4—N—C8B—C9B97.4 (8)
C8A—N—C4—C574.9 (5)C8A—N—C8B—C9B2.2 (6)
Hydrogen-bond geometry (Å, º) top
Cg is the centoid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Oi0.932.623.481 (2)153
C14—H14A···Cgii0.962.853.769 (8)161
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centoid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···Oi0.932.6233.481 (2)153
C14—H14A···Cgii0.962.853.769 (8)161
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the IOE X-ray diffractometer facility, University of Mysore, Mysore, for the data collection. BSPM thanks Dr H. C. Devarajegowda, Department of Physics, Yuvarajas College (constituent), University of Mysore, for his support and guidence.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhuchakrapani Rao, T. & Harikrishna, T. (2013a). J. Appl. Chem. 2, 730–737.  CAS Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Shivaraja, G. & Madhuchakrapani Rao, T. (2013b). Molbank, M803, doi:10.3390/M803.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, S., ManojKumar, K. E., Kempaiah, A., Suchetan, P. A. & Palakshamurthy, B. S. (2013). Acta Cryst. E69, o761.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds