organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o200-o201

Enrofloxacinium oxalate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 January 2014; accepted 21 January 2014; online 25 January 2014)

The title salt, 2C19H23FN3O3+·C2O42− {systematic name: bis-[4-(3-carb­oxy-1-cyclo­propyl-6-fluoro-4-oxo-1,4-di­hydro­quino­lin-7-yl)-1-ethyl­piperazin-1-ium] oxalate}, crystallizes with two independent monocations (A and B) and an oxalate dianion (C) in the asymmetric unit. The piperazinium ring in both the cations adopts a slightly disordered chair conformation. The dihedral angles between the mean planes of the cyclo­propyl ring and the 10-membered quinoline ring are 50.6 (5)° (A) and 62.2 (5)° (B). In each of the cations, a single O—H⋯O intra­molecular hydrogen bond is observed. In the crystal, the oxalate anions inter­act with the cations through N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming R22(8) graph-set ring motifs. Weak C—H⋯F inter­actions along with further C—H⋯O inter­actions are observed between the cations, forming zigzag chains along [001]. In addition, ππ stacking inter­actions are observed with centroid–centroid distances of 3.5089 (13), 3.5583 (13), 3.7900 (13) and 3.7991 (13) Å.

Related literature

For general background and the pharmacological properties of fluoro­quinolines, see: Bhanot et al. (2001[Bhanot, S. K., Singh, M. & Chatterjee, N. R. (2001). Curr. Pharm. Des. 7, 313-337.]); Scholar (2003[Scholar, E. M. (2003). Am. J. Pharm. Educ. 66, 165-172.]). For related structures of substituted fluorinated compounds, see: Golovnev et al. (2012[Golovnev, N. N., Vasiliev, A, D. & Kirik, S. D. (2012). J. Mol. Struct. 1021, 112-117.]); Harrison et al. (2007[Harrison, W. T. A., Yathirajan, H. S., Bindya, S., Anilkumar, H. G. & Devaraju (2007). Acta Cryst. C63, o129-o131.]); Jasinski et al. (2011a[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Siddaraju, B. P. (2011a). Acta Cryst. E67, o432-o433.],b[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011b). Acta Cryst. E67, o483-o484.]); Kavitha et al. (2013[Kavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013). Acta Cryst. E69, o1344.]); Maheswararao & Angshuman (2013[Maheswararao, K. & Angshuman, R. C. (2013). Cryst. Growth Des. 13, 1626-1637.]); Recillas-Mota et al. (2007[Recillas-Mota, J., Flores-Alamo, M., Moreno-Esparza, R. & Gracia-Mora, J. (2007). Acta Cryst. E63, m3030-m3031.]); Sun et al. (2004[Sun, H.-X., Li, Y. & Pan, Y.-J. (2004). Acta Cryst. E60, o1694-o1696.]). Also, various salts of enfloxacin (Maheswararao & Angshuman, 2013[Maheswararao, K. & Angshuman, R. C. (2013). Cryst. Growth Des. 13, 1626-1637.]) and enrofloxacinium citrate monohydrate (Golovnev et al., 2012[Golovnev, N. N., Vasiliev, A, D. & Kirik, S. D. (2012). J. Mol. Struct. 1021, 112-117.]) have been reported. For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • 2C19H23FN3O3+·C2O42−

  • Mr = 808.83

  • Triclinic, [P \overline 1]

  • a = 9.8552 (5) Å

  • b = 13.3056 (8) Å

  • c = 15.6124 (8) Å

  • α = 68.987 (5)°

  • β = 84.740 (4)°

  • γ = 73.093 (5)°

  • V = 1828.31 (19) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.95 mm−1

  • T = 173 K

  • 0.24 × 0.16 × 0.08 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.880, Tmax = 1.000

  • 11885 measured reflections

  • 7017 independent reflections

  • 5641 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.145

  • S = 1.03

  • 7017 reflections

  • 527 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2B—H2B⋯O1B 0.82 1.78 2.542 (2) 154
N2B—H2BA⋯O2Ci 0.98 1.67 2.615 (2) 161
O2A—H2A⋯O1A 0.82 1.77 2.531 (2) 154
N2A—H2AA⋯O4Cii 0.98 1.64 2.609 (2) 171
C10B—H10B⋯O1Ci 0.97 2.34 3.231 (3) 153
C11B—H11A⋯O1C 0.97 2.56 3.358 (3) 139
C12B—H12A⋯O3Biii 0.97 2.51 3.302 (3) 138
C15B—H15A⋯O1Aiii 0.97 2.48 3.433 (3) 169
C16B—H16A⋯O3Biv 0.97 2.46 3.167 (3) 130
C7A—H7A⋯F1Bv 0.93 2.54 3.314 (3) 141
C12A—H12C⋯O2Avi 0.97 2.53 3.462 (3) 162
C13A—H13C⋯O3Cii 0.97 2.47 3.254 (3) 137
C16A—H16D⋯O3Avii 0.97 2.37 3.325 (3) 170
C18A—H18D⋯O1Cviii 0.97 2.58 3.236 (3) 125
C19A—H19F⋯O3Cviii 0.96 2.44 3.375 (3) 163
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z; (v) x, y-1, z; (vi) -x+2, -y, -z; (vii) -x+1, -y, -z; (viii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Enrofloxacin [ systematic name : 1-Cyclopropyl-7-(4-ethyl-piperazin -1-yl)-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid is a fluoroquinolone antibiotic and is a synthetic chemotherapeutic agent from the class of the fluoroquinolone carboxylic acid derivatives. It is available under the trade name Baytril, from Bayer Corporation and has antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria. Its mechanism of action is not thoroughly understood, but it is believed to act by inhibiting bacterial DNA gyrase (a type-II topoisomerase), thereby preventing DNA supercoiling and DNA synthesis. The chemical and biological aspects of fluoroquinolones is described (Bhanot et al., 2001; Scholar, 2003). Earlier, the crystal structure of the enrofloxacinium picrate (Jasinski et al., 2011a), Flunarizinium hydrogen maleate (Kavitha et al., 2013) and Lomefloxacinium picrate (Jasinski et al., 2011b) have been reported by our group . The crystal structure of a copper complex of enrofloxacin (Recillas-Mota et al., 2007), escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal (Harrison et al., 2007) and 2-hydroxyethanaminium enrofloxacinate (Sun et al., 2004) have also been reported. Also, the crystal structures of various salts of enfloxacin (Maheswararao & Angshuman, 2013) and enrofloxacinium citrate monohydrate (Golovnev et al., 2012) have been reported. In continuation of our work on substituted fluorinated compounds, this paper reports the crystal structure of the title salt, (I), 2(C19H23FO3N3+).C2O42-.

The title salt, (I), 2(C19H23FO3N3+).C2O42-, crystallizes with two independent monocations (A and B) and an oxalate dianion (C) in the asymmetric unit (Fig. 1). The piperazinium ring in both the cations adopts a slightly disordered chair conformation (puckering parameters (A) Q, θ, and φ = 0.560 (2)Å, 2.4 (2)° and 100 (5)°; (B) Q, θ, and φ = 0.563 (2)Å,4.5 (2)° and 172 (3)°, respectively; (Cremer & Pople, 1975). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angles between the mean planes of the cyclopropyl ring and the 10-membered quinoline ring are 50.6 (5)° (A) and 62.2 (5)° (B), respectively. In the cations, a single O—H···O intramolecular hydrogen bond is observed. In the crystal, the oxalate anions interact with the cations through N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions forming R22(8) graph set ring motifs (Fig. 2). A weak C—H···F intermolecular interaction along with the C—H···O interactions are observed between the cations forming zig-zag chains. In addition, Cg—Cg ππ stacking interactions are observed which contribute to crystal packing stability (Cg3—Cg3 = 3.5583 (13)Å; Cg3—Cg4 = 3.7900 (13)Å; 2-x,-y,-z; Cg4—Cg8 = 3.7991 (13)Å; Cg8—Cg8 = 3.5089 (13)Å; 1-x,1-y,-z Cg3 = N3A/C7A/C6A/C5A/C4A/C8A; Cg4 = C1A–C9A; Cg8 = N3B/C7B/C6B/C5B/C4B/C8B).

Related literature top

For general background and the pharmacological properties of fluoroquinolines, see: Bhanot et al. (2001); Scholar (2003). For related structures of substituted fluorinated compounds, see: Golovnev et al. (2012); (2013); Harrison et al. (2007); Jasinski et al. (2011a,b); Kavitha et al. (2013); Maheswararao & Angshuman (2013); Recillas-Mota et al. (2007); Sun et al. (2004). Also, various salts of enfloxacin (Maheswararao & Angshuman, 2013) and enrofloxacinium citrate monohydrate (Golovnev et al., 2012) have been reported. For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Gift sample from R. L. Fine Chemicals; enrofloxacin (0.6 g, 1.6 mmol) and oxalic acid (0.146 g, 1.6 mmol) were dissolved in a mixture of acetonitrile and dimethyl sulfoxide (DMSO) (4:1 v/v)and stirred at room temperature for 15 mins. The precipitate obtained was filtered, dried and dissolved in DMSO, stirred for 15 mins at 333 K. The solution was then allowed to cool at room temperature. After few days, X-ray quality crystals of the title compound were obtained by slow evaporation (m.p.: 498–503 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH2); 0.96Å (CH3); 0.82Å (OH) or 0.98Å (NH) . Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me and tetrahedral OH were refined as rotating groups.

Structure description top

Enrofloxacin [ systematic name : 1-Cyclopropyl-7-(4-ethyl-piperazin -1-yl)-6-fluoro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid is a fluoroquinolone antibiotic and is a synthetic chemotherapeutic agent from the class of the fluoroquinolone carboxylic acid derivatives. It is available under the trade name Baytril, from Bayer Corporation and has antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria. Its mechanism of action is not thoroughly understood, but it is believed to act by inhibiting bacterial DNA gyrase (a type-II topoisomerase), thereby preventing DNA supercoiling and DNA synthesis. The chemical and biological aspects of fluoroquinolones is described (Bhanot et al., 2001; Scholar, 2003). Earlier, the crystal structure of the enrofloxacinium picrate (Jasinski et al., 2011a), Flunarizinium hydrogen maleate (Kavitha et al., 2013) and Lomefloxacinium picrate (Jasinski et al., 2011b) have been reported by our group . The crystal structure of a copper complex of enrofloxacin (Recillas-Mota et al., 2007), escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal (Harrison et al., 2007) and 2-hydroxyethanaminium enrofloxacinate (Sun et al., 2004) have also been reported. Also, the crystal structures of various salts of enfloxacin (Maheswararao & Angshuman, 2013) and enrofloxacinium citrate monohydrate (Golovnev et al., 2012) have been reported. In continuation of our work on substituted fluorinated compounds, this paper reports the crystal structure of the title salt, (I), 2(C19H23FO3N3+).C2O42-.

The title salt, (I), 2(C19H23FO3N3+).C2O42-, crystallizes with two independent monocations (A and B) and an oxalate dianion (C) in the asymmetric unit (Fig. 1). The piperazinium ring in both the cations adopts a slightly disordered chair conformation (puckering parameters (A) Q, θ, and φ = 0.560 (2)Å, 2.4 (2)° and 100 (5)°; (B) Q, θ, and φ = 0.563 (2)Å,4.5 (2)° and 172 (3)°, respectively; (Cremer & Pople, 1975). Bond lengths are in normal ranges (Allen et al., 1987). The dihedral angles between the mean planes of the cyclopropyl ring and the 10-membered quinoline ring are 50.6 (5)° (A) and 62.2 (5)° (B), respectively. In the cations, a single O—H···O intramolecular hydrogen bond is observed. In the crystal, the oxalate anions interact with the cations through N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions forming R22(8) graph set ring motifs (Fig. 2). A weak C—H···F intermolecular interaction along with the C—H···O interactions are observed between the cations forming zig-zag chains. In addition, Cg—Cg ππ stacking interactions are observed which contribute to crystal packing stability (Cg3—Cg3 = 3.5583 (13)Å; Cg3—Cg4 = 3.7900 (13)Å; 2-x,-y,-z; Cg4—Cg8 = 3.7991 (13)Å; Cg8—Cg8 = 3.5089 (13)Å; 1-x,1-y,-z Cg3 = N3A/C7A/C6A/C5A/C4A/C8A; Cg4 = C1A–C9A; Cg8 = N3B/C7B/C6B/C5B/C4B/C8B).

For general background and the pharmacological properties of fluoroquinolines, see: Bhanot et al. (2001); Scholar (2003). For related structures of substituted fluorinated compounds, see: Golovnev et al. (2012); (2013); Harrison et al. (2007); Jasinski et al. (2011a,b); Kavitha et al. (2013); Maheswararao & Angshuman (2013); Recillas-Mota et al. (2007); Sun et al. (2004). Also, various salts of enfloxacin (Maheswararao & Angshuman, 2013) and enrofloxacinium citrate monohydrate (Golovnev et al., 2012) have been reported. For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (2.(C19H23FO3N3+) . C2O42-) showing the labeling scheme with 30% probability displacement ellipsoids. Dashed lines indicate a O—H···O intramolecular hydrogen bond in the cations within the asymmetric unit.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions. H atoms not involved in hydrogen bonding have been removed for clarity.
Bis-[4-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-ethylpiperazin-1-ium] oxalate top
Crystal data top
2C19H23FN3O3+·C2O42Z = 2
Mr = 808.83F(000) = 852
Triclinic, P1Dx = 1.469 Mg m3
a = 9.8552 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.3056 (8) ÅCell parameters from 4206 reflections
c = 15.6124 (8) Åθ = 3.7–72.5°
α = 68.987 (5)°µ = 0.95 mm1
β = 84.740 (4)°T = 173 K
γ = 73.093 (5)°Irregular, colourless
V = 1828.31 (19) Å30.24 × 0.16 × 0.08 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7017 independent reflections
Radiation source: Enhance (Cu) X-ray Source5641 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.024
ω scansθmax = 72.6°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1210
Tmin = 0.880, Tmax = 1.000k = 1615
11885 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0686P)2 + 1.1302P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
7017 reflectionsΔρmax = 0.68 e Å3
527 parametersΔρmin = 0.28 e Å3
0 restraints
Crystal data top
2C19H23FN3O3+·C2O42γ = 73.093 (5)°
Mr = 808.83V = 1828.31 (19) Å3
Triclinic, P1Z = 2
a = 9.8552 (5) ÅCu Kα radiation
b = 13.3056 (8) ŵ = 0.95 mm1
c = 15.6124 (8) ÅT = 173 K
α = 68.987 (5)°0.24 × 0.16 × 0.08 mm
β = 84.740 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7017 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
5641 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 1.000Rint = 0.024
11885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.03Δρmax = 0.68 e Å3
7017 reflectionsΔρmin = 0.28 e Å3
527 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1B0.70509 (15)0.74124 (11)0.12480 (9)0.0406 (3)
O1B0.45726 (17)0.76166 (13)0.15035 (10)0.0344 (4)
O2B0.30755 (18)0.72055 (15)0.25107 (10)0.0380 (4)
H2B0.36600.74290.23430.057*
O3B0.16661 (17)0.61191 (15)0.18637 (11)0.0373 (4)
N1B0.64215 (19)0.56582 (17)0.27496 (12)0.0317 (4)
N2B0.79517 (19)0.43144 (15)0.44580 (11)0.0287 (4)
H2BA0.77370.49060.47250.034*
N3B0.31112 (18)0.54720 (14)0.07440 (11)0.0245 (4)
C1B0.5793 (2)0.60258 (17)0.19053 (14)0.0260 (4)
C2B0.6151 (2)0.68662 (18)0.11280 (14)0.0280 (4)
C3B0.5611 (2)0.71886 (17)0.02720 (14)0.0281 (4)
H3B0.59010.77340.02110.034*
C4B0.4613 (2)0.67010 (17)0.01123 (13)0.0246 (4)
C5B0.4119 (2)0.69607 (17)0.08076 (14)0.0261 (4)
C6B0.3120 (2)0.63909 (17)0.08788 (14)0.0258 (4)
C7B0.2664 (2)0.56886 (17)0.01080 (14)0.0266 (4)
H7B0.20080.53410.01760.032*
C8B0.4148 (2)0.59339 (16)0.08783 (13)0.0232 (4)
C9B0.4739 (2)0.55956 (17)0.17494 (13)0.0254 (4)
H9B0.44250.50720.22380.030*
C10B0.5681 (2)0.5247 (2)0.36023 (14)0.0336 (5)
H10A0.48140.51270.34630.040*
H10B0.54230.58090.38930.040*
C11B0.6586 (2)0.4166 (2)0.42578 (15)0.0343 (5)
H11A0.60790.39330.48250.041*
H11B0.67770.35840.39910.041*
C12B0.8697 (2)0.4687 (2)0.35783 (14)0.0316 (5)
H12A0.89190.41080.33060.038*
H12B0.95830.47950.36980.038*
C13B0.7800 (2)0.5769 (2)0.29089 (15)0.0329 (5)
H13A0.76620.63680.31520.039*
H13B0.82920.59660.23310.039*
C14B0.2554 (2)0.47290 (17)0.15365 (14)0.0273 (4)
H14B0.31760.39690.18160.033*
C15B0.1645 (2)0.5239 (2)0.21785 (15)0.0322 (5)
H15A0.14540.60400.20320.039*
H15B0.17300.48000.28290.039*
C16B0.0994 (2)0.48439 (19)0.15630 (15)0.0321 (5)
H16A0.06890.41680.18450.039*
H16B0.04130.54090.10470.039*
C17B0.2551 (2)0.65490 (18)0.17814 (14)0.0295 (5)
C18B0.8887 (3)0.3272 (2)0.51176 (16)0.0391 (5)
H18A0.98040.33880.51540.047*
H18B0.90350.26630.48850.047*
C19B0.8275 (3)0.2936 (2)0.60727 (17)0.0519 (7)
H19A0.74200.27370.60530.078*
H19B0.80650.35540.62900.078*
H19C0.89520.23060.64800.078*
F1A1.13064 (14)0.29936 (11)0.04417 (8)0.0342 (3)
O1A0.85745 (17)0.19630 (13)0.15083 (10)0.0321 (3)
O2A0.68669 (19)0.11660 (14)0.20006 (10)0.0397 (4)
H2A0.74080.15350.20090.060*
O3A0.60977 (18)0.01945 (14)0.09726 (11)0.0391 (4)
N1A1.09798 (19)0.17150 (16)0.22569 (12)0.0295 (4)
N2A1.27942 (18)0.04206 (14)0.38543 (11)0.0253 (4)
H2AA1.27030.10030.41180.030*
N3A0.8099 (2)0.00160 (16)0.11512 (12)0.0307 (4)
C1A1.0440 (2)0.15549 (17)0.15500 (14)0.0262 (4)
C2A1.0595 (2)0.22096 (17)0.06202 (14)0.0256 (4)
C3A0.9992 (2)0.21296 (17)0.00905 (14)0.0257 (4)
H3A1.01540.25550.06890.031*
C4A0.9124 (2)0.14100 (16)0.00681 (13)0.0238 (4)
C5A0.8418 (2)0.13722 (17)0.06899 (14)0.0252 (4)
C6A0.7540 (2)0.06251 (17)0.04422 (14)0.0263 (4)
C7A0.7432 (2)0.00186 (19)0.04534 (15)0.0298 (5)
H7A0.68670.05060.05870.036*
C8A0.8943 (2)0.07485 (17)0.09788 (14)0.0260 (4)
C9A0.9630 (2)0.08076 (18)0.16998 (14)0.0290 (4)
H9A0.95430.03340.22950.035*
C10A1.0411 (2)0.1374 (2)0.31756 (14)0.0322 (5)
H10C0.94800.12810.31420.039*
H10D1.03050.19590.34300.039*
C11A1.1360 (2)0.02910 (19)0.38023 (14)0.0303 (5)
H11C1.09570.00940.44110.036*
H11D1.14290.03070.35700.036*
C12A1.3383 (2)0.07932 (18)0.29130 (14)0.0285 (4)
H12C1.35490.02000.26600.034*
H12D1.42880.09280.29520.034*
C13A1.2397 (2)0.18483 (19)0.22765 (14)0.0302 (5)
H13C1.23340.24690.24800.036*
H13D1.27790.20230.16620.036*
C14A0.8049 (3)0.0800 (2)0.20732 (15)0.0351 (5)
H14A0.88790.14540.22670.042*
C15A0.7333 (3)0.0368 (2)0.28052 (17)0.0419 (6)
H15C0.69160.04340.26380.050*
H15D0.77300.07460.34220.050*
C16A0.6662 (3)0.0993 (2)0.24179 (16)0.0374 (5)
H16C0.66520.17470.28020.045*
H16D0.58380.05670.20180.045*
C17A0.6767 (2)0.04869 (19)0.11462 (15)0.0308 (5)
C18A1.3797 (2)0.06322 (19)0.44442 (15)0.0348 (5)
H18C1.47170.05040.44450.042*
H18D1.39110.12120.41830.042*
C19A1.3304 (3)0.1041 (2)0.54241 (16)0.0449 (6)
H19D1.24940.13100.54410.067*
H19E1.30510.04350.56570.067*
H19F1.40550.16380.57960.067*
O1C0.4046 (2)0.30357 (16)0.54362 (14)0.0533 (5)
O2C0.2052 (2)0.42635 (15)0.47408 (13)0.0481 (5)
O3C0.3605 (2)0.28420 (16)0.35788 (12)0.0496 (5)
O4C0.2434 (2)0.18491 (15)0.47003 (12)0.0456 (4)
C1C0.3040 (2)0.33643 (18)0.48940 (15)0.0317 (5)
C2C0.3017 (3)0.26345 (19)0.43358 (16)0.0346 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1B0.0524 (8)0.0426 (8)0.0337 (7)0.0283 (7)0.0099 (6)0.0070 (6)
O1B0.0380 (9)0.0414 (9)0.0221 (7)0.0177 (7)0.0020 (6)0.0032 (6)
O2B0.0405 (9)0.0505 (10)0.0232 (8)0.0161 (8)0.0039 (6)0.0094 (7)
O3B0.0346 (9)0.0509 (10)0.0337 (8)0.0138 (8)0.0040 (7)0.0205 (7)
N1B0.0292 (9)0.0466 (11)0.0215 (9)0.0151 (8)0.0003 (7)0.0108 (8)
N2B0.0354 (10)0.0299 (9)0.0225 (8)0.0077 (8)0.0013 (7)0.0117 (7)
N3B0.0255 (9)0.0258 (8)0.0226 (8)0.0090 (7)0.0006 (6)0.0072 (7)
C1B0.0262 (10)0.0302 (10)0.0233 (10)0.0068 (8)0.0001 (8)0.0123 (8)
C2B0.0284 (10)0.0306 (11)0.0297 (11)0.0137 (9)0.0012 (8)0.0113 (9)
C3B0.0325 (11)0.0280 (10)0.0241 (10)0.0119 (9)0.0017 (8)0.0068 (8)
C4B0.0247 (10)0.0253 (10)0.0227 (10)0.0057 (8)0.0013 (8)0.0074 (8)
C5B0.0251 (10)0.0264 (10)0.0245 (10)0.0046 (8)0.0002 (8)0.0082 (8)
C6B0.0239 (10)0.0293 (10)0.0241 (10)0.0039 (8)0.0023 (8)0.0113 (8)
C7B0.0254 (10)0.0293 (10)0.0281 (10)0.0067 (8)0.0022 (8)0.0137 (8)
C8B0.0229 (10)0.0239 (9)0.0237 (10)0.0053 (8)0.0001 (7)0.0100 (8)
C9B0.0284 (10)0.0251 (10)0.0221 (10)0.0087 (8)0.0014 (8)0.0068 (8)
C10B0.0308 (11)0.0511 (14)0.0227 (10)0.0146 (10)0.0021 (8)0.0152 (10)
C11B0.0402 (13)0.0431 (13)0.0251 (10)0.0184 (11)0.0024 (9)0.0135 (10)
C12B0.0291 (11)0.0430 (13)0.0272 (11)0.0121 (10)0.0012 (8)0.0161 (9)
C13B0.0328 (12)0.0423 (13)0.0269 (11)0.0165 (10)0.0024 (9)0.0105 (9)
C14B0.0297 (11)0.0244 (10)0.0267 (10)0.0106 (8)0.0022 (8)0.0045 (8)
C15B0.0330 (11)0.0365 (12)0.0263 (10)0.0130 (9)0.0032 (8)0.0080 (9)
C16B0.0297 (11)0.0317 (11)0.0330 (11)0.0121 (9)0.0004 (9)0.0059 (9)
C17B0.0260 (10)0.0347 (11)0.0276 (11)0.0027 (9)0.0030 (8)0.0144 (9)
C18B0.0461 (14)0.0344 (12)0.0332 (12)0.0036 (11)0.0066 (10)0.0116 (10)
C19B0.0691 (19)0.0451 (15)0.0316 (13)0.0115 (14)0.0073 (12)0.0035 (11)
F1A0.0425 (7)0.0353 (7)0.0285 (6)0.0195 (6)0.0064 (5)0.0068 (5)
O1A0.0425 (9)0.0348 (8)0.0214 (7)0.0150 (7)0.0033 (6)0.0083 (6)
O2A0.0536 (11)0.0451 (10)0.0260 (8)0.0232 (8)0.0085 (7)0.0093 (7)
O3A0.0459 (10)0.0476 (10)0.0330 (8)0.0240 (8)0.0051 (7)0.0145 (7)
N1A0.0279 (9)0.0415 (10)0.0221 (8)0.0124 (8)0.0026 (7)0.0117 (8)
N2A0.0277 (9)0.0260 (9)0.0234 (8)0.0072 (7)0.0034 (7)0.0093 (7)
N3A0.0338 (10)0.0371 (10)0.0226 (9)0.0157 (8)0.0037 (7)0.0063 (7)
C1A0.0238 (10)0.0302 (10)0.0240 (10)0.0040 (8)0.0045 (8)0.0103 (8)
C2A0.0238 (10)0.0258 (10)0.0282 (10)0.0083 (8)0.0017 (8)0.0091 (8)
C3A0.0291 (10)0.0243 (10)0.0215 (9)0.0056 (8)0.0001 (8)0.0068 (8)
C4A0.0234 (10)0.0247 (10)0.0232 (10)0.0044 (8)0.0016 (7)0.0093 (8)
C5A0.0256 (10)0.0247 (10)0.0240 (10)0.0026 (8)0.0012 (8)0.0101 (8)
C6A0.0268 (10)0.0272 (10)0.0259 (10)0.0050 (8)0.0042 (8)0.0113 (8)
C7A0.0282 (11)0.0339 (11)0.0304 (11)0.0132 (9)0.0027 (8)0.0106 (9)
C8A0.0259 (10)0.0292 (10)0.0236 (10)0.0088 (8)0.0018 (8)0.0086 (8)
C9A0.0299 (11)0.0355 (11)0.0203 (10)0.0110 (9)0.0024 (8)0.0061 (8)
C10A0.0271 (11)0.0462 (13)0.0248 (10)0.0083 (10)0.0008 (8)0.0154 (9)
C11A0.0303 (11)0.0389 (12)0.0257 (10)0.0156 (9)0.0014 (8)0.0114 (9)
C12A0.0252 (10)0.0370 (11)0.0264 (10)0.0111 (9)0.0008 (8)0.0130 (9)
C13A0.0344 (11)0.0360 (11)0.0235 (10)0.0164 (9)0.0044 (8)0.0080 (9)
C14A0.0391 (13)0.0370 (12)0.0282 (11)0.0130 (10)0.0025 (9)0.0077 (9)
C15A0.0470 (14)0.0453 (14)0.0358 (13)0.0150 (12)0.0017 (11)0.0151 (11)
C16A0.0419 (13)0.0446 (13)0.0299 (11)0.0201 (11)0.0025 (10)0.0119 (10)
C17A0.0328 (11)0.0335 (11)0.0285 (11)0.0078 (9)0.0034 (9)0.0137 (9)
C18A0.0353 (12)0.0306 (11)0.0332 (12)0.0039 (9)0.0049 (9)0.0077 (9)
C19A0.0518 (15)0.0406 (14)0.0308 (12)0.0068 (12)0.0062 (11)0.0022 (10)
O1C0.0546 (12)0.0499 (11)0.0629 (12)0.0027 (9)0.0203 (10)0.0325 (10)
O2C0.0559 (11)0.0402 (10)0.0513 (11)0.0029 (8)0.0187 (9)0.0278 (8)
O3C0.0676 (13)0.0535 (11)0.0318 (9)0.0168 (10)0.0009 (8)0.0197 (8)
O4C0.0602 (12)0.0431 (10)0.0428 (10)0.0201 (9)0.0007 (8)0.0214 (8)
C1C0.0404 (12)0.0304 (11)0.0261 (10)0.0096 (10)0.0008 (9)0.0118 (9)
C2C0.0383 (12)0.0321 (12)0.0319 (12)0.0035 (10)0.0099 (9)0.0117 (9)
Geometric parameters (Å, º) top
F1B—C2B1.362 (2)O2A—C17A1.330 (3)
O1B—C5B1.265 (2)O3A—C17A1.212 (3)
O2B—H2B0.8200N1A—C1A1.374 (3)
O2B—C17B1.330 (3)N1A—C10A1.453 (3)
O3B—C17B1.212 (3)N1A—C13A1.463 (3)
N1B—C1B1.368 (3)N2A—H2AA0.9800
N1B—C10B1.462 (3)N2A—C11A1.485 (3)
N1B—C13B1.461 (3)N2A—C12A1.494 (3)
N2B—H2BA0.9800N2A—C18A1.491 (3)
N2B—C11B1.492 (3)N3A—C7A1.344 (3)
N2B—C12B1.487 (3)N3A—C8A1.399 (3)
N2B—C18B1.497 (3)N3A—C14A1.466 (3)
N3B—C7B1.344 (3)C1A—C2A1.421 (3)
N3B—C8B1.401 (3)C1A—C9A1.393 (3)
N3B—C14B1.457 (2)C2A—C3A1.356 (3)
C1B—C2B1.423 (3)C3A—H3A0.9300
C1B—C9B1.399 (3)C3A—C4A1.406 (3)
C2B—C3B1.356 (3)C4A—C5A1.449 (3)
