organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzimidazol-2-yl)phenol

aResearch and Development Center, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, bDepartment of Chemistry, Annamaliar College of Engineering, Mudaiyur 606 902, Tamilnadu, India, cPostgraduate Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and dDepartment of Chemistry, S.K.P. Engineering College, Thiruvannamalai 606 611, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

(Received 15 January 2014; accepted 20 January 2014; online 22 January 2014)

The title mol­ecule, C13H10N2O, is essentially planar, the maximum deviation from the plane of the non-H atoms being 0.016 (2) Å. The imidazole ring makes a dihedral angle of 0.37 (13)° with the attached benzene ring. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked through N—H⋯O hydrogen bonds, forming chains propagating in [001]. The crystal packing also features four ππ stacking inter­actions involving the imidazole ring, fused benzene ring and attached benzene ring system [centroid–centroid distances = 3.6106 (17), 3.6108 (17), 3.6666 (17) and 3.6668 (17) Å].

Related literature

For applications and general background to substituted benzimidazole derivatives, see: Nakamura et al. (2004[Nakamura, T., Kakinuma, H., Umemiya, H., Amada, H., Miyata, N., Taniguchi, K., Bando, K. & Sato, M. (2004). Bioorg. Med. Chem. Lett. 14, 333-336.]); Su Han & Kim (2001[Su Han, M. & Kim, D. H. (2001). Bioorg. Med. Chem. Lett. 11, 1425-1427.]); Roman et al. 2007[Roman, G., Riley, J. G., Vlahakis, J. Z., Kinobe, R. T., Brien, J. F., Nakatsu, K. & Szarek, W. A. (2007). Bioorg. Med. Chem. 15, 3225-3234.]; Congiu et al. 2008[Congiu, C., Cocco, M. T. & Onnis, V. (2008). Bioorg. Med. Chem. Lett. 18, 989-993.]. For related crystal structures, see: Han (2010[Han, L.-L. (2010). Acta Cryst. E66, o2047.]); Zhan et al. (2007[Zhan, Q.-G., Liu, M.-S., Zeng, R.-H., Yang, D.-Q. & Cai, Y.-P. (2007). Acta Cryst. E63, o3470.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). Note added in proof: a low temperature determination of the same structure has been reported [Konoshima, H., Nagao, S., Kiyota, I., Amimoto, K., Yamamoto, N., Sekine, M., Nakata, M., Furukawa, K. & Sekiya, H. (2012). Phys. Chem. Chem. Phys. 14, 16448–16457].

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O

  • Mr = 210.23

  • Monoclinic, P 21 /c

  • a = 16.864 (4) Å

  • b = 4.7431 (8) Å

  • c = 12.952 (2) Å

  • β = 102.34 (2)°

  • V = 1012.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.829, Tmax = 1.000

  • 4073 measured reflections

  • 2338 independent reflections

  • 1184 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.131

  • S = 1.03

  • 2338 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O26i 0.91 (2) 1.96 (3) 2.851 (3) 169 (2)
O26—H26⋯N3 0.82 1.81 2.551 (3) 150
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013 and PLATON.

Supporting information


Comment top

Imidazole derivatives have occupied a unique place in the field of medicinal chemistry. Many of the substituted imidazoles are known as inhibitors of P38 map kinase, fungicides and herbicides and therapeutic agents (Nakamura et al., 2004; Su Han & Kim, 2001). Being a polar and ionisable aromatic compounds, it improves pharmacokinetic characteristics of lead molecules and thus used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine and nucleic acid (Roman et al., 2007; Congiu et al., 2008). Owing to the wide range of pharmacological and biological activities, the synthesis of imidazoles has become an important target in current years. We are interested to study the biological and photo physical properties of 2-(1H-benzimidazol-2-yl)phenol. The related compounds whose structures have been solved by X-ray are 2-(1H-Benzimidazol-2-yl)-4,6-dichlorophenol (Han, 2010) and 4-(1H-Benzo[d]imidazol-2-yl)phenol (Zhan et al., 2007). As part of our research, we have synthesized the title compound and report its crystal structure here.

The title molecule, C13H10N2O, (Fig. 1), is essentially planar, the maximum deviation from the plane of the non-H atoms being 0.016 (2) Å for O26. The imidazole ring (N1/C2/N3/C9/C8) makes dihedral angle of 0.37 (13)° with the attached benzene ring (C21—C26).

An intramolecular O26—H26···N3 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). In the crystal, symmetry-related molecules are linked through N1—H1···O26 hydrogen bonds, forming an one dimensional chains propagating in [001] (Fig. 2).

The crystal packing also features four π-π stacking interactions. [Cg1—Cg2i = 3.6668 (17) Å, Cg1—Cg3ii = 3.6106 (17) Å, Cg2—Cg1ii = 3.6666 (17) Å and Cg3—Cg1i = 3.6108 (17) Å, symmetry codes (i): x, 1 + y, z; (ii): x, -1 + y, z. Where, Cg1 is the centroid of the imidazole ring (N1/C2/N3/C9/C8), Cg2 is the centroid of the fused benzene ring (C4—C9) and Cg3 is the centroid of the attached benzene ring (C21—C26) respectively] (Fig. 3). The N—C, CN, Car—Car and C—O bond lengths in (I) are within their normal ranges (Allen et al., 1987).

Related literature top

For applications and general background to substituted benzimidazole derivatives, see: Nakamura et al. (2004); Su Han & Kim (2001); Roman et al. 2007; Congiu et al. 2008. For related crystal structures, see: Han (2010); Zhan et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

To the pure o-phenylenediamine (1.6 g, 15 mmol) in ethanol (10 ml), 2-hydroxybenzaldehyde (1.6 g, 15 mmol) and ammonium acetate (3 g) was added about 1 h by maintaining the temperature at 353 K. The reaction mixture was refluxed for 48 hrs and extracted with dichloromethane. The solid separated was purified by column chromatography using benzene as the eluent. Yield: 1.89 g; 60%. The compound was dissolved in benzene and ethyl acetate (9:1) mixture and allowed to slow evaporation for two days, to obtain crystals suitable for X-ray diffraction studies.

Refinement top

The N-bound H atom was located in a difference Fourier map and refined freely; N1—H1 = 0.91 (2) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.82 and Csp2—H = 0.93 Å. Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C).

Structure description top

Imidazole derivatives have occupied a unique place in the field of medicinal chemistry. Many of the substituted imidazoles are known as inhibitors of P38 map kinase, fungicides and herbicides and therapeutic agents (Nakamura et al., 2004; Su Han & Kim, 2001). Being a polar and ionisable aromatic compounds, it improves pharmacokinetic characteristics of lead molecules and thus used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine and nucleic acid (Roman et al., 2007; Congiu et al., 2008). Owing to the wide range of pharmacological and biological activities, the synthesis of imidazoles has become an important target in current years. We are interested to study the biological and photo physical properties of 2-(1H-benzimidazol-2-yl)phenol. The related compounds whose structures have been solved by X-ray are 2-(1H-Benzimidazol-2-yl)-4,6-dichlorophenol (Han, 2010) and 4-(1H-Benzo[d]imidazol-2-yl)phenol (Zhan et al., 2007). As part of our research, we have synthesized the title compound and report its crystal structure here.

The title molecule, C13H10N2O, (Fig. 1), is essentially planar, the maximum deviation from the plane of the non-H atoms being 0.016 (2) Å for O26. The imidazole ring (N1/C2/N3/C9/C8) makes dihedral angle of 0.37 (13)° with the attached benzene ring (C21—C26).

An intramolecular O26—H26···N3 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). In the crystal, symmetry-related molecules are linked through N1—H1···O26 hydrogen bonds, forming an one dimensional chains propagating in [001] (Fig. 2).

The crystal packing also features four π-π stacking interactions. [Cg1—Cg2i = 3.6668 (17) Å, Cg1—Cg3ii = 3.6106 (17) Å, Cg2—Cg1ii = 3.6666 (17) Å and Cg3—Cg1i = 3.6108 (17) Å, symmetry codes (i): x, 1 + y, z; (ii): x, -1 + y, z. Where, Cg1 is the centroid of the imidazole ring (N1/C2/N3/C9/C8), Cg2 is the centroid of the fused benzene ring (C4—C9) and Cg3 is the centroid of the attached benzene ring (C21—C26) respectively] (Fig. 3). The N—C, CN, Car—Car and C—O bond lengths in (I) are within their normal ranges (Allen et al., 1987).

For applications and general background to substituted benzimidazole derivatives, see: Nakamura et al. (2004); Su Han & Kim (2001); Roman et al. 2007; Congiu et al. 2008. For related crystal structures, see: Han (2010); Zhan et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. The dashed line indicates the intramolecular O—H···N hydrogen bond.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure of compound, showing the formation of π-π stacking interactions.
2-(1H-Benzimidazol-2-yl)phenol top
Crystal data top
C13H10N2OF(000) = 440
Mr = 210.23Dx = 1.380 Mg m3
Monoclinic, P21/cMelting point: 386 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.864 (4) ÅCell parameters from 612 reflections
b = 4.7431 (8) Åθ = 4.8–23.8°
c = 12.952 (2) ŵ = 0.09 mm1
β = 102.34 (2)°T = 293 K
V = 1012.1 (3) Å3Block, colourless
Z = 40.30 × 0.30 × 0.25 mm
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
2338 independent reflections
Radiation source: Enhance (Mo) X-ray Source1184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.3291 pixels mm-1θmax = 29.2°, θmin = 3.2°
ω scansh = 2310
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 36
Tmin = 0.829, Tmax = 1.000l = 1517
4073 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: mixed
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0339P)2]
where P = (Fo2 + 2Fc2)/3
2338 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H10N2OV = 1012.1 (3) Å3
Mr = 210.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.864 (4) ŵ = 0.09 mm1
b = 4.7431 (8) ÅT = 293 K
c = 12.952 (2) Å0.30 × 0.30 × 0.25 mm
β = 102.34 (2)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
2338 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1184 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 1.000Rint = 0.037
4073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2338 reflectionsΔρmin = 0.17 e Å3
150 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O260.20929 (12)0.7018 (4)0.54707 (12)0.0640 (8)
N10.25872 (13)0.5474 (4)0.25071 (16)0.0459 (8)
N30.28328 (12)0.4482 (4)0.42170 (14)0.0448 (7)
C20.24046 (15)0.6055 (5)0.34606 (18)0.0420 (8)
C40.38923 (16)0.0807 (5)0.4149 (2)0.0561 (10)
C50.42862 (16)0.0543 (5)0.3475 (2)0.0603 (11)
C60.41275 (17)0.0093 (6)0.2410 (2)0.0621 (11)
C70.35740 (17)0.2089 (5)0.1985 (2)0.0554 (10)
C80.31718 (15)0.3444 (5)0.26679 (19)0.0438 (9)
C90.33257 (15)0.2825 (5)0.37415 (18)0.0434 (9)
C210.18120 (15)0.8077 (4)0.36215 (19)0.0424 (8)
C220.13653 (15)0.9671 (5)0.28084 (19)0.0512 (9)
C230.08097 (17)1.1585 (5)0.2980 (2)0.0614 (11)
C240.06758 (18)1.1945 (5)0.3980 (3)0.0640 (11)
C250.11064 (18)1.0406 (5)0.4800 (2)0.0617 (11)
C260.16741 (16)0.8493 (5)0.4634 (2)0.0485 (9)
H10.2390 (15)0.643 (5)0.190 (2)0.068 (9)*
H40.400390.037370.486600.0673*
H50.466930.191790.373800.0722*
H60.440630.086870.197140.0748*
H70.347080.252160.126840.0666*
H220.144740.942540.212660.0613*
H230.052061.265040.242220.0737*
H240.029091.323930.409880.0768*
H250.101381.065680.547620.0741*
H260.238990.587380.526590.0960*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O260.0835 (16)0.0762 (13)0.0334 (11)0.0152 (10)0.0147 (10)0.0050 (9)
N10.0540 (15)0.0546 (13)0.0295 (12)0.0037 (11)0.0100 (10)0.0028 (11)
N30.0511 (14)0.0521 (12)0.0304 (11)0.0005 (11)0.0070 (10)0.0010 (10)
C20.0486 (16)0.0465 (14)0.0314 (14)0.0094 (12)0.0095 (12)0.0032 (12)
C40.0567 (19)0.0620 (17)0.0475 (17)0.0017 (14)0.0068 (14)0.0017 (14)
C50.0532 (18)0.0608 (17)0.067 (2)0.0028 (14)0.0129 (15)0.0089 (16)
C60.062 (2)0.0648 (17)0.067 (2)0.0066 (16)0.0304 (16)0.0132 (16)
C70.067 (2)0.0610 (17)0.0436 (17)0.0111 (16)0.0241 (15)0.0073 (14)
C80.0454 (16)0.0462 (14)0.0410 (15)0.0080 (13)0.0122 (12)0.0022 (12)
C90.0443 (16)0.0488 (14)0.0370 (15)0.0055 (13)0.0087 (12)0.0015 (12)
C210.0454 (16)0.0424 (13)0.0391 (15)0.0070 (12)0.0087 (12)0.0033 (12)
C220.0537 (17)0.0547 (15)0.0440 (17)0.0030 (14)0.0081 (13)0.0020 (13)
C230.0558 (19)0.0583 (17)0.067 (2)0.0025 (15)0.0062 (16)0.0056 (15)
C240.0547 (19)0.0539 (16)0.085 (2)0.0048 (14)0.0187 (17)0.0042 (17)
C250.067 (2)0.0645 (18)0.059 (2)0.0004 (16)0.0255 (16)0.0112 (15)
C260.0534 (18)0.0508 (15)0.0410 (16)0.0033 (13)0.0092 (13)0.0051 (13)
Geometric parameters (Å, º) top
O26—C261.355 (3)C21—C261.394 (4)
O26—H260.8200C21—C221.382 (3)
N1—C21.363 (3)C22—C231.357 (4)
N1—C81.362 (3)C23—C241.372 (5)
N3—C91.381 (3)C24—C251.363 (4)
N3—C21.317 (3)C25—C261.369 (4)
N1—H10.91 (2)C4—H40.9300
C2—C211.432 (3)C5—H50.9300
C4—C91.376 (4)C6—H60.9300
C4—C51.364 (4)C7—H70.9300
C5—C61.381 (4)C22—H220.9300
C6—C71.361 (4)C23—H230.9300
C7—C81.383 (4)C24—H240.9300
C8—C91.390 (3)C25—H250.9300
C26—O26—H26109.00C22—C23—C24119.8 (2)
C2—N1—C8107.5 (2)C23—C24—C25120.1 (3)
C2—N3—C9106.09 (19)C24—C25—C26120.4 (3)
C8—N1—H1127.3 (16)O26—C26—C21121.1 (2)
C2—N1—H1124.9 (16)O26—C26—C25118.6 (2)
N1—C2—N3111.4 (2)C21—C26—C25120.3 (2)
N1—C2—C21124.5 (2)C5—C4—H4121.00
N3—C2—C21124.0 (2)C9—C4—H4121.00
C5—C4—C9118.3 (2)C4—C5—H5119.00
C4—C5—C6121.3 (2)C6—C5—H5119.00
C5—C6—C7121.7 (3)C5—C6—H6119.00
C6—C7—C8116.9 (2)C7—C6—H6119.00
N1—C8—C7132.0 (2)C6—C7—H7122.00
C7—C8—C9122.0 (2)C8—C7—H7122.00
N1—C8—C9106.1 (2)C21—C22—H22119.00
C4—C9—C8119.8 (2)C23—C22—H22119.00
N3—C9—C8108.9 (2)C22—C23—H23120.00
N3—C9—C4131.3 (2)C24—C23—H23120.00
C2—C21—C22122.6 (2)C23—C24—H24120.00
C2—C21—C26119.6 (2)C25—C24—H24120.00
C22—C21—C26117.8 (2)C24—C25—H25120.00
C21—C22—C23121.6 (2)C26—C25—H25120.00
C8—N1—C2—N30.8 (3)C6—C7—C8—N1179.1 (3)
C8—N1—C2—C21179.7 (2)C6—C7—C8—C90.5 (4)
C2—N1—C8—C7180.0 (3)N1—C8—C9—N30.1 (3)
C2—N1—C8—C90.4 (3)N1—C8—C9—C4179.5 (2)
C9—N3—C2—N10.8 (3)C7—C8—C9—N3179.6 (2)
C9—N3—C2—C21179.7 (2)C7—C8—C9—C40.1 (4)
C2—N3—C9—C4179.9 (3)C2—C21—C22—C23179.7 (2)
C2—N3—C9—C80.6 (3)C26—C21—C22—C230.1 (4)
N1—C2—C21—C220.4 (4)C2—C21—C26—O260.1 (4)
N1—C2—C21—C26179.9 (2)C2—C21—C26—C25179.6 (2)
N3—C2—C21—C22179.2 (2)C22—C21—C26—O26179.6 (2)
N3—C2—C21—C261.1 (4)C22—C21—C26—C250.7 (4)
C9—C4—C5—C60.3 (4)C21—C22—C23—C240.7 (4)
C5—C4—C9—N3179.0 (3)C22—C23—C24—C250.7 (4)
C5—C4—C9—C80.3 (4)C23—C24—C25—C260.0 (4)
C4—C5—C6—C70.1 (4)C24—C25—C26—O26179.6 (2)
C5—C6—C7—C80.4 (4)C24—C25—C26—C210.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O26i0.91 (2)1.96 (3)2.851 (3)169 (2)
O26—H26···N30.821.812.551 (3)150
Symmetry code: (i) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O26i0.91 (2)1.96 (3)2.851 (3)169 (2)
O26—H26···N30.821.812.551 (3)150
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

SMP thanks Annamaliar College of Engineering, Mudaiyur, for providing constant support for this research study. NS is thankful to S·K.P. Engineering College, Thiruvannamalai, for providing constant support for this research work.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCongiu, C., Cocco, M. T. & Onnis, V. (2008). Bioorg. Med. Chem. Lett. 18, 989–993.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHan, L.-L. (2010). Acta Cryst. E66, o2047.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakamura, T., Kakinuma, H., Umemiya, H., Amada, H., Miyata, N., Taniguchi, K., Bando, K. & Sato, M. (2004). Bioorg. Med. Chem. Lett. 14, 333–336.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoman, G., Riley, J. G., Vlahakis, J. Z., Kinobe, R. T., Brien, J. F., Nakatsu, K. & Szarek, W. A. (2007). Bioorg. Med. Chem. 15, 3225–3234.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu Han, M. & Kim, D. H. (2001). Bioorg. Med. Chem. Lett. 11, 1425–1427.  Web of Science PubMed Google Scholar
First citationZhan, Q.-G., Liu, M.-S., Zeng, R.-H., Yang, D.-Q. & Cai, Y.-P. (2007). Acta Cryst. E63, o3470.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds