organic compounds
7-Methoxy-2-phenylquinoline-3-carbaldehyde
aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR Université Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université , Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
In the title molecule, C17H13NO2, the phenyl ring is inclined to the quinoline ring system by 43.53 (4)°. In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming double-stranded chains propagating along [011]. These chains are linked via π–π interactions involving inversion-related quinoline rings; the shortest centroid–centroid distance is 3.6596 (17) Å.
CCDC reference: 982610
Related literature
For the synthesis and applications of similar structures, see: Montalban (2011); Wang et al. (2011); Nilsson et al. (2008); Elliott et al. (2006); Metallidis et al. (2007); Kaila et al. (2007). For related structures, see: Abdel-Wahab et al. (2012); Benzerka et al. (2011, 2012, 2013). For our previously work on the imidazol unit, see: Bouraiou et al. (2011); Hayour et al. (2011); Benzerka et al. (2012).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).
Supporting information
CCDC reference: 982610
10.1107/S1600536814001457/hg5376sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814001457/hg5376Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814001457/hg5376Isup3.cml
A mixture of 2-chloro-7-methoxyquinoline-3-carbaldehyde (l mmol) and phenylboronic acid (1.2 mmol) in 4 ml DME was stirred under nitrogen. Palladium acetate (0.01 mmol), aq. K2CO3 (3 mmol in 3.75 ml of H2O) and triphenylphosphine (0.04 mmol) were added and the mixture was refluxed for 2 h. After completion, the reaction mixture was cooled to room temperature, diluting with EtOAc and filtering through a small bed of celite. The organic layers were collected, combined, washed with water and saturated aq NaHCO3 (2x10 ml), dried over anhydrous Na2SO4 and concentrated under vacuum. The crude compound was purified by
on silica gel using ethyl acetate/ hexane (1/2) to afford the desired product as yellow solid. Single crystals suitable for the X-ray were obtained by dissolving the pure compound in an ethyl acetate/hexane mixture and allowing the solution to slowly evaporate at room temperature.. Approximate positions for all the H atoms were first obtained from the difference
However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å; and Cmethyl—Hmethyl = 0.98 Å; The idealized methyl group was allowed to rotate about the C—C bond during the by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Haryl) = 1.2 Ueq(Caryl).Heterocyclic compounds have so far been synthesized mainly due to the wide range of biological activities. Quinoline derivatives have considerable interest since many years due to the presence of this skeleton in a large number of bioactive compounds and natural products (Montalban, 2011; Wang et al., 2011). In other hand, it has been well established that presence of aryl ring at second position of quinoline moiety gives a very good antibacterial property to the target molecule and plays a significant role in development of new antibacterials (Nilsson et al., 2008; Elliott et al., 2006). These derivatives were found to be useful biological targets, and at present they attained much attention in the development of new drugs (Metallidis et al., 2007; Kaila et al., 2007). Following of our previous works related to the use of substituted 2-chloro-3-formylquinolines as precursors of different quinoline-containing heterocycles (Bouraiou et al., 2011; Hayour et al., 2011), we have recently reported preparations and antibacterial screening of series of compounds carrying diverse functionalities such as an amine, amide, ester group, heterocylic unit linked to the 2-phenylquinoline entity (Benzerka et al., 2011, 2012, 2013). We report herein the synthesis and single-crystal X-ray structure of 7-methoxy-2-phenylquinoline-3-carbaldehyde (I).
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The π-π stacking interactions between quinoline rings with a centroid-centroid distance from 3.6596 (17)Å to 4.0726 (18)Å. These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.
of (I) consists of 2-phenylquinoline linked to 7-methoxy and 3-carbaldehyde. The substituted phenyl ring forms dihedral angle of 43.53 (4)° with heterocyclic ring of quinoline. The crystal packing can be described as alternating layers parallel to the (210) (Fig. 2). It is stabilized by C—H···O hydrogen bond (Fig. 3; Table. 1), and strongFor the synthesis and applications of similar structures, see: Montalban (2011); Wang et al. (2011); Nilsson et al. (2008); Elliott et al. (2006); Metallidis et al. (2007); Kaila et al. (2007). For related structures, see: Abdel-Wahab et al. (2012); Benzerka et al. (2011, 2012, 2013). For our previously work on the imidazol unit, see: Bouraiou et al. (2011); Hayour et al. (2011); Benzerka et al. (2012).
Data collection: APEX2 (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).C17H13NO2 | Z = 2 |
Mr = 263.28 | F(000) = 276 |
Triclinic, P1 | Dx = 1.325 Mg m−3 |
a = 7.332 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.582 (2) Å | Cell parameters from 1596 reflections |
c = 12.487 (4) Å | θ = 2.9–27.7° |
α = 73.424 (12)° | µ = 0.09 mm−1 |
β = 85.877 (12)° | T = 150 K |
γ = 83.029 (11)° | Stick, yellow |
V = 659.9 (4) Å3 | 0.12 × 0.03 × 0.02 mm |
Bruker APEXII diffractometer | 2344 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
CCD rotation images, thin slices scans | θmax = 27.7°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −9→9 |
Tmin = 0.889, Tmax = 0.993 | k = −9→9 |
5538 measured reflections | l = −15→16 |
3001 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.064P)2 + 0.0518P] where P = (Fo2 + 2Fc2)/3 |
3001 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C17H13NO2 | γ = 83.029 (11)° |
Mr = 263.28 | V = 659.9 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.332 (3) Å | Mo Kα radiation |
b = 7.582 (2) Å | µ = 0.09 mm−1 |
c = 12.487 (4) Å | T = 150 K |
α = 73.424 (12)° | 0.12 × 0.03 × 0.02 mm |
β = 85.877 (12)° |
Bruker APEXII diffractometer | 3001 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 2344 reflections with I > 2σ(I) |
Tmin = 0.889, Tmax = 0.993 | Rint = 0.044 |
5538 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.23 e Å−3 |
3001 reflections | Δρmin = −0.24 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C17 | 0.5020 (2) | −0.08593 (18) | 0.69768 (12) | 0.0260 (3) | |
H17A | 0.4055 | −0.1161 | 0.6575 | 0.039* | |
H17B | 0.5425 | −0.1947 | 0.7585 | 0.039* | |
H17C | 0.6065 | −0.0489 | 0.6459 | 0.039* | |
C1 | 0.21611 (18) | 0.61093 (18) | 0.31036 (11) | 0.0201 (3) | |
C2 | 0.13397 (18) | 0.75805 (18) | 0.35386 (11) | 0.0204 (3) | |
C3 | 0.13446 (18) | 0.73428 (18) | 0.46777 (12) | 0.0204 (3) | |
H3 | 0.0814 | 0.831 | 0.4983 | 0.025* | |
C4 | 0.21293 (17) | 0.56801 (17) | 0.53832 (11) | 0.0187 (3) | |
C5 | 0.21827 (18) | 0.53151 (18) | 0.65648 (11) | 0.0208 (3) | |
H5 | 0.1691 | 0.6246 | 0.691 | 0.025* | |
C6 | 0.29264 (19) | 0.36550 (19) | 0.72048 (11) | 0.0221 (3) | |
H6 | 0.2969 | 0.3434 | 0.7991 | 0.026* | |
C7 | 0.36406 (18) | 0.22478 (18) | 0.66966 (11) | 0.0202 (3) | |
C8 | 0.36215 (18) | 0.25374 (18) | 0.55626 (11) | 0.0203 (3) | |
H8 | 0.4115 | 0.1585 | 0.5236 | 0.024* | |
C9 | 0.28617 (17) | 0.42649 (17) | 0.48809 (11) | 0.0184 (3) | |
C10 | 0.03347 (19) | 0.92782 (18) | 0.28371 (12) | 0.0249 (3) | |
H10 | 0.0004 | 0.9279 | 0.2115 | 0.03* | |
C11 | 0.23061 (18) | 0.62767 (19) | 0.18804 (11) | 0.0222 (3) | |
C12 | 0.19420 (19) | 0.4795 (2) | 0.15046 (12) | 0.0262 (3) | |
H12 | 0.1563 | 0.3708 | 0.2025 | 0.031* | |
C13 | 0.2129 (2) | 0.4898 (2) | 0.03792 (13) | 0.0346 (4) | |
H13 | 0.1891 | 0.3876 | 0.0133 | 0.042* | |
C14 | 0.2660 (2) | 0.6478 (3) | −0.03901 (13) | 0.0426 (4) | |
H14 | 0.2765 | 0.6549 | −0.1164 | 0.051* | |
C15 | 0.3037 (2) | 0.7956 (2) | −0.00300 (13) | 0.0399 (4) | |
H15 | 0.3419 | 0.9035 | −0.0556 | 0.048* | |
C16 | 0.2860 (2) | 0.7864 (2) | 0.10982 (12) | 0.0302 (4) | |
H16 | 0.3115 | 0.8885 | 0.1341 | 0.036* | |
N1 | 0.28755 (15) | 0.45003 (15) | 0.37525 (9) | 0.0202 (3) | |
O1 | 0.43121 (14) | 0.06304 (12) | 0.74313 (8) | 0.0250 (3) | |
O2 | −0.00907 (16) | 1.06677 (13) | 0.31310 (9) | 0.0343 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C17 | 0.0318 (8) | 0.0184 (7) | 0.0253 (7) | 0.0039 (6) | −0.0022 (6) | −0.0045 (6) |
C1 | 0.0174 (6) | 0.0220 (7) | 0.0197 (7) | −0.0042 (5) | 0.0000 (5) | −0.0032 (5) |
C2 | 0.0184 (7) | 0.0177 (7) | 0.0227 (7) | −0.0025 (5) | −0.0008 (5) | −0.0016 (5) |
C3 | 0.0195 (7) | 0.0178 (6) | 0.0247 (7) | −0.0012 (5) | 0.0015 (5) | −0.0079 (5) |
C4 | 0.0162 (6) | 0.0188 (7) | 0.0209 (7) | −0.0031 (5) | 0.0004 (5) | −0.0049 (5) |
C5 | 0.0216 (7) | 0.0209 (7) | 0.0216 (7) | −0.0021 (5) | 0.0021 (5) | −0.0097 (5) |
C6 | 0.0232 (7) | 0.0267 (7) | 0.0175 (6) | −0.0034 (6) | 0.0002 (5) | −0.0079 (5) |
C7 | 0.0203 (7) | 0.0186 (7) | 0.0196 (7) | −0.0014 (5) | −0.0012 (5) | −0.0023 (5) |
C8 | 0.0213 (7) | 0.0188 (7) | 0.0209 (7) | −0.0001 (5) | 0.0010 (5) | −0.0069 (5) |
C9 | 0.0171 (6) | 0.0194 (7) | 0.0180 (6) | −0.0029 (5) | 0.0006 (5) | −0.0043 (5) |
C10 | 0.0252 (7) | 0.0214 (7) | 0.0254 (7) | −0.0026 (6) | −0.0005 (6) | −0.0024 (6) |
C11 | 0.0195 (7) | 0.0261 (7) | 0.0183 (7) | 0.0016 (5) | −0.0025 (5) | −0.0032 (5) |
C12 | 0.0229 (7) | 0.0301 (8) | 0.0244 (7) | 0.0013 (6) | −0.0019 (6) | −0.0071 (6) |
C13 | 0.0330 (9) | 0.0462 (10) | 0.0281 (8) | −0.0018 (7) | −0.0035 (7) | −0.0164 (7) |
C14 | 0.0440 (10) | 0.0676 (12) | 0.0175 (7) | −0.0103 (9) | −0.0008 (7) | −0.0124 (8) |
C15 | 0.0427 (10) | 0.0492 (10) | 0.0215 (8) | −0.0109 (8) | −0.0003 (7) | 0.0026 (7) |
C16 | 0.0314 (8) | 0.0330 (8) | 0.0233 (7) | −0.0061 (6) | −0.0013 (6) | −0.0020 (6) |
N1 | 0.0210 (6) | 0.0207 (6) | 0.0177 (6) | −0.0009 (4) | −0.0003 (4) | −0.0041 (4) |
O1 | 0.0343 (6) | 0.0196 (5) | 0.0181 (5) | 0.0035 (4) | −0.0033 (4) | −0.0026 (4) |
O2 | 0.0433 (7) | 0.0198 (5) | 0.0365 (6) | 0.0040 (5) | −0.0032 (5) | −0.0055 (5) |
C17—O1 | 1.4312 (16) | C7—C8 | 1.3706 (19) |
C17—H17A | 0.98 | C8—C9 | 1.4161 (19) |
C17—H17B | 0.98 | C8—H8 | 0.95 |
C17—H17C | 0.98 | C9—N1 | 1.3683 (17) |
C1—N1 | 1.3270 (17) | C10—O2 | 1.2109 (17) |
C1—C2 | 1.4275 (19) | C10—H10 | 0.95 |
C1—C11 | 1.4932 (19) | C11—C12 | 1.3945 (19) |
C2—C3 | 1.3821 (19) | C11—C16 | 1.399 (2) |
C2—C10 | 1.4787 (19) | C12—C13 | 1.383 (2) |
C3—C4 | 1.3998 (19) | C12—H12 | 0.95 |
C3—H3 | 0.95 | C13—C14 | 1.383 (2) |
C4—C5 | 1.4241 (18) | C13—H13 | 0.95 |
C4—C9 | 1.4243 (19) | C14—C15 | 1.384 (2) |
C5—C6 | 1.3574 (19) | C14—H14 | 0.95 |
C5—H5 | 0.95 | C15—C16 | 1.388 (2) |
C6—C7 | 1.4206 (19) | C15—H15 | 0.95 |
C6—H6 | 0.95 | C16—H16 | 0.95 |
C7—O1 | 1.3654 (16) | ||
O1—C17—H17A | 109.5 | C7—C8—H8 | 120.2 |
O1—C17—H17B | 109.5 | C9—C8—H8 | 120.2 |
H17A—C17—H17B | 109.5 | N1—C9—C8 | 117.78 (12) |
O1—C17—H17C | 109.5 | N1—C9—C4 | 122.68 (12) |
H17A—C17—H17C | 109.5 | C8—C9—C4 | 119.54 (12) |
H17B—C17—H17C | 109.5 | O2—C10—C2 | 123.68 (14) |
N1—C1—C2 | 122.65 (12) | O2—C10—H10 | 118.2 |
N1—C1—C11 | 114.92 (12) | C2—C10—H10 | 118.2 |
C2—C1—C11 | 122.43 (12) | C12—C11—C16 | 118.77 (13) |
C3—C2—C1 | 118.67 (12) | C12—C11—C1 | 119.50 (12) |
C3—C2—C10 | 118.41 (12) | C16—C11—C1 | 121.69 (12) |
C1—C2—C10 | 122.68 (12) | C13—C12—C11 | 120.42 (14) |
C2—C3—C4 | 120.13 (12) | C13—C12—H12 | 119.8 |
C2—C3—H3 | 119.9 | C11—C12—H12 | 119.8 |
C4—C3—H3 | 119.9 | C12—C13—C14 | 120.48 (15) |
C3—C4—C5 | 123.80 (12) | C12—C13—H13 | 119.8 |
C3—C4—C9 | 117.36 (12) | C14—C13—H13 | 119.8 |
C5—C4—C9 | 118.81 (12) | C13—C14—C15 | 119.81 (14) |
C6—C5—C4 | 120.86 (12) | C13—C14—H14 | 120.1 |
C6—C5—H5 | 119.6 | C15—C14—H14 | 120.1 |
C4—C5—H5 | 119.6 | C14—C15—C16 | 120.15 (15) |
C5—C6—C7 | 119.88 (12) | C14—C15—H15 | 119.9 |
C5—C6—H6 | 120.1 | C16—C15—H15 | 119.9 |
C7—C6—H6 | 120.1 | C15—C16—C11 | 120.36 (14) |
O1—C7—C8 | 124.44 (12) | C15—C16—H16 | 119.8 |
O1—C7—C6 | 114.26 (12) | C11—C16—H16 | 119.8 |
C8—C7—C6 | 121.30 (12) | C1—N1—C9 | 118.45 (11) |
C7—C8—C9 | 119.60 (12) | C7—O1—C17 | 117.17 (11) |
N1—C1—C2—C3 | 2.3 (2) | C3—C2—C10—O2 | 19.2 (2) |
C11—C1—C2—C3 | −176.79 (12) | C1—C2—C10—O2 | −166.56 (13) |
N1—C1—C2—C10 | −171.97 (12) | N1—C1—C11—C12 | 42.75 (18) |
C11—C1—C2—C10 | 9.0 (2) | C2—C1—C11—C12 | −138.12 (14) |
C1—C2—C3—C4 | −0.5 (2) | N1—C1—C11—C16 | −135.09 (14) |
C10—C2—C3—C4 | 173.94 (12) | C2—C1—C11—C16 | 44.04 (19) |
C2—C3—C4—C5 | −179.58 (12) | C16—C11—C12—C13 | 0.1 (2) |
C2—C3—C4—C9 | −1.5 (2) | C1—C11—C12—C13 | −177.80 (13) |
C3—C4—C5—C6 | 178.42 (12) | C11—C12—C13—C14 | −0.7 (2) |
C9—C4—C5—C6 | 0.4 (2) | C12—C13—C14—C15 | 1.1 (3) |
C4—C5—C6—C7 | −0.9 (2) | C13—C14—C15—C16 | −0.9 (3) |
C5—C6—C7—O1 | −178.60 (12) | C14—C15—C16—C11 | 0.3 (2) |
C5—C6—C7—C8 | 1.0 (2) | C12—C11—C16—C15 | 0.1 (2) |
O1—C7—C8—C9 | 178.96 (12) | C1—C11—C16—C15 | 177.95 (14) |
C6—C7—C8—C9 | −0.6 (2) | C2—C1—N1—C9 | −1.7 (2) |
C7—C8—C9—N1 | 179.76 (11) | C11—C1—N1—C9 | 177.47 (11) |
C7—C8—C9—C4 | 0.1 (2) | C8—C9—N1—C1 | 179.72 (12) |
C3—C4—C9—N1 | 2.2 (2) | C4—C9—N1—C1 | −0.62 (19) |
C5—C4—C9—N1 | −179.64 (11) | C8—C7—O1—C17 | −0.8 (2) |
C3—C4—C9—C8 | −178.14 (11) | C6—C7—O1—C17 | 178.80 (11) |
C5—C4—C9—C8 | 0.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.95 | 2.48 | 3.349 (2) | 153 |
C15—H15···O1ii | 0.95 | 2.54 | 3.377 (2) | 148 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x, y+1, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.9500 | 2.4800 | 3.349 (2) | 153.00 |
C15—H15···O1ii | 0.9500 | 2.5400 | 3.377 (2) | 148.00 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x, y+1, z−1. |
Acknowledgements
Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support. We are grateful to Dr Roisnel Thierry from the Centre de Difractométrie de Rennes, Université de Rennes 1, France, for his technical assistance with the data collection.
References
Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). ARKIVOC, i, 211–276. Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313. CrossRef CAS Google Scholar
Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94–99. CSD CrossRef CAS Google Scholar
Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477. CSD CrossRef Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker, (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elliott, J. M., Carling, R. W., Chambers, M., Chicchi, G. G., Hutson, P. H., Jones, A. B., MacLeod, A., Marwood, R., Meneses-Lorente, G., Mezzogori, E., Murray, F., Rigby, M., Royo, I., Russell, M. G. N., Sohal, B., Tsao, K. W. & Williams, B. (2006). Bioorg. Med. Chem. Lett. 16, 5748–5751. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hayour, H., Bouraiou, A., Bouacida, S., Berrée, F., Carboni, B., Roisnel, T. & Belfaitah, A. (2011). Tetrahedron Lett. 52, 4868–4871. Web of Science CSD CrossRef CAS Google Scholar
Kaila, N., Janz, K., DeBernardo, S., Bedard, P. W., Camphausen, R. T., Tam, S., Tsao, D. H. H., Keith, J. C., Nutter, C. N., Shilling, A., Sciame, R. Y. & Wang, Q. (2007). J. Med. Chem. 50, 21–39. Web of Science CrossRef PubMed CAS Google Scholar
Metallidis, M., Nikolaidis, J., Lazaraki, G., Koumentaki, E., Gogou, V., Topsis, D., Nikolaidis, P., Charokopos, N. & Theodoridis, G. (2007). Int. J. Antimicrob. Agents, 29, 742–744. Web of Science CrossRef PubMed CAS Google Scholar
Montalban, A. G. (2011). In Heterocycles in Natural Product Synthesis, pp. 299–339. New York: Wiley-VCH. Google Scholar
Nilsson, J., Nielsen, E., Liljefors, T., Nielsen, M. & Sterner, O. (2008). Bioorg. Med. Chem. Lett. 18, 5713–5716. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-J., Gong, D.-L., Wang, J.-D., Zhang, J., Liu, C.-X. & Xiang, W.-S. (2011). Bioorg. Med. Chem. Lett. 21, 2313–2315. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic compounds have so far been synthesized mainly due to the wide range of biological activities. Quinoline derivatives have considerable interest since many years due to the presence of this skeleton in a large number of bioactive compounds and natural products (Montalban, 2011; Wang et al., 2011). In other hand, it has been well established that presence of aryl ring at second position of quinoline moiety gives a very good antibacterial property to the target molecule and plays a significant role in development of new antibacterials (Nilsson et al., 2008; Elliott et al., 2006). These derivatives were found to be useful biological targets, and at present they attained much attention in the development of new drugs (Metallidis et al., 2007; Kaila et al., 2007). Following of our previous works related to the use of substituted 2-chloro-3-formylquinolines as precursors of different quinoline-containing heterocycles (Bouraiou et al., 2011; Hayour et al., 2011), we have recently reported preparations and antibacterial screening of series of compounds carrying diverse functionalities such as an amine, amide, ester group, heterocylic unit linked to the 2-phenylquinoline entity (Benzerka et al., 2011, 2012, 2013). We report herein the synthesis and single-crystal X-ray structure of 7-methoxy-2-phenylquinoline-3-carbaldehyde (I).
The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of (I) consists of 2-phenylquinoline linked to 7-methoxy and 3-carbaldehyde. The substituted phenyl ring forms dihedral angle of 43.53 (4)° with heterocyclic ring of quinoline. The crystal packing can be described as alternating layers parallel to the (210) (Fig. 2). It is stabilized by C—H···O hydrogen bond (Fig. 3; Table. 1), and strong π-π stacking interactions between quinoline rings with a centroid-centroid distance from 3.6596 (17)Å to 4.0726 (18)Å. These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.