C3B—H3B0.9300C4A—C8A1.405 (3)
C3B—C4B1.408 (3)C5A—C6A1.432 (3)
C4B—C5B1.447 (3)C6A—C7A1.366 (3)
C4B—C8B1.406 (3)C6A—C17A1.484 (3)
C5B—C6B1.439 (3)C7A—H7A0.9300
C6B—C7B1.365 (3)C8A—C9A1.402 (3)
C6B—C17B1.486 (3)C9A—H9A0.9300
C7B—H7B0.9300C10A—H10C0.9700
C8B—C9B1.394 (3)C10A—H10D0.9700
C9B—H9B0.9300C10A—C11A1.510 (3)
C10B—H10A0.9700C11A—H11C0.9700
C10B—H10B0.9700C11A—H11D0.9700
C10B—C11B1.509 (3)C12A—H12C0.9700
C11B—H11A0.9700C12A—H12D0.9700
C11B—H11B0.9700C12A—C13A1.512 (3)
C12B—H12A0.9700C13A—H13C0.9700
C12B—H12B0.9700C13A—H13D0.9700
C12B—C13B1.516 (3)C14A—H14A0.9800
C13B—H13A0.9700C14A—C15A1.490 (3)
C13B—H13B0.9700C14A—C16A1.481 (3)
C14B—H14B0.9800C15A—H15C0.9700
C14B—C15B1.495 (3)C15A—H15D0.9700
C14B—C16B1.499 (3)C15A—C16A1.498 (3)
C15B—H15A0.9700C16A—H16C0.9700
C15B—H15B0.9700C16A—H16D0.9700
C15B—C16B1.511 (3)C18A—H18C0.9700
C16B—H16A0.9700C18A—H18D0.9700
C16B—H16B0.9700C18A—C19A1.514 (3)
C18B—H18A0.9700C19A—H19D0.9600
C18B—H18B0.9700C19A—H19E0.9600
C18B—C19B1.517 (4)C19A—H19F0.9600
C19B—H19A0.9600O1C—C1C1.235 (3)
C19B—H19B0.9600O2C—C1C1.264 (3)
C19B—H19C0.9600O3C—C2C1.242 (3)
F1A—C2A1.356 (2)O4C—C2C1.268 (3)
O1A—C5A1.260 (2)C1C—C2C1.525 (3)
O2A—H2A0.8200
C17B—O2B—H2B109.5C10A—N1A—C13A111.08 (16)
C1B—N1B—C10B122.36 (18)C11A—N2A—H2AA108.2
C1B—N1B—C13B124.61 (18)C11A—N2A—C12A109.96 (15)
C13B—N1B—C10B112.54 (17)C11A—N2A—C18A112.47 (17)
C11B—N2B—H2BA108.4C12A—N2A—H2AA108.2
C11B—N2B—C18B112.92 (18)C18A—N2A—H2AA108.2
C12B—N2B—H2BA108.4C18A—N2A—C12A109.69 (16)
C12B—N2B—C11B108.48 (16)C7A—N3A—C8A119.97 (18)
C12B—N2B—C18B110.20 (17)C7A—N3A—C14A119.13 (18)
C18B—N2B—H2BA108.4C8A—N3A—C14A120.60 (17)
C7B—N3B—C8B120.31 (17)N1A—C1A—C2A121.21 (19)
C7B—N3B—C14B120.42 (17)N1A—C1A—C9A122.43 (19)
C8B—N3B—C14B119.24 (16)C9A—C1A—C2A116.21 (18)
N1B—C1B—C2B123.04 (19)F1A—C2A—C1A118.45 (17)
N1B—C1B—C9B121.74 (19)F1A—C2A—C3A118.63 (18)
C9B—C1B—C2B115.22 (18)C3A—C2A—C1A122.80 (19)
F1B—C2B—C1B118.60 (18)C2A—C3A—H3A119.7
C3B—C2B—F1B117.39 (18)C2A—C3A—C4A120.68 (19)
C3B—C2B—C1B123.97 (19)C4A—C3A—H3A119.7
C2B—C3B—H3B119.9C3A—C4A—C5A120.52 (18)
C2B—C3B—C4B120.21 (19)C8A—C4A—C3A118.19 (18)
C4B—C3B—H3B119.9C8A—C4A—C5A121.28 (18)
C3B—C4B—C5B121.03 (18)O1A—C5A—C4A121.67 (19)
C8B—C4B—C3B117.31 (18)O1A—C5A—C6A122.88 (18)
C8B—C4B—C5B121.64 (18)C6A—C5A—C4A115.45 (18)
O1B—C5B—C4B122.03 (19)C5A—C6A—C17A121.50 (18)
O1B—C5B—C6B122.41 (19)C7A—C6A—C5A120.70 (18)
C6B—C5B—C4B115.52 (18)C7A—C6A—C17A117.75 (19)
C5B—C6B—C17B121.59 (19)N3A—C7A—C6A123.4 (2)
C7B—C6B—C5B120.28 (18)N3A—C7A—H7A118.3
C7B—C6B—C17B118.13 (19)C6A—C7A—H7A118.3
N3B—C7B—C6B123.55 (19)N3A—C8A—C4A119.14 (18)
N3B—C7B—H7B118.2N3A—C8A—C9A120.75 (18)
C6B—C7B—H7B118.2C9A—C8A—C4A120.09 (19)
N3B—C8B—C4B118.48 (17)C1A—C9A—C8A121.89 (19)
C9B—C8B—N3B120.03 (18)C1A—C9A—H9A119.1
C9B—C8B—C4B121.43 (18)C8A—C9A—H9A119.1
C1B—C9B—H9B119.2N1A—C10A—H10C109.2
C8B—C9B—C1B121.55 (19)N1A—C10A—H10D109.2
C8B—C9B—H9B119.2N1A—C10A—C11A111.86 (18)
N1B—C10B—H10A109.3H10C—C10A—H10D107.9
N1B—C10B—H10B109.3C11A—C10A—H10C109.2
N1B—C10B—C11B111.66 (19)C11A—C10A—H10D109.2
H10A—C10B—H10B107.9N2A—C11A—C10A109.78 (17)
C11B—C10B—H10A109.3N2A—C11A—H11C109.7
C11B—C10B—H10B109.3N2A—C11A—H11D109.7
N2B—C11B—C10B110.48 (18)C10A—C11A—H11C109.7
N2B—C11B—H11A109.6C10A—C11A—H11D109.7
N2B—C11B—H11B109.6H11C—C11A—H11D108.2
C10B—C11B—H11A109.6N2A—C12A—H12C109.2
C10B—C11B—H11B109.6N2A—C12A—H12D109.2
H11A—C11B—H11B108.1N2A—C12A—C13A112.13 (17)
N2B—C12B—H12A109.3H12C—C12A—H12D107.9
N2B—C12B—H12B109.3C13A—C12A—H12C109.2
N2B—C12B—C13B111.51 (18)C13A—C12A—H12D109.2
H12A—C12B—H12B108.0N1A—C13A—C12A111.11 (17)
C13B—C12B—H12A109.3N1A—C13A—H13C109.4
C13B—C12B—H12B109.3N1A—C13A—H13D109.4
N1B—C13B—C12B111.01 (18)C12A—C13A—H13C109.4
N1B—C13B—H13A109.4C12A—C13A—H13D109.4
N1B—C13B—H13B109.4H13C—C13A—H13D108.0
C12B—C13B—H13A109.4N3A—C14A—H14A116.2
C12B—C13B—H13B109.4N3A—C14A—C15A118.0 (2)
H13A—C13B—H13B108.0N3A—C14A—C16A118.3 (2)
N3B—C14B—H14B116.3C15A—C14A—H14A116.2
N3B—C14B—C15B117.44 (17)C16A—C14A—H14A116.2
N3B—C14B—C16B118.40 (17)C16A—C14A—C15A60.58 (16)
C15B—C14B—H14B116.3C14A—C15A—H15C117.8
C15B—C14B—C16B60.61 (14)C14A—C15A—H15D117.8
C16B—C14B—H14B116.3C14A—C15A—C16A59.40 (16)
C14B—C15B—H15A117.8H15C—C15A—H15D115.0
C14B—C15B—H15B117.8C16A—C15A—H15C117.8
C14B—C15B—C16B59.81 (14)C16A—C15A—H15D117.8
H15A—C15B—H15B114.9C14A—C16A—C15A60.02 (16)
C16B—C15B—H15A117.8C14A—C16A—H16C117.8
C16B—C15B—H15B117.8C14A—C16A—H16D117.8
C14B—C16B—C15B59.58 (14)C15A—C16A—H16C117.8
C14B—C16B—H16A117.8C15A—C16A—H16D117.8
C14B—C16B—H16B117.8H16C—C16A—H16D114.9
C15B—C16B—H16A117.8O2A—C17A—C6A115.03 (19)
C15B—C16B—H16B117.8O3A—C17A—O2A121.40 (19)
H16A—C16B—H16B115.0O3A—C17A—C6A123.6 (2)
O2B—C17B—C6B115.55 (18)N2A—C18A—H18C109.0
O3B—C17B—O2B121.15 (19)N2A—C18A—H18D109.0
O3B—C17B—C6B123.3 (2)N2A—C18A—C19A113.00 (19)
N2B—C18B—H18A109.0H18C—C18A—H18D107.8
N2B—C18B—H18B109.0C19A—C18A—H18C109.0
N2B—C18B—C19B112.9 (2)C19A—C18A—H18D109.0
H18A—C18B—H18B107.8C18A—C19A—H19D109.5
C19B—C18B—H18A109.0C18A—C19A—H19E109.5
C19B—C18B—H18B109.0C18A—C19A—H19F109.5
C18B—C19B—H19A109.5H19D—C19A—H19E109.5
C18B—C19B—H19B109.5H19D—C19A—H19F109.5
C18B—C19B—H19C109.5H19E—C19A—H19F109.5
H19A—C19B—H19B109.5O1C—C1C—O2C126.0 (2)
H19A—C19B—H19C109.5O1C—C1C—C2C116.9 (2)
H19B—C19B—H19C109.5O2C—C1C—C2C117.03 (19)
C17A—O2A—H2A109.5O3C—C2C—O4C126.0 (2)
C1A—N1A—C10A120.94 (18)O3C—C2C—C1C117.1 (2)
C1A—N1A—C13A124.69 (18)O4C—C2C—C1C116.9 (2)
F1B—C2B—C3B—C4B176.45 (19)O1A—C5A—C6A—C17A1.0 (3)
O1B—C5B—C6B—C7B179.8 (2)N1A—C1A—C2A—F1A0.7 (3)
O1B—C5B—C6B—C17B0.5 (3)N1A—C1A—C2A—C3A175.23 (19)
N1B—C1B—C2B—F1B7.0 (3)N1A—C1A—C9A—C8A172.2 (2)
N1B—C1B—C2B—C3B175.4 (2)N1A—C10A—C11A—N2A58.6 (2)
N1B—C1B—C9B—C8B176.91 (19)N2A—C12A—C13A—N1A54.1 (2)
N1B—C10B—C11B—N2B56.9 (2)N3A—C8A—C9A—C1A177.9 (2)
N2B—C12B—C13B—N1B55.8 (2)N3A—C14A—C15A—C16A108.5 (2)
N3B—C8B—C9B—C1B178.95 (18)N3A—C14A—C16A—C15A107.9 (2)
N3B—C14B—C15B—C16B108.8 (2)C1A—N1A—C10A—C11A102.4 (2)
N3B—C14B—C16B—C15B107.3 (2)C1A—N1A—C13A—C12A104.5 (2)
C1B—N1B—C10B—C11B133.6 (2)C1A—C2A—C3A—C4A2.5 (3)
C1B—N1B—C13B—C12B134.9 (2)C2A—C1A—C9A—C8A3.4 (3)
C1B—C2B—C3B—C4B1.2 (3)C2A—C3A—C4A—C5A176.61 (19)
C2B—C1B—C9B—C8B3.3 (3)C2A—C3A—C4A—C8A2.3 (3)
C2B—C3B—C4B—C5B174.5 (2)C3A—C4A—C5A—O1A1.1 (3)
C2B—C3B—C4B—C8B3.9 (3)C3A—C4A—C5A—C6A178.78 (18)
C3B—C4B—C5B—O1B1.1 (3)C3A—C4A—C8A—N3A179.17 (18)
C3B—C4B—C5B—C6B178.88 (19)C3A—C4A—C8A—C9A0.6 (3)
C3B—C4B—C8B—N3B177.35 (18)C4A—C5A—C6A—C7A1.7 (3)
C3B—C4B—C8B—C9B5.4 (3)C4A—C5A—C6A—C17A179.16 (18)
C4B—C5B—C6B—C7B2.1 (3)C4A—C8A—C9A—C1A3.6 (3)
C4B—C5B—C6B—C17B178.24 (18)C5A—C4A—C8A—N3A1.9 (3)
C4B—C8B—C9B—C1B1.7 (3)C5A—C4A—C8A—C9A179.53 (19)
C5B—C4B—C8B—N3B4.2 (3)C5A—C6A—C7A—N3A1.4 (3)
C5B—C4B—C8B—C9B173.05 (18)C5A—C6A—C17A—O2A5.0 (3)
C5B—C6B—C7B—N3B0.9 (3)C5A—C6A—C17A—O3A174.4 (2)
C5B—C6B—C17B—O2B3.0 (3)C7A—N3A—C8A—C4A2.4 (3)
C5B—C6B—C17B—O3B176.8 (2)C7A—N3A—C8A—C9A179.1 (2)
C7B—N3B—C8B—C4B5.5 (3)C7A—N3A—C14A—C15A116.6 (2)
C7B—N3B—C8B—C9B171.83 (18)C7A—N3A—C14A—C16A46.8 (3)
C7B—N3B—C14B—C15B112.4 (2)C7A—C6A—C17A—O2A177.5 (2)
C7B—N3B—C14B—C16B42.8 (3)C7A—C6A—C17A—O3A3.1 (3)
C7B—C6B—C17B—O2B177.35 (19)C8A—N3A—C7A—C6A0.8 (3)
C7B—C6B—C17B—O3B2.8 (3)C8A—N3A—C14A—C15A69.7 (3)
C8B—N3B—C7B—C6B3.0 (3)C8A—N3A—C14A—C16A139.5 (2)
C8B—N3B—C14B—C15B69.3 (2)C8A—C4A—C5A—O1A179.98 (19)
C8B—N3B—C14B—C16B138.96 (19)C8A—C4A—C5A—C6A0.1 (3)
C8B—C4B—C5B—O1B177.22 (19)C9A—C1A—C2A—F1A176.35 (18)
C8B—C4B—C5B—C6B0.5 (3)C9A—C1A—C2A—C3A0.4 (3)
C9B—C1B—C2B—F1B172.84 (18)C10A—N1A—C1A—C2A157.2 (2)
C9B—C1B—C2B—C3B4.8 (3)C10A—N1A—C1A—C9A18.1 (3)
C10B—N1B—C1B—C2B150.0 (2)C10A—N1A—C13A—C12A55.0 (2)
C10B—N1B—C1B—C9B29.8 (3)C11A—N2A—C12A—C13A54.7 (2)
C10B—N1B—C13B—C12B53.0 (3)C11A—N2A—C18A—C19A59.7 (2)
C11B—N2B—C12B—C13B58.3 (2)C12A—N2A—C11A—C10A55.9 (2)
C11B—N2B—C18B—C19B66.5 (3)C12A—N2A—C18A—C19A177.63 (19)
C12B—N2B—C11B—C10B58.4 (2)C13A—N1A—C1A—C2A45.1 (3)
C12B—N2B—C18B—C19B172.0 (2)C13A—N1A—C1A—C9A139.5 (2)
C13B—N1B—C1B—C2B21.4 (3)C13A—N1A—C10A—C11A58.0 (2)
C13B—N1B—C1B—C9B158.8 (2)C14A—N3A—C7A—C6A172.9 (2)
C13B—N1B—C10B—C11B54.1 (2)C14A—N3A—C8A—C4A171.22 (19)
C14B—N3B—C7B—C6B178.77 (19)C14A—N3A—C8A—C9A7.3 (3)
C14B—N3B—C8B—C4B176.27 (18)C17A—C6A—C7A—N3A178.9 (2)
C14B—N3B—C8B—C9B6.4 (3)C18A—N2A—C11A—C10A178.43 (17)
C17B—C6B—C7B—N3B179.40 (18)C18A—N2A—C12A—C13A178.91 (17)
C18B—N2B—C11B—C10B179.11 (17)O1C—C1C—C2C—O3C90.8 (3)
C18B—N2B—C12B—C13B177.60 (18)O1C—C1C—C2C—O4C87.1 (3)
F1A—C2A—C3A—C4A173.48 (18)O2C—C1C—C2C—O3C87.3 (3)
O1A—C5A—C6A—C7A178.4 (2)O2C—C1C—C2C—O4C94.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1B0.821.782.542 (2)154
N2B—H2BA···O2Ci0.981.672.615 (2)161
O2A—H2A···O1A0.821.772.531 (2)154
N2A—H2AA···O4Cii0.981.642.609 (2)171
C10B—H10B···O1Ci0.972.343.231 (3)153
C11B—H11A···O1C0.972.563.358 (3)139
C12B—H12A···O3Biii0.972.513.302 (3)138
C15B—H15A···O1Aiii0.972.483.433 (3)169
C16B—H16A···O3Biv0.972.463.167 (3)130
C7A—H7A···F1Bv0.932.543.314 (3)141
C12A—H12C···O2Avi0.972.533.462 (3)162
C13A—H13C···O3Cii0.972.473.254 (3)137
C16A—H16D···O3Avii0.972.373.325 (3)170
C18A—H18D···O1Cviii0.972.583.236 (3)125
C19A—H19F···O3Cviii0.962.443.375 (3)163
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x, y1, z; (vi) x+2, y, z; (vii) x+1, y, z; (viii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2B···O1B0.821.782.542 (2)153.8
N2B—H2BA···O2Ci0.981.672.615 (2)160.9
O2A—H2A···O1A0.821.772.531 (2)154.4
N2A—H2AA···O4Cii0.981.642.609 (2)170.8
C10B—H10B···O1Ci0.972.343.231 (3)153.1
C11B—H11A···O1C0.972.563.358 (3)139.1
C12B—H12A···O3Biii0.972.513.302 (3)138.2
C15B—H15A···O1Aiii0.972.483.433 (3)168.7
C16B—H16A···O3Biv0.972.463.167 (3)129.9
C7A—H7A···F1Bv0.932.543.314 (3)140.7
C12A—H12C···O2Avi0.972.533.462 (3)161.8
C13A—H13C···O3Cii0.972.473.254 (3)137.2
C16A—H16D···O3Avii0.972.373.325 (3)170.2
C18A—H18D···O1Cviii0.972.583.236 (3)125.3
C19A—H19F···O3Cviii0.962.443.375 (3)163.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x, y1, z; (vi) x+2, y, z; (vii) x+1, y, z; (viii) x+2, y, z+1.
 

Acknowledgements

HSY is grateful to RL Fine Chem, Bengaluru, India for the gift sample of enrofloxacin. TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBhanot, S. K., Singh, M. & Chatterjee, N. R. (2001). Curr. Pharm. Des. 7, 313–337.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolovnev, N. N., Vasiliev, A, D. & Kirik, S. D. (2012). J. Mol. Struct. 1021, 112–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Bindya, S., Anilkumar, H. G. & Devaraju (2007). Acta Cryst. C63, o129–o131.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011b). Acta Cryst. E67, o483–o484.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Siddaraju, B. P. (2011a). Acta Cryst. E67, o432–o433.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013). Acta Cryst. E69, o1344.  CSD CrossRef IUCr Journals Google Scholar
First citationMaheswararao, K. & Angshuman, R. C. (2013). Cryst. Growth Des. 13, 1626–1637.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRecillas-Mota, J., Flores-Alamo, M., Moreno-Esparza, R. & Gracia-Mora, J. (2007). Acta Cryst. E63, m3030–m3031.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScholar, E. M. (2003). Am. J. Pharm. Educ. 66, 165–172.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-X., Li, Y. & Pan, Y.-J. (2004). Acta Cryst. E60, o1694–o1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o200-o201
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds