organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o158-o159

2-(2-Amino-4-nitro­phen­yl)-7-nitro-4H-3,1-benzoxazin-4-one

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bFundação Oswaldo Cruz, Instituto de Tecnologia em, Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos 21041-250, Rio de Janeiro, RJ, Brazil, and cChemistry Department, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 10 January 2014; accepted 10 January 2014; online 18 January 2014)

In the title compound, C14H8N4O6, the benzoxazin-4-one fused-ring system (r.m.s. deviation = 0.018 Å) is coplanar with the attached benzene ring [dihedral angle = 0.81 (4)°], there being an intra­molecular N—H⋯N hydrogen bond between them. Each nitro group is twisted out of the plane of the attached benzene ring [O—N—C—C torsion angles = 167.94 (11) and 170.38 (11)°]. In the crystal, amine–nitro N—H⋯O hydrogen bonds lead to centrosymmetric dimeric aggregates that are connected into a three-dimensional architecture by oxazin­yl–nitro C—H⋯O and ππ inter­actions [inter-centroid distance between the oxazinyl and terminal benzene rings = 3.5069 (7) Å].

Related literature

For background to the spectroscopic characteristics of N-derivatives of 2-(2-amino­phen­yl)-4H-3,1-benzoxazin-4-ones, see: Loseva et al. (1971[Loseva, M. V., Bolotin, B. M. & Krasovitskii, B. M. (1971). Chem. Heterocycl. Compd, 7, 964-967.],1972[Loseva, M. V., Bolotin, B. M. & Bogdanova, G. A. (1972). Chem. Heterocycl. Compd, 8, 557-561.]); Eberius & Hügin (2012[Eberius, K. & Hügin, M. (2012). PCT Int. Appl. WO 2012095803.]); Khimich et al. (2009[Khimich, M. N., Birgen, E. A., Bolotin, B. M. & Uzhinov, B. M. (2009). High Energy Chem. 43, 123-128.], 2010[Khimich, M. N., Gostev, F. E., Shelaev, I. V., Sarkisov, O. M., Birgen, E. A., Bolotin, B. M. & Uzhinov, B. M. (2010). High Energy Chem. 44, 482-491.]). For their synthesis, see: Bolotin et al. (1965[Bolotin, B. M., Ryabokobylko, Yu. S., Drapkina, D. A. & Brudz, V. G. (1965). Tr. Vses. Nauchn.-Issled. Inst. Khim. Reakt. Osobo Chist. Khim. Veshchestv, pp. 289-301. ]); Brudz et al. (1967[Brudz, V. G., Bolotin, B. M., Drapkina, D. A., Chernova, N. I. & Zeryukina, L. S. (1967). SU, 199894 19670713.]); Loseva et al. (1971[Loseva, M. V., Bolotin, B. M. & Krasovitskii, B. M. (1971). Chem. Heterocycl. Compd, 7, 964-967.], 1972[Loseva, M. V., Bolotin, B. M. & Bogdanova, G. A. (1972). Chem. Heterocycl. Compd, 8, 557-561.]); Eberius & Hügin (2012[Eberius, K. & Hügin, M. (2012). PCT Int. Appl. WO 2012095803.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8N4O6

  • Mr = 328.24

  • Monoclinic, P 21 /n

  • a = 7.0229 (3) Å

  • b = 8.6148 (3) Å

  • c = 21.5662 (15) Å

  • β = 90.029 (6)°

  • V = 1304.77 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.13 × 0.08 × 0.03 mm

Data collection
  • Rigaku R-AXIS conversion diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.831, Tmax = 1.000

  • 16840 measured reflections

  • 2983 independent reflections

  • 2513 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.12

  • 2983 reflections

  • 223 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯N3 0.89 (1) 2.06 (1) 2.7124 (14) 130 (1)
N2—H2N⋯O1i 0.89 (1) 2.20 (1) 3.0691 (14) 166 (1)
C11—H11⋯O5ii 0.95 2.48 3.3248 (14) 149
C13—H13⋯O4iii 0.95 2.38 3.1778 (14) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

The title compound was obtained from the reaction of 2-amino-4-nitro­benzoic acid with 4-chloro­benzene­sulfonyl chloride (1 mmol of each) in refluxing acetone (20 ml) for 30 min. The reaction mixture was rotary evaporated and the residue was recrystallized from MeOCH2CH2OH. Crystals used in the structure determination were grown by slow evaporation of its MeOCH2CH2OH solution; M.pt: 474–475 K (dec.).

Refinement top

Intensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012). The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Results and discussion top

The luminescent (Loseva et al., 1971; Loseva et al., 1972), fluorescent (Eberius & Hügin, 2012) and intra­molecular photoinduced proton transfer (IPPT) properties (Khimich et al., 2009, 2010) of N-derivatives of 2-(2-amino­phenyl)-4H-3,1-benzoxazin-4-ones have attracted much attention. IPPT plays an important role in both chemical and biological processes (Khimich et al., 2009; Khimich et al., 2010 and references therein). The spectral properties are influenced by the strength of the intra­molecular N—H···N hydrogen bond. Generally, the preparation of 2-(2-amino­phenyl)-4H-3,1-benzoxazin-4-ones involves a dimerization of an anthranilic acid derivative in the presence of SO2Cl2 (Brudz et al., 1967; Eberius & Hügin, 2012), arene­sulfonyl chloride (Loseva et al., 1971; Loseva et al., 1972) or PhCH2Cl (Bolotin et al., 1965) in pyridine. Herein, the crystal and molecular structure of the title compound, (I), is described.

In (I), Fig. 1, the atoms comprising the benzoxazin-4-one fused-ring system are co-planar (r.m.s. deviation = 0.018 Å) and form a dihedral angle of 0.81 (4)° with the attached benzene ring. The co-planarity between the ring systems is accompanied by an intra­molecular N2—H···N3 hydrogen bond, Table 1. Both nitro groups are twisted out of the plane of the attached benzene rings as seen in the values of the O1—N1—C1—C2 and O6—N4—C12—C11 torsion angles of 167.94 (11) and 170.38 (11)°, respectively.

In the crystal packing, centrosymmetric dimeric aggregates are formed via 14-membered {···HNC3NO}2 synthons featuring amine-N—H···O(nitro) hydrogen bonds. These are connected into a three-dimensional architecture by oxazinyl-C—H···O(nitro) inter­actions as well as by ππ inter­actions between the oxazinyl and terminal benzene rings [inter­centroid distance = 3.5069 (7) Å, inter­planar angle = 1.11 (5)° for symmetry operation: 1-x, 1-y, -z].

Related literature top

For background to the spectroscopic characteristics of N-derivatives of 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones, see: Loseva et al. (1971,1972); Eberius & Hügin (2012); Khimich et al. (2009, 2010). For their synthesis, see: Bolotin et al. (1965); Brudz et al. (1967); Loseva et al. (1971, 1972); Eberius & Hügin (2012).

Structure description top

The luminescent (Loseva et al., 1971; Loseva et al., 1972), fluorescent (Eberius & Hügin, 2012) and intra­molecular photoinduced proton transfer (IPPT) properties (Khimich et al., 2009, 2010) of N-derivatives of 2-(2-amino­phenyl)-4H-3,1-benzoxazin-4-ones have attracted much attention. IPPT plays an important role in both chemical and biological processes (Khimich et al., 2009; Khimich et al., 2010 and references therein). The spectral properties are influenced by the strength of the intra­molecular N—H···N hydrogen bond. Generally, the preparation of 2-(2-amino­phenyl)-4H-3,1-benzoxazin-4-ones involves a dimerization of an anthranilic acid derivative in the presence of SO2Cl2 (Brudz et al., 1967; Eberius & Hügin, 2012), arene­sulfonyl chloride (Loseva et al., 1971; Loseva et al., 1972) or PhCH2Cl (Bolotin et al., 1965) in pyridine. Herein, the crystal and molecular structure of the title compound, (I), is described.

In (I), Fig. 1, the atoms comprising the benzoxazin-4-one fused-ring system are co-planar (r.m.s. deviation = 0.018 Å) and form a dihedral angle of 0.81 (4)° with the attached benzene ring. The co-planarity between the ring systems is accompanied by an intra­molecular N2—H···N3 hydrogen bond, Table 1. Both nitro groups are twisted out of the plane of the attached benzene rings as seen in the values of the O1—N1—C1—C2 and O6—N4—C12—C11 torsion angles of 167.94 (11) and 170.38 (11)°, respectively.

In the crystal packing, centrosymmetric dimeric aggregates are formed via 14-membered {···HNC3NO}2 synthons featuring amine-N—H···O(nitro) hydrogen bonds. These are connected into a three-dimensional architecture by oxazinyl-C—H···O(nitro) inter­actions as well as by ππ inter­actions between the oxazinyl and terminal benzene rings [inter­centroid distance = 3.5069 (7) Å, inter­planar angle = 1.11 (5)° for symmetry operation: 1-x, 1-y, -z].

For background to the spectroscopic characteristics of N-derivatives of 2-(2-aminophenyl)-4H-3,1-benzoxazin-4-ones, see: Loseva et al. (1971,1972); Eberius & Hügin (2012); Khimich et al. (2009, 2010). For their synthesis, see: Bolotin et al. (1965); Brudz et al. (1967); Loseva et al. (1971, 1972); Eberius & Hügin (2012).

Synthesis and crystallization top

The title compound was obtained from the reaction of 2-amino-4-nitro­benzoic acid with 4-chloro­benzene­sulfonyl chloride (1 mmol of each) in refluxing acetone (20 ml) for 30 min. The reaction mixture was rotary evaporated and the residue was recrystallized from MeOCH2CH2OH. Crystals used in the structure determination were grown by slow evaporation of its MeOCH2CH2OH solution; M.pt: 474–475 K (dec.).

Refinement details top

Intensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012). The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for (I). The N—H···O, C—H···O and ππ interactions are shown as blue, orange and purple dashed lines, respectively.
2-(2-Amino-4-nitrophenyl)-7-nitro-4H-3,1-benzoxazin-4-one top
Crystal data top
C14H8N4O6F(000) = 672
Mr = 328.24Dx = 1.671 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 14670 reflections
a = 7.0229 (3) Åθ = 3.0–27.5°
b = 8.6148 (3) ŵ = 0.14 mm1
c = 21.5662 (15) ÅT = 100 K
β = 90.029 (6)°Plate, yellow
V = 1304.77 (12) Å30.13 × 0.08 × 0.03 mm
Z = 4
Data collection top
Rigaku R-AXIS conversion
diffractometer
2983 independent reflections
Radiation source: Sealed Tube2513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 3.0°
profile data from ω–scansh = 99
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
k = 1011
Tmin = 0.831, Tmax = 1.000l = 2828
16840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.2657P]
where P = (Fo2 + 2Fc2)/3
2983 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H8N4O6V = 1304.77 (12) Å3
Mr = 328.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0229 (3) ŵ = 0.14 mm1
b = 8.6148 (3) ÅT = 100 K
c = 21.5662 (15) Å0.13 × 0.08 × 0.03 mm
β = 90.029 (6)°
Data collection top
Rigaku R-AXIS conversion
diffractometer
2983 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
2513 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 1.000Rint = 0.026
16840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.38 e Å3
2983 reflectionsΔρmin = 0.21 e Å3
223 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31373 (16)0.12873 (11)0.24884 (4)0.0331 (3)
O20.46051 (15)0.04287 (11)0.19338 (5)0.0346 (3)
O30.31958 (12)0.37682 (9)0.06796 (4)0.01839 (19)
O40.33686 (15)0.36166 (10)0.17002 (4)0.0293 (2)
O50.01987 (14)1.12855 (10)0.07508 (4)0.0255 (2)
O60.00939 (15)1.12189 (10)0.17491 (4)0.0305 (2)
N10.37678 (15)0.08006 (12)0.19950 (5)0.0217 (2)
N20.19120 (16)0.56949 (12)0.11084 (5)0.0200 (2)
H1N0.175 (2)0.6344 (14)0.0794 (5)0.024*
H2N0.176 (2)0.5998 (16)0.1498 (5)0.024*
N30.21171 (14)0.59740 (11)0.01426 (4)0.0160 (2)
N40.03554 (15)1.06317 (12)0.12548 (4)0.0193 (2)
C10.34836 (16)0.17765 (13)0.14391 (5)0.0174 (2)
C20.28728 (16)0.32695 (13)0.15271 (5)0.0169 (2)
H20.26530.36480.19350.020*
C30.25693 (16)0.42466 (13)0.10088 (5)0.0154 (2)
C40.29441 (16)0.36214 (13)0.04081 (5)0.0156 (2)
C50.35508 (16)0.20706 (13)0.03512 (5)0.0182 (2)
H50.37740.16600.00510.022*
C60.38315 (16)0.11279 (13)0.08591 (5)0.0185 (2)
H60.42430.00830.08150.022*
C70.27046 (16)0.45587 (13)0.01513 (5)0.0155 (2)
C80.29892 (17)0.44138 (14)0.12669 (5)0.0192 (2)
C90.23325 (16)0.60264 (13)0.12738 (5)0.0165 (2)
C100.19409 (16)0.67456 (13)0.07059 (5)0.0154 (2)
C110.13195 (16)0.82896 (13)0.06998 (5)0.0162 (2)
H110.10660.88110.03210.019*
C120.10881 (16)0.90273 (13)0.12612 (5)0.0163 (2)
C130.14479 (17)0.83313 (14)0.18319 (5)0.0181 (2)
H130.12600.88820.22080.022*
C140.20854 (17)0.68167 (14)0.18338 (5)0.0186 (2)
H140.23560.63120.22150.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0600 (7)0.0259 (5)0.0136 (4)0.0009 (4)0.0021 (4)0.0027 (3)
O20.0458 (6)0.0254 (5)0.0328 (5)0.0117 (4)0.0024 (4)0.0102 (4)
O30.0264 (5)0.0176 (4)0.0111 (4)0.0030 (3)0.0010 (3)0.0008 (3)
O40.0483 (6)0.0254 (5)0.0143 (4)0.0105 (4)0.0021 (4)0.0030 (3)
O50.0398 (5)0.0188 (4)0.0180 (4)0.0026 (4)0.0014 (4)0.0024 (3)
O60.0496 (6)0.0241 (5)0.0178 (5)0.0081 (4)0.0070 (4)0.0055 (3)
N10.0260 (6)0.0192 (5)0.0199 (5)0.0028 (4)0.0055 (4)0.0049 (4)
N20.0319 (6)0.0173 (5)0.0107 (5)0.0028 (4)0.0007 (4)0.0005 (4)
N30.0188 (5)0.0175 (5)0.0116 (4)0.0004 (4)0.0002 (4)0.0002 (4)
N40.0239 (5)0.0180 (5)0.0161 (5)0.0006 (4)0.0021 (4)0.0024 (4)
C10.0166 (5)0.0192 (5)0.0164 (5)0.0023 (4)0.0026 (4)0.0053 (4)
C20.0192 (6)0.0192 (5)0.0122 (5)0.0017 (4)0.0012 (4)0.0004 (4)
C30.0164 (5)0.0162 (5)0.0136 (5)0.0016 (4)0.0013 (4)0.0008 (4)
C40.0161 (5)0.0179 (5)0.0129 (5)0.0005 (4)0.0003 (4)0.0010 (4)
C50.0189 (6)0.0191 (6)0.0165 (5)0.0009 (4)0.0013 (4)0.0012 (4)
C60.0189 (6)0.0164 (5)0.0202 (6)0.0020 (4)0.0004 (4)0.0006 (4)
C70.0157 (5)0.0188 (5)0.0121 (5)0.0013 (4)0.0011 (4)0.0016 (4)
C80.0226 (6)0.0229 (6)0.0121 (5)0.0007 (5)0.0001 (4)0.0005 (4)
C90.0169 (6)0.0192 (6)0.0133 (5)0.0004 (4)0.0006 (4)0.0004 (4)
C100.0151 (5)0.0189 (5)0.0123 (5)0.0020 (4)0.0007 (4)0.0006 (4)
C110.0176 (6)0.0185 (5)0.0126 (5)0.0014 (4)0.0007 (4)0.0005 (4)
C120.0169 (6)0.0157 (5)0.0162 (5)0.0015 (4)0.0010 (4)0.0016 (4)
C130.0196 (6)0.0231 (6)0.0116 (5)0.0018 (4)0.0018 (4)0.0027 (4)
C140.0202 (6)0.0237 (6)0.0118 (5)0.0003 (4)0.0008 (4)0.0018 (4)
Geometric parameters (Å, º) top
O1—N11.2263 (14)C2—H20.9500
O2—N11.2185 (14)C3—C41.4273 (15)
O3—C71.3712 (13)C4—C51.4076 (16)
O3—C81.3910 (13)C4—C71.4615 (15)
O4—C81.1897 (14)C5—C61.3779 (16)
O5—N41.2291 (13)C5—H50.9500
O6—N41.2215 (13)C6—H60.9500
N1—C11.4780 (14)C8—C91.4639 (16)
N2—C31.3476 (15)C9—C141.3972 (15)
N2—H1N0.886 (9)C9—C101.3997 (15)
N2—H2N0.886 (9)C10—C111.3999 (16)
N3—C71.2873 (15)C11—C121.3771 (15)
N3—C101.3904 (14)C11—H110.9500
N4—C121.4749 (15)C12—C131.3921 (16)
C1—C21.3690 (16)C13—C141.3795 (17)
C1—C61.3913 (16)C13—H130.9500
C2—C31.4156 (15)C14—H140.9500
C7—O3—C8122.12 (9)C5—C6—H6121.5
O2—N1—O1124.42 (10)C1—C6—H6121.5
O2—N1—C1118.16 (10)N3—C7—O3124.26 (10)
O1—N1—C1117.42 (10)N3—C7—C4123.25 (10)
C3—N2—H1N120.5 (10)O3—C7—C4112.49 (9)
C3—N2—H2N117.6 (10)O4—C8—O3117.45 (11)
H1N—N2—H2N121.6 (14)O4—C8—C9127.60 (11)
C7—N3—C10117.96 (9)O3—C8—C9114.95 (9)
O6—N4—O5123.98 (10)C14—C9—C10121.07 (10)
O6—N4—C12118.05 (9)C14—C9—C8120.70 (10)
O5—N4—C12117.95 (9)C10—C9—C8118.22 (10)
C2—C1—C6123.84 (10)N3—C10—C9122.37 (10)
C2—C1—N1117.67 (10)N3—C10—C11118.28 (10)
C6—C1—N1118.49 (10)C9—C10—C11119.34 (10)
C1—C2—C3119.76 (10)C12—C11—C10117.84 (10)
C1—C2—H2120.1C12—C11—H11121.1
C3—C2—H2120.1C10—C11—H11121.1
N2—C3—C2118.45 (10)C11—C12—C13123.86 (11)
N2—C3—C4123.86 (10)C11—C12—N4117.75 (10)
C2—C3—C4117.68 (10)C13—C12—N4118.36 (10)
C5—C4—C3119.54 (10)C14—C13—C12117.96 (10)
C5—C4—C7119.16 (10)C14—C13—H13121.0
C3—C4—C7121.30 (10)C12—C13—H13121.0
C6—C5—C4122.24 (10)C13—C14—C9119.92 (10)
C6—C5—H5118.9C13—C14—H14120.0
C4—C5—H5118.9C9—C14—H14120.0
C5—C6—C1116.93 (10)
O2—N1—C1—C2167.94 (11)C7—O3—C8—O4176.57 (11)
O1—N1—C1—C212.17 (16)C7—O3—C8—C93.88 (15)
O2—N1—C1—C612.66 (16)O4—C8—C9—C140.2 (2)
O1—N1—C1—C6167.23 (11)O3—C8—C9—C14179.33 (10)
C6—C1—C2—C30.27 (18)O4—C8—C9—C10179.16 (13)
N1—C1—C2—C3179.63 (10)O3—C8—C9—C101.35 (15)
C1—C2—C3—N2177.99 (11)C7—N3—C10—C91.60 (16)
C1—C2—C3—C40.75 (16)C7—N3—C10—C11179.43 (10)
N2—C3—C4—C5177.25 (11)C14—C9—C10—N3177.98 (10)
C2—C3—C4—C51.41 (16)C8—C9—C10—N31.34 (17)
N2—C3—C4—C72.54 (18)C14—C9—C10—C110.98 (17)
C2—C3—C4—C7178.79 (10)C8—C9—C10—C11179.70 (10)
C3—C4—C5—C61.12 (17)N3—C10—C11—C12177.86 (10)
C7—C4—C5—C6179.08 (11)C9—C10—C11—C121.14 (16)
C4—C5—C6—C10.12 (17)C10—C11—C12—C130.46 (18)
C2—C1—C6—C50.60 (18)C10—C11—C12—N4177.45 (10)
N1—C1—C6—C5179.96 (10)O6—N4—C12—C11170.38 (11)
C10—N3—C7—O31.02 (16)O5—N4—C12—C118.20 (15)
C10—N3—C7—C4179.81 (10)O6—N4—C12—C137.64 (16)
C8—O3—C7—N33.96 (17)O5—N4—C12—C13173.77 (11)
C8—O3—C7—C4176.79 (9)C11—C12—C13—C140.44 (18)
C5—C4—C7—N3178.47 (11)N4—C12—C13—C14178.34 (10)
C3—C4—C7—N31.33 (18)C12—C13—C14—C90.62 (17)
C5—C4—C7—O32.27 (15)C10—C9—C14—C130.07 (18)
C3—C4—C7—O3177.93 (10)C8—C9—C14—C13179.38 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···N30.89 (1)2.06 (1)2.7124 (14)130 (1)
N2—H2N···O1i0.89 (1)2.20 (1)3.0691 (14)166 (1)
C11—H11···O5ii0.952.483.3248 (14)149
C13—H13···O4iii0.952.383.1778 (14)141
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+2, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···N30.886 (11)2.061 (11)2.7124 (14)129.5 (10)
N2—H2N···O1i0.886 (11)2.201 (11)3.0691 (14)166.1 (12)
C11—H11···O5ii0.952.483.3248 (14)149
C13—H13···O4iii0.952.383.1778 (14)141
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x, y+2, z; (iii) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]) at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Structural studies are supported by the Ministry of Higher Education (Malaysia) and the University of Malaya through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationBolotin, B. M., Ryabokobylko, Yu. S., Drapkina, D. A. & Brudz, V. G. (1965). Tr. Vses. Nauchn.-Issled. Inst. Khim. Reakt. Osobo Chist. Khim. Veshchestv, pp. 289–301.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrudz, V. G., Bolotin, B. M., Drapkina, D. A., Chernova, N. I. & Zeryukina, L. S. (1967). SU, 199894 19670713.  Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationEberius, K. & Hügin, M. (2012). PCT Int. Appl. WO 2012095803.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhimich, M. N., Birgen, E. A., Bolotin, B. M. & Uzhinov, B. M. (2009). High Energy Chem. 43, 123–128.  Web of Science CrossRef CAS Google Scholar
First citationKhimich, M. N., Gostev, F. E., Shelaev, I. V., Sarkisov, O. M., Birgen, E. A., Bolotin, B. M. & Uzhinov, B. M. (2010). High Energy Chem. 44, 482–491.  Web of Science CrossRef CAS Google Scholar
First citationLoseva, M. V., Bolotin, B. M. & Bogdanova, G. A. (1972). Chem. Heterocycl. Compd, 8, 557–561.  CrossRef Google Scholar
First citationLoseva, M. V., Bolotin, B. M. & Krasovitskii, B. M. (1971). Chem. Heterocycl. Compd, 7, 964–967.  CrossRef Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o158-o159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds