organic compounds
2-(2-Amino-4-nitrophenyl)-7-nitro-4H-3,1-benzoxazin-4-one
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bFundação Oswaldo Cruz, Instituto de Tecnologia em, Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos 21041-250, Rio de Janeiro, RJ, Brazil, and cChemistry Department, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com
In the title compound, C14H8N4O6, the benzoxazin-4-one fused-ring system (r.m.s. deviation = 0.018 Å) is coplanar with the attached benzene ring [dihedral angle = 0.81 (4)°], there being an intramolecular N—H⋯N hydrogen bond between them. Each nitro group is twisted out of the plane of the attached benzene ring [O—N—C—C torsion angles = 167.94 (11) and 170.38 (11)°]. In the crystal, amine–nitro N—H⋯O hydrogen bonds lead to centrosymmetric dimeric aggregates that are connected into a three-dimensional architecture by oxazinyl–nitro C—H⋯O and π–π interactions [inter-centroid distance between the oxazinyl and terminal benzene rings = 3.5069 (7) Å].
CCDC reference: 980846
Related literature
For background to the spectroscopic characteristics of N-derivatives of 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones, see: Loseva et al. (1971,1972); Eberius & Hügin (2012); Khimich et al. (2009, 2010). For their synthesis, see: Bolotin et al. (1965); Brudz et al. (1967); Loseva et al. (1971, 1972); Eberius & Hügin (2012).
Experimental
Crystal data
|
Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 980846
10.1107/S1600536814000609/hg5375sup1.cif
contains datablocks general, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814000609/hg5375Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814000609/hg5375Isup3.cml
The title compound was obtained from the reaction of 2-amino-4-nitrobenzoic acid with 4-chlorobenzenesulfonyl chloride (1 mmol of each) in refluxing acetone (20 ml) for 30 min. The reaction mixture was rotary evaporated and the residue was recrystallized from MeOCH2CH2OH. Crystals used in the
were grown by slow evaporation of its MeOCH2CH2OH solution; M.pt: 474–475 K (dec.).Intensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012). The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).
The luminescent (Loseva et al., 1971; Loseva et al., 1972), fluorescent (Eberius & Hügin, 2012) and intramolecular photoinduced proton transfer (IPPT) properties (Khimich et al., 2009, 2010) of N-derivatives of 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones have attracted much attention. IPPT plays an important role in both chemical and biological processes (Khimich et al., 2009; Khimich et al., 2010 and references therein). The spectral properties are influenced by the strength of the intramolecular N—H···N hydrogen bond. Generally, the preparation of 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones involves a dimerization of an anthranilic acid derivative in the presence of SO2Cl2 (Brudz et al., 1967; Eberius & Hügin, 2012), arenesulfonyl chloride (Loseva et al., 1971; Loseva et al., 1972) or PhCH2Cl (Bolotin et al., 1965) in pyridine. Herein, the crystal and molecular structure of the title compound, (I), is described.
In (I), Fig. 1, the atoms comprising the benzoxazin-4-one fused-ring system are co-planar (r.m.s. deviation = 0.018 Å) and form a dihedral angle of 0.81 (4)° with the attached benzene ring. The co-planarity between the ring systems is accompanied by an intramolecular N2—H···N3 hydrogen bond, Table 1. Both nitro groups are twisted out of the plane of the attached benzene rings as seen in the values of the O1—N1—C1—C2 and O6—N4—C12—C11 torsion angles of 167.94 (11) and 170.38 (11)°, respectively.
In the crystal packing, centrosymmetric dimeric aggregates are formed via 14-membered {···HNC3NO}2 synthons featuring amine-N—H···O(nitro) hydrogen bonds. These are connected into a three-dimensional architecture by oxazinyl-C—H···O(nitro) interactions as well as by π—π interactions between the oxazinyl and terminal benzene rings [intercentroid distance = 3.5069 (7) Å, interplanar angle = 1.11 (5)° for 1-x, 1-y, -z].
The luminescent (Loseva et al., 1971; Loseva et al., 1972), fluorescent (Eberius & Hügin, 2012) and intramolecular photoinduced proton transfer (IPPT) properties (Khimich et al., 2009, 2010) of N-derivatives of 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones have attracted much attention. IPPT plays an important role in both chemical and biological processes (Khimich et al., 2009; Khimich et al., 2010 and references therein). The spectral properties are influenced by the strength of the intramolecular N—H···N hydrogen bond. Generally, the preparation of 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones involves a dimerization of an anthranilic acid derivative in the presence of SO2Cl2 (Brudz et al., 1967; Eberius & Hügin, 2012), arenesulfonyl chloride (Loseva et al., 1971; Loseva et al., 1972) or PhCH2Cl (Bolotin et al., 1965) in pyridine. Herein, the crystal and molecular structure of the title compound, (I), is described.
In (I), Fig. 1, the atoms comprising the benzoxazin-4-one fused-ring system are co-planar (r.m.s. deviation = 0.018 Å) and form a dihedral angle of 0.81 (4)° with the attached benzene ring. The co-planarity between the ring systems is accompanied by an intramolecular N2—H···N3 hydrogen bond, Table 1. Both nitro groups are twisted out of the plane of the attached benzene rings as seen in the values of the O1—N1—C1—C2 and O6—N4—C12—C11 torsion angles of 167.94 (11) and 170.38 (11)°, respectively.
In the crystal packing, centrosymmetric dimeric aggregates are formed via 14-membered {···HNC3NO}2 synthons featuring amine-N—H···O(nitro) hydrogen bonds. These are connected into a three-dimensional architecture by oxazinyl-C—H···O(nitro) interactions as well as by π—π interactions between the oxazinyl and terminal benzene rings [intercentroid distance = 3.5069 (7) Å, interplanar angle = 1.11 (5)° for 1-x, 1-y, -z].
For background to the spectroscopic characteristics of N-derivatives of 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones, see: Loseva et al. (1971,1972); Eberius & Hügin (2012); Khimich et al. (2009, 2010). For their synthesis, see: Bolotin et al. (1965); Brudz et al. (1967); Loseva et al. (1971, 1972); Eberius & Hügin (2012).
The title compound was obtained from the reaction of 2-amino-4-nitrobenzoic acid with 4-chlorobenzenesulfonyl chloride (1 mmol of each) in refluxing acetone (20 ml) for 30 min. The reaction mixture was rotary evaporated and the residue was recrystallized from MeOCH2CH2OH. Crystals used in the
were grown by slow evaporation of its MeOCH2CH2OH solution; M.pt: 474–475 K (dec.). detailsIntensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012). The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).
Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell
CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. | |
Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The N—H···O, C—H···O and π—π interactions are shown as blue, orange and purple dashed lines, respectively. |
C14H8N4O6 | F(000) = 672 |
Mr = 328.24 | Dx = 1.671 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 14670 reflections |
a = 7.0229 (3) Å | θ = 3.0–27.5° |
b = 8.6148 (3) Å | µ = 0.14 mm−1 |
c = 21.5662 (15) Å | T = 100 K |
β = 90.029 (6)° | Plate, yellow |
V = 1304.77 (12) Å3 | 0.13 × 0.08 × 0.03 mm |
Z = 4 |
Rigaku R-AXIS conversion diffractometer | 2983 independent reflections |
Radiation source: Sealed Tube | 2513 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
profile data from ω–scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | k = −10→11 |
Tmin = 0.831, Tmax = 1.000 | l = −28→28 |
16840 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0557P)2 + 0.2657P] where P = (Fo2 + 2Fc2)/3 |
2983 reflections | (Δ/σ)max = 0.001 |
223 parameters | Δρmax = 0.38 e Å−3 |
2 restraints | Δρmin = −0.21 e Å−3 |
C14H8N4O6 | V = 1304.77 (12) Å3 |
Mr = 328.24 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.0229 (3) Å | µ = 0.14 mm−1 |
b = 8.6148 (3) Å | T = 100 K |
c = 21.5662 (15) Å | 0.13 × 0.08 × 0.03 mm |
β = 90.029 (6)° |
Rigaku R-AXIS conversion diffractometer | 2983 independent reflections |
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012) | 2513 reflections with I > 2σ(I) |
Tmin = 0.831, Tmax = 1.000 | Rint = 0.026 |
16840 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 2 restraints |
wR(F2) = 0.101 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.38 e Å−3 |
2983 reflections | Δρmin = −0.21 e Å−3 |
223 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.31373 (16) | 0.12873 (11) | −0.24884 (4) | 0.0331 (3) | |
O2 | 0.46051 (15) | −0.04287 (11) | −0.19338 (5) | 0.0346 (3) | |
O3 | 0.31958 (12) | 0.37682 (9) | 0.06796 (4) | 0.01839 (19) | |
O4 | 0.33686 (15) | 0.36166 (10) | 0.17002 (4) | 0.0293 (2) | |
O5 | 0.01987 (14) | 1.12855 (10) | 0.07508 (4) | 0.0255 (2) | |
O6 | −0.00939 (15) | 1.12189 (10) | 0.17491 (4) | 0.0305 (2) | |
N1 | 0.37678 (15) | 0.08006 (12) | −0.19950 (5) | 0.0217 (2) | |
N2 | 0.19120 (16) | 0.56949 (12) | −0.11084 (5) | 0.0200 (2) | |
H1N | 0.175 (2) | 0.6344 (14) | −0.0794 (5) | 0.024* | |
H2N | 0.176 (2) | 0.5998 (16) | −0.1498 (5) | 0.024* | |
N3 | 0.21171 (14) | 0.59740 (11) | 0.01426 (4) | 0.0160 (2) | |
N4 | 0.03554 (15) | 1.06317 (12) | 0.12548 (4) | 0.0193 (2) | |
C1 | 0.34836 (16) | 0.17765 (13) | −0.14391 (5) | 0.0174 (2) | |
C2 | 0.28728 (16) | 0.32695 (13) | −0.15271 (5) | 0.0169 (2) | |
H2 | 0.2653 | 0.3648 | −0.1935 | 0.020* | |
C3 | 0.25693 (16) | 0.42466 (13) | −0.10088 (5) | 0.0154 (2) | |
C4 | 0.29441 (16) | 0.36214 (13) | −0.04081 (5) | 0.0156 (2) | |
C5 | 0.35508 (16) | 0.20706 (13) | −0.03512 (5) | 0.0182 (2) | |
H5 | 0.3774 | 0.1660 | 0.0051 | 0.022* | |
C6 | 0.38315 (16) | 0.11279 (13) | −0.08591 (5) | 0.0185 (2) | |
H6 | 0.4243 | 0.0083 | −0.0815 | 0.022* | |
C7 | 0.27046 (16) | 0.45587 (13) | 0.01513 (5) | 0.0155 (2) | |
C8 | 0.29892 (17) | 0.44138 (14) | 0.12669 (5) | 0.0192 (2) | |
C9 | 0.23325 (16) | 0.60264 (13) | 0.12738 (5) | 0.0165 (2) | |
C10 | 0.19409 (16) | 0.67456 (13) | 0.07059 (5) | 0.0154 (2) | |
C11 | 0.13195 (16) | 0.82896 (13) | 0.06998 (5) | 0.0162 (2) | |
H11 | 0.1066 | 0.8811 | 0.0321 | 0.019* | |
C12 | 0.10881 (16) | 0.90273 (13) | 0.12612 (5) | 0.0163 (2) | |
C13 | 0.14479 (17) | 0.83313 (14) | 0.18319 (5) | 0.0181 (2) | |
H13 | 0.1260 | 0.8882 | 0.2208 | 0.022* | |
C14 | 0.20854 (17) | 0.68167 (14) | 0.18338 (5) | 0.0186 (2) | |
H14 | 0.2356 | 0.6312 | 0.2215 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0600 (7) | 0.0259 (5) | 0.0136 (4) | −0.0009 (4) | 0.0021 (4) | −0.0027 (3) |
O2 | 0.0458 (6) | 0.0254 (5) | 0.0328 (5) | 0.0117 (4) | 0.0024 (4) | −0.0102 (4) |
O3 | 0.0264 (5) | 0.0176 (4) | 0.0111 (4) | 0.0030 (3) | −0.0010 (3) | 0.0008 (3) |
O4 | 0.0483 (6) | 0.0254 (5) | 0.0143 (4) | 0.0105 (4) | −0.0021 (4) | 0.0030 (3) |
O5 | 0.0398 (5) | 0.0188 (4) | 0.0180 (4) | 0.0026 (4) | 0.0014 (4) | 0.0024 (3) |
O6 | 0.0496 (6) | 0.0241 (5) | 0.0178 (5) | 0.0081 (4) | 0.0070 (4) | −0.0055 (3) |
N1 | 0.0260 (6) | 0.0192 (5) | 0.0199 (5) | −0.0028 (4) | 0.0055 (4) | −0.0049 (4) |
N2 | 0.0319 (6) | 0.0173 (5) | 0.0107 (5) | 0.0028 (4) | −0.0007 (4) | 0.0005 (4) |
N3 | 0.0188 (5) | 0.0175 (5) | 0.0116 (4) | −0.0004 (4) | 0.0002 (4) | −0.0002 (4) |
N4 | 0.0239 (5) | 0.0180 (5) | 0.0161 (5) | −0.0006 (4) | 0.0021 (4) | −0.0024 (4) |
C1 | 0.0166 (5) | 0.0192 (5) | 0.0164 (5) | −0.0023 (4) | 0.0026 (4) | −0.0053 (4) |
C2 | 0.0192 (6) | 0.0192 (5) | 0.0122 (5) | −0.0017 (4) | 0.0012 (4) | −0.0004 (4) |
C3 | 0.0164 (5) | 0.0162 (5) | 0.0136 (5) | −0.0016 (4) | 0.0013 (4) | −0.0008 (4) |
C4 | 0.0161 (5) | 0.0179 (5) | 0.0129 (5) | −0.0005 (4) | 0.0003 (4) | −0.0010 (4) |
C5 | 0.0189 (6) | 0.0191 (6) | 0.0165 (5) | 0.0009 (4) | −0.0013 (4) | 0.0012 (4) |
C6 | 0.0189 (6) | 0.0164 (5) | 0.0202 (6) | 0.0020 (4) | −0.0004 (4) | −0.0006 (4) |
C7 | 0.0157 (5) | 0.0188 (5) | 0.0121 (5) | −0.0013 (4) | −0.0011 (4) | 0.0016 (4) |
C8 | 0.0226 (6) | 0.0229 (6) | 0.0121 (5) | 0.0007 (5) | 0.0001 (4) | −0.0005 (4) |
C9 | 0.0169 (6) | 0.0192 (6) | 0.0133 (5) | −0.0004 (4) | 0.0006 (4) | 0.0004 (4) |
C10 | 0.0151 (5) | 0.0189 (5) | 0.0123 (5) | −0.0020 (4) | 0.0007 (4) | −0.0006 (4) |
C11 | 0.0176 (6) | 0.0185 (5) | 0.0126 (5) | −0.0014 (4) | 0.0007 (4) | 0.0005 (4) |
C12 | 0.0169 (6) | 0.0157 (5) | 0.0162 (5) | −0.0015 (4) | 0.0010 (4) | −0.0016 (4) |
C13 | 0.0196 (6) | 0.0231 (6) | 0.0116 (5) | −0.0018 (4) | 0.0018 (4) | −0.0027 (4) |
C14 | 0.0202 (6) | 0.0237 (6) | 0.0118 (5) | 0.0003 (4) | −0.0008 (4) | 0.0018 (4) |
O1—N1 | 1.2263 (14) | C2—H2 | 0.9500 |
O2—N1 | 1.2185 (14) | C3—C4 | 1.4273 (15) |
O3—C7 | 1.3712 (13) | C4—C5 | 1.4076 (16) |
O3—C8 | 1.3910 (13) | C4—C7 | 1.4615 (15) |
O4—C8 | 1.1897 (14) | C5—C6 | 1.3779 (16) |
O5—N4 | 1.2291 (13) | C5—H5 | 0.9500 |
O6—N4 | 1.2215 (13) | C6—H6 | 0.9500 |
N1—C1 | 1.4780 (14) | C8—C9 | 1.4639 (16) |
N2—C3 | 1.3476 (15) | C9—C14 | 1.3972 (15) |
N2—H1N | 0.886 (9) | C9—C10 | 1.3997 (15) |
N2—H2N | 0.886 (9) | C10—C11 | 1.3999 (16) |
N3—C7 | 1.2873 (15) | C11—C12 | 1.3771 (15) |
N3—C10 | 1.3904 (14) | C11—H11 | 0.9500 |
N4—C12 | 1.4749 (15) | C12—C13 | 1.3921 (16) |
C1—C2 | 1.3690 (16) | C13—C14 | 1.3795 (17) |
C1—C6 | 1.3913 (16) | C13—H13 | 0.9500 |
C2—C3 | 1.4156 (15) | C14—H14 | 0.9500 |
C7—O3—C8 | 122.12 (9) | C5—C6—H6 | 121.5 |
O2—N1—O1 | 124.42 (10) | C1—C6—H6 | 121.5 |
O2—N1—C1 | 118.16 (10) | N3—C7—O3 | 124.26 (10) |
O1—N1—C1 | 117.42 (10) | N3—C7—C4 | 123.25 (10) |
C3—N2—H1N | 120.5 (10) | O3—C7—C4 | 112.49 (9) |
C3—N2—H2N | 117.6 (10) | O4—C8—O3 | 117.45 (11) |
H1N—N2—H2N | 121.6 (14) | O4—C8—C9 | 127.60 (11) |
C7—N3—C10 | 117.96 (9) | O3—C8—C9 | 114.95 (9) |
O6—N4—O5 | 123.98 (10) | C14—C9—C10 | 121.07 (10) |
O6—N4—C12 | 118.05 (9) | C14—C9—C8 | 120.70 (10) |
O5—N4—C12 | 117.95 (9) | C10—C9—C8 | 118.22 (10) |
C2—C1—C6 | 123.84 (10) | N3—C10—C9 | 122.37 (10) |
C2—C1—N1 | 117.67 (10) | N3—C10—C11 | 118.28 (10) |
C6—C1—N1 | 118.49 (10) | C9—C10—C11 | 119.34 (10) |
C1—C2—C3 | 119.76 (10) | C12—C11—C10 | 117.84 (10) |
C1—C2—H2 | 120.1 | C12—C11—H11 | 121.1 |
C3—C2—H2 | 120.1 | C10—C11—H11 | 121.1 |
N2—C3—C2 | 118.45 (10) | C11—C12—C13 | 123.86 (11) |
N2—C3—C4 | 123.86 (10) | C11—C12—N4 | 117.75 (10) |
C2—C3—C4 | 117.68 (10) | C13—C12—N4 | 118.36 (10) |
C5—C4—C3 | 119.54 (10) | C14—C13—C12 | 117.96 (10) |
C5—C4—C7 | 119.16 (10) | C14—C13—H13 | 121.0 |
C3—C4—C7 | 121.30 (10) | C12—C13—H13 | 121.0 |
C6—C5—C4 | 122.24 (10) | C13—C14—C9 | 119.92 (10) |
C6—C5—H5 | 118.9 | C13—C14—H14 | 120.0 |
C4—C5—H5 | 118.9 | C9—C14—H14 | 120.0 |
C5—C6—C1 | 116.93 (10) | ||
O2—N1—C1—C2 | 167.94 (11) | C7—O3—C8—O4 | 176.57 (11) |
O1—N1—C1—C2 | −12.17 (16) | C7—O3—C8—C9 | −3.88 (15) |
O2—N1—C1—C6 | −12.66 (16) | O4—C8—C9—C14 | 0.2 (2) |
O1—N1—C1—C6 | 167.23 (11) | O3—C8—C9—C14 | −179.33 (10) |
C6—C1—C2—C3 | 0.27 (18) | O4—C8—C9—C10 | −179.16 (13) |
N1—C1—C2—C3 | 179.63 (10) | O3—C8—C9—C10 | 1.35 (15) |
C1—C2—C3—N2 | −177.99 (11) | C7—N3—C10—C9 | −1.60 (16) |
C1—C2—C3—C4 | 0.75 (16) | C7—N3—C10—C11 | 179.43 (10) |
N2—C3—C4—C5 | 177.25 (11) | C14—C9—C10—N3 | −177.98 (10) |
C2—C3—C4—C5 | −1.41 (16) | C8—C9—C10—N3 | 1.34 (17) |
N2—C3—C4—C7 | −2.54 (18) | C14—C9—C10—C11 | 0.98 (17) |
C2—C3—C4—C7 | 178.79 (10) | C8—C9—C10—C11 | −179.70 (10) |
C3—C4—C5—C6 | 1.12 (17) | N3—C10—C11—C12 | 177.86 (10) |
C7—C4—C5—C6 | −179.08 (11) | C9—C10—C11—C12 | −1.14 (16) |
C4—C5—C6—C1 | −0.12 (17) | C10—C11—C12—C13 | 0.46 (18) |
C2—C1—C6—C5 | −0.60 (18) | C10—C11—C12—N4 | −177.45 (10) |
N1—C1—C6—C5 | −179.96 (10) | O6—N4—C12—C11 | 170.38 (11) |
C10—N3—C7—O3 | −1.02 (16) | O5—N4—C12—C11 | −8.20 (15) |
C10—N3—C7—C4 | 179.81 (10) | O6—N4—C12—C13 | −7.64 (16) |
C8—O3—C7—N3 | 3.96 (17) | O5—N4—C12—C13 | 173.77 (11) |
C8—O3—C7—C4 | −176.79 (9) | C11—C12—C13—C14 | 0.44 (18) |
C5—C4—C7—N3 | −178.47 (11) | N4—C12—C13—C14 | 178.34 (10) |
C3—C4—C7—N3 | 1.33 (18) | C12—C13—C14—C9 | −0.62 (17) |
C5—C4—C7—O3 | 2.27 (15) | C10—C9—C14—C13 | −0.07 (18) |
C3—C4—C7—O3 | −177.93 (10) | C8—C9—C14—C13 | −179.38 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···N3 | 0.89 (1) | 2.06 (1) | 2.7124 (14) | 130 (1) |
N2—H2N···O1i | 0.89 (1) | 2.20 (1) | 3.0691 (14) | 166 (1) |
C11—H11···O5ii | 0.95 | 2.48 | 3.3248 (14) | 149 |
C13—H13···O4iii | 0.95 | 2.38 | 3.1778 (14) | 141 |
Symmetry codes: (i) −x+1/2, y+1/2, −z−1/2; (ii) −x, −y+2, −z; (iii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1N···N3 | 0.886 (11) | 2.061 (11) | 2.7124 (14) | 129.5 (10) |
N2—H2N···O1i | 0.886 (11) | 2.201 (11) | 3.0691 (14) | 166.1 (12) |
C11—H11···O5ii | 0.95 | 2.48 | 3.3248 (14) | 149 |
C13—H13···O4iii | 0.95 | 2.38 | 3.1778 (14) | 141 |
Symmetry codes: (i) −x+1/2, y+1/2, −z−1/2; (ii) −x, −y+2, −z; (iii) −x+1/2, y+1/2, −z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.
Acknowledgements
The use of the EPSRC X-ray crystallographic service (Coles & Gale, 2012) at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Structural studies are supported by the Ministry of Higher Education (Malaysia) and the University of Malaya through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).
References
Bolotin, B. M., Ryabokobylko, Yu. S., Drapkina, D. A. & Brudz, V. G. (1965). Tr. Vses. Nauchn.-Issled. Inst. Khim. Reakt. Osobo Chist. Khim. Veshchestv, pp. 289–301. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brudz, V. G., Bolotin, B. M., Drapkina, D. A., Chernova, N. I. & Zeryukina, L. S. (1967). SU, 199894 19670713. Google Scholar
Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689. Web of Science CSD CrossRef CAS Google Scholar
Eberius, K. & Hügin, M. (2012). PCT Int. Appl. WO 2012095803. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khimich, M. N., Birgen, E. A., Bolotin, B. M. & Uzhinov, B. M. (2009). High Energy Chem. 43, 123–128. Web of Science CrossRef CAS Google Scholar
Khimich, M. N., Gostev, F. E., Shelaev, I. V., Sarkisov, O. M., Birgen, E. A., Bolotin, B. M. & Uzhinov, B. M. (2010). High Energy Chem. 44, 482–491. Web of Science CrossRef CAS Google Scholar
Loseva, M. V., Bolotin, B. M. & Bogdanova, G. A. (1972). Chem. Heterocycl. Compd, 8, 557–561. CrossRef Google Scholar
Loseva, M. V., Bolotin, B. M. & Krasovitskii, B. M. (1971). Chem. Heterocycl. Compd, 7, 964–967. CrossRef Google Scholar
Rigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.