metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m67-m68

Tris(2,6-di­benzoyl-4-methyl­phenolato-κ2O1,O2)cobalt(III)

aDepartment of Material Science and Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 051, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 22 January 2014; accepted 23 January 2014; online 29 January 2014)

In the title compound, [Co(C21H15O3)3], the CoIII ion is coordinated in a slightly distorted octa­hedral environment by three phenolate O and three benzoyl O atoms from three monoanionic bidentate 2,6-dibenzoyl-4-methyl­phenolate ligands. The dihedral angles between the mean planes of the central phenolate rings and the peripheral phenyl rings are 46.62 (10)/87.06 (9), 60.44 (8)/23.13 (8) and 46.49 (6)/65.29 (6)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O inter­actions. Mol­ecules are further linked by two ππ [centroid–centroid distances = 3.8612 (14) and 3.9479 (14) Å] and four C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For phenol-based diketones, see: Gupta et al. (2002[Gupta, S. K., Hitchock, P. B. & Kushwah, Y. S. (2002). Polyhedron, 21, 1787-1793.], 2012a[Gupta, S. K., Anjana, C., Sen, N., Jasinski, J. P. & Golen, J. A. (2012a). J. Chem. Crystallogr. 42, 960-967.]). For material and biological applications, see: Church & Halvorson (1959[Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125.]); Olsson et al. (2005[Olsson, R. T., Salazar-Alvarez, G., Hedenqvist, M. S., Gedde, U. W., Lindberg, F. & Savage, S. J. (2005). Chem. Mater. 17, 5109-5118.]); Burschka et al. (2013[Burschka, J., Kessler, F., Nazeeruddin, M. K. & Grätzel, M. (2013). Chem. Mater. 25, 2986-2990.]); Erkkila et al. (1999[Erkkila, K. E., Odom, D. T. & Barton, J. K. (1999). Chem. Rev. 99, 2777-2795.]); Metcalfe & Thomas (2003[Metcalfe, C. & Thomas, J. A. (2003). Chem. Soc. Rev. 32, 215-224.]); Generex & Barton (2010[Generex, J. C. & Barton, J. K. (2010). Chem. Rev. 110, 1642-1662.]). For related structures, see: Gupta et al. (2012b[Gupta, S. K., Anjana, C., Sen, N., Butcher, R. J. & Jasinski, J. P. (2012b). Polyhedron, 43, 8-14.]); Huang et al. (2013[Huang, Q.-P., Zhang, C.-L., Zhao, R.-X., Yang, L. & Jiang, X.-F. (2013). Acta Cryst. E69, m601.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C21H15O3)3]

  • Mr = 1004.92

  • Monoclinic, P 21 /c

  • a = 11.2858 (3) Å

  • b = 17.5442 (4) Å

  • c = 24.7745 (5) Å

  • β = 92.8922 (19)°

  • V = 4899.12 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.25 mm−1

  • T = 123 K

  • 0.46 × 0.18 × 0.15 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.477, Tmax = 0.705

  • 21885 measured reflections

  • 10145 independent reflections

  • 9001 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.154

  • S = 1.06

  • 10145 reflections

  • 661 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg7, Cg9, Cg11 and Cg12 are the centroids of the C9A–C14A, C9C–C14C, C16B–C21B and C16C–C21C rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12A⋯O2Bi 0.95 2.60 3.442 (3) 147
C13A—H13A⋯O3Ci 0.95 2.48 3.278 (3) 141
C13B—H13B⋯O3Bii 0.95 2.39 3.311 (3) 162
C11C—H11C⋯O3Ciii 0.95 2.40 3.313 (3) 161
C10B—H10BCg12 0.95 2.70 3.634 (3) 166
C11B—H11BCg7iv 0.95 2.72 3.479 (3) 137
C18C—H18CCg9iv 0.95 2.99 3.720 (4) 135
C20C—H20CCg11v 0.95 2.88 3.332 (3) 110
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years phenol-based diketones have been widely used as ligands forming complexes with interesting properties that are useful in material science (Church & Halvorson, 1959; Olsson et al., 2005; Burschka et al., 2013) and in biological systems (Erkkila et al., 1999; Metcalfe & Thomas, 2003; Generex & Barton, 2010). The crystal structure of 4-methyl-2,6-dibenzoylphenol (mdbpH)), 4-tert-butyl-2,6-dibenzoylphenol (bdbpH) and their chromium(III) complexes have been reported earlier (Gupta et al., 2002, 2012a, 2012b). We herein report the synthesis and X-ray crystal structure analysis of the title compound.

The molecular structure of the title compound, [Co(C21H15O3)3], is shown in (Fig.1). The three monoanionic ligands (2,6-PhCO)2(4-Me)C6H2O- are bidentate, coordinating through phenolic O and benzoyl O atoms to give a mer–CoO3O3 octahedral configuration. The coordination geometry around the Co(III) ion deviates slightly from an ideal octahedral coordination as evidenced by the trans angles, O1C/Co/O1A (178.32 (7)°), O2B/Co/O2C (176.88 (7)°) and O1B/Co/O2A (178.76 (7)°). The remaining angles vary between 87.01 (7)° and 93.25 (7)°, whereby the smallest values correspond to the O–Co–O bond angles in the three chelate rings, O1A/Co/O2A 88.47 (7)°, O1B/Co/O2B 90.02 (7)° and O1C/Co/O2C 87.01 (7)°. The Co–O (phenolic) distances [mean 1.932 Å] are similar and comparable to those reported for other mononuclear complexes, [Cr(mdbp)3, mean 1.931 Å] (Gupta et al., 2012b) and [CoL3] (L = 4- bromo-2-(methyliminomethyl)phenolate) [mean 1.890 Å] (Huang et al., 2013) but significantly shorter than the Co–O (benzoyl) distance [mean 1.974 Å]. The dihedral angles between the mean planes of the central phenolato rings (C1A–C6A; C1B–C6B; C1C–C6C) and the peripheral phenyl rings (C9A–C14A & C16A–C21A; C9B–C14B & C16B–C21B; C9C–C14C & C16C–C21C) are 46.62 (10)° & 87.06 (9)°; 60.44 (8)° & 23.13 (8)° and 46.49 (6)° & 65.29 (6)°, respectively, indicating that there is no conjugation between the phenolato and phenyl rings in the mdbp ligands. Further, there are significant differences in the O–C–C–C torsion angles, O1A/C1A/C2A/C8A (–9.9 (4)°), O1B/C1B/C2B/C8B (–2.1 (4)°) and O1C/C1C/C2C/C8C (3.8 (4)°) than that observed in the ligand, O1/C1/C2/C8 (0.0 (3)°) (Gupta et al., 2002) which suggest that distortions are driven by steric interactions. The crystal packing is stabilized by weak C–H···O intermolecular interactions (Fig.2, Table 1). Molecules are further linked by two ππ [Cg2–Cg10 = 3.9479 (14) Å, Cg7—Cg7i = 3.8612 (14) Å, symmetry code (i): 1 - x, -y, -z, where Cg2, Cg7 and Cg10 are the centroids of the phenolate (Co/O1B/C1B/C2B/C8B/O2B), and phenyl (C9A–C14A, C16A–C21A) rings, respectively and four C–H···π (C10B–H10B–Cg12 = 3.634 (3) Å, C11B–H11B–Cg7i = 3.479 (3) Å, C18C–H18C–Cg9i = 3.720 (4) Å, C20C–H20C–Cg11ii = 3.332 (3) Å, symmetry code (i): 1 + x, y, z; ii: 2 - x, -1/2 + y, +1/2 - z where Cg9, Cg11 and cg12 are the centroids of phenyl (C9C–C14C, C16B–C21B, C16C–C21C rings)) interactions to form a three-dimensional network.

Related literature top

For phenol-based diketones, see: Gupta et al. (2002, 2012a). For material and biological applications, see: Church & Halvorson (1959); Olsson et al. (2005); Burschka et al. (2013); Erkkila et al. (1999); Metcalfe & Thomas (2003); Generex & Barton (2010). For related structures, see: Gupta et al. (2012b); Huang et al. (2013).

Experimental top

An ethanolic solution of Co(ClO4)2.6H2O (0.366 g, 1.00 mmol) was added dropwise to the stirred hot solution of 2,6-dibenzoyl-4-methylphenol (0.948 g, 3.00 mmol) in ethanol under argon. The resulting wine-red solution was heated to reflux at 70–80 °C. The clear solution thus obtained was filtered and allowed to cool at ambient temperature. Slow evaporation of the solvent resulted in dark-brown prism-shaped crystals within a few days (yield: 0.80 g, 80%; m.p. 260–262 °C). Analysis calculated for C63H45O9Co (%): C 75.29, H 4.51; found: C 75.40, H 4.60.

Refinement top

H atoms were positioned geometrically and refined using the riding model, with C–H distance of 0.95–0.98 Å, with Uiso (H) = 1.20 Ueq (C) or 1.50 Ueq (C) for methyl H atoms.

Structure description top

In recent years phenol-based diketones have been widely used as ligands forming complexes with interesting properties that are useful in material science (Church & Halvorson, 1959; Olsson et al., 2005; Burschka et al., 2013) and in biological systems (Erkkila et al., 1999; Metcalfe & Thomas, 2003; Generex & Barton, 2010). The crystal structure of 4-methyl-2,6-dibenzoylphenol (mdbpH)), 4-tert-butyl-2,6-dibenzoylphenol (bdbpH) and their chromium(III) complexes have been reported earlier (Gupta et al., 2002, 2012a, 2012b). We herein report the synthesis and X-ray crystal structure analysis of the title compound.

The molecular structure of the title compound, [Co(C21H15O3)3], is shown in (Fig.1). The three monoanionic ligands (2,6-PhCO)2(4-Me)C6H2O- are bidentate, coordinating through phenolic O and benzoyl O atoms to give a mer–CoO3O3 octahedral configuration. The coordination geometry around the Co(III) ion deviates slightly from an ideal octahedral coordination as evidenced by the trans angles, O1C/Co/O1A (178.32 (7)°), O2B/Co/O2C (176.88 (7)°) and O1B/Co/O2A (178.76 (7)°). The remaining angles vary between 87.01 (7)° and 93.25 (7)°, whereby the smallest values correspond to the O–Co–O bond angles in the three chelate rings, O1A/Co/O2A 88.47 (7)°, O1B/Co/O2B 90.02 (7)° and O1C/Co/O2C 87.01 (7)°. The Co–O (phenolic) distances [mean 1.932 Å] are similar and comparable to those reported for other mononuclear complexes, [Cr(mdbp)3, mean 1.931 Å] (Gupta et al., 2012b) and [CoL3] (L = 4- bromo-2-(methyliminomethyl)phenolate) [mean 1.890 Å] (Huang et al., 2013) but significantly shorter than the Co–O (benzoyl) distance [mean 1.974 Å]. The dihedral angles between the mean planes of the central phenolato rings (C1A–C6A; C1B–C6B; C1C–C6C) and the peripheral phenyl rings (C9A–C14A & C16A–C21A; C9B–C14B & C16B–C21B; C9C–C14C & C16C–C21C) are 46.62 (10)° & 87.06 (9)°; 60.44 (8)° & 23.13 (8)° and 46.49 (6)° & 65.29 (6)°, respectively, indicating that there is no conjugation between the phenolato and phenyl rings in the mdbp ligands. Further, there are significant differences in the O–C–C–C torsion angles, O1A/C1A/C2A/C8A (–9.9 (4)°), O1B/C1B/C2B/C8B (–2.1 (4)°) and O1C/C1C/C2C/C8C (3.8 (4)°) than that observed in the ligand, O1/C1/C2/C8 (0.0 (3)°) (Gupta et al., 2002) which suggest that distortions are driven by steric interactions. The crystal packing is stabilized by weak C–H···O intermolecular interactions (Fig.2, Table 1). Molecules are further linked by two ππ [Cg2–Cg10 = 3.9479 (14) Å, Cg7—Cg7i = 3.8612 (14) Å, symmetry code (i): 1 - x, -y, -z, where Cg2, Cg7 and Cg10 are the centroids of the phenolate (Co/O1B/C1B/C2B/C8B/O2B), and phenyl (C9A–C14A, C16A–C21A) rings, respectively and four C–H···π (C10B–H10B–Cg12 = 3.634 (3) Å, C11B–H11B–Cg7i = 3.479 (3) Å, C18C–H18C–Cg9i = 3.720 (4) Å, C20C–H20C–Cg11ii = 3.332 (3) Å, symmetry code (i): 1 + x, y, z; ii: 2 - x, -1/2 + y, +1/2 - z where Cg9, Cg11 and cg12 are the centroids of phenyl (C9C–C14C, C16B–C21B, C16C–C21C rings)) interactions to form a three-dimensional network.

For phenol-based diketones, see: Gupta et al. (2002, 2012a). For material and biological applications, see: Church & Halvorson (1959); Olsson et al. (2005); Burschka et al. (2013); Erkkila et al. (1999); Metcalfe & Thomas (2003); Generex & Barton (2010). For related structures, see: Gupta et al. (2012b); Huang et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of [Co(C21H15O3)3] viewed along a axis. Dashes lines indicate a weak C–H···O intermolecular interactions.
Tris(2,6-dibenzoyl-4-methylphenolato-κ2O1,O2)cobalt(III) top
Crystal data top
[Co(C21H15O3)3]F(000) = 2088
Mr = 1004.92Dx = 1.362 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 9359 reflections
a = 11.2858 (3) Åθ = 3.1–77.4°
b = 17.5442 (4) ŵ = 3.25 mm1
c = 24.7745 (5) ÅT = 123 K
β = 92.8922 (19)°Prism, dark brown
V = 4899.12 (19) Å30.46 × 0.18 × 0.15 mm
Z = 4
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
10145 independent reflections
Radiation source: Enhance (Cu) X-ray Source9001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.5081 pixels mm-1θmax = 77.6°, θmin = 3.6°
ω scansh = 1314
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
k = 2115
Tmin = 0.477, Tmax = 0.705l = 3124
21885 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0765P)2 + 3.7684P]
where P = (Fo2 + 2Fc2)/3
10145 reflections(Δ/σ)max = 0.001
661 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Co(C21H15O3)3]V = 4899.12 (19) Å3
Mr = 1004.92Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2858 (3) ŵ = 3.25 mm1
b = 17.5442 (4) ÅT = 123 K
c = 24.7745 (5) Å0.46 × 0.18 × 0.15 mm
β = 92.8922 (19)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
10145 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
9001 reflections with I > 2σ(I)
Tmin = 0.477, Tmax = 0.705Rint = 0.045
21885 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.06Δρmax = 0.51 e Å3
10145 reflectionsΔρmin = 0.62 e Å3
661 parameters
Special details top

Experimental. CrysAlisPro (Agilent Technologies, 2012) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.38732 (3)0.70424 (2)0.356917 (14)0.01928 (11)
O1A0.45006 (16)0.79710 (9)0.39056 (7)0.0241 (4)
O2A0.49775 (14)0.64526 (9)0.40544 (6)0.0219 (3)
O3A0.5460 (2)1.00708 (13)0.40380 (12)0.0520 (6)
C1A0.5392 (2)0.80635 (14)0.42384 (10)0.0226 (5)
C2A0.6100 (2)0.74622 (14)0.44765 (9)0.0227 (5)
C3A0.7176 (2)0.76390 (15)0.47654 (10)0.0246 (5)
H3AA0.76630.72330.49010.030*
C4A0.7548 (2)0.83833 (15)0.48580 (10)0.0265 (5)
C5A0.6786 (2)0.89697 (15)0.46756 (10)0.0282 (5)
H5AA0.70030.94830.47530.034*
C6A0.5727 (2)0.88278 (14)0.43856 (10)0.0261 (5)
C7A0.8731 (2)0.85516 (16)0.51452 (11)0.0316 (5)
H7AA0.91840.80780.51920.047*
H7AB0.86030.87750.55000.047*
H7AC0.91750.89120.49300.047*
C8A0.5713 (2)0.66727 (14)0.44132 (9)0.0218 (4)
C9A0.6168 (2)0.60673 (14)0.47901 (9)0.0223 (5)
C10A0.6254 (2)0.53247 (14)0.45905 (10)0.0253 (5)
H10A0.60440.52220.42220.030*
C11A0.6646 (2)0.47389 (14)0.49288 (11)0.0291 (5)
H11A0.67290.42390.47880.035*
C12A0.6918 (2)0.48798 (16)0.54746 (11)0.0306 (5)
H12A0.71910.44770.57060.037*
C13A0.6790 (2)0.56087 (16)0.56794 (10)0.0277 (5)
H13A0.69550.57020.60530.033*
C14A0.6423 (2)0.62031 (15)0.53404 (10)0.0244 (5)
H14A0.63440.67030.54820.029*
C15A0.4986 (2)0.94882 (15)0.41900 (12)0.0317 (5)
C16A0.3663 (2)0.94498 (14)0.42014 (11)0.0282 (5)
C17A0.2985 (3)0.98635 (16)0.38188 (12)0.0340 (6)
H17A0.33701.01490.35530.041*
C18A0.1754 (3)0.98642 (17)0.38207 (12)0.0373 (6)
H18A0.12981.01350.35510.045*
C19A0.1197 (2)0.94677 (17)0.42181 (12)0.0348 (6)
H19A0.03570.94740.42260.042*
C20A0.1863 (3)0.90615 (16)0.46045 (11)0.0329 (6)
H20A0.14760.87940.48780.040*
C21A0.3092 (2)0.90421 (15)0.45952 (11)0.0303 (5)
H21A0.35410.87520.48560.036*
O1B0.27825 (14)0.76059 (10)0.31121 (6)0.0218 (3)
O2B0.26886 (15)0.69853 (9)0.41242 (7)0.0222 (3)
O3B0.09769 (18)0.80141 (14)0.18133 (8)0.0405 (5)
C1B0.1695 (2)0.77906 (13)0.31834 (9)0.0197 (4)
C2B0.1057 (2)0.76091 (13)0.36543 (9)0.0212 (4)
C3B0.0114 (2)0.78836 (14)0.36943 (10)0.0235 (5)
H3BA0.05160.77800.40140.028*
C4B0.0695 (2)0.82958 (14)0.32878 (10)0.0257 (5)
C5B0.0102 (2)0.84059 (14)0.28079 (10)0.0256 (5)
H5BA0.05110.86520.25120.031*
C6B0.1049 (2)0.81700 (14)0.27515 (9)0.0230 (5)
C7B0.1936 (2)0.85986 (18)0.33490 (12)0.0339 (6)
H7BA0.24640.81770.34350.051*
H7BB0.22240.88390.30100.051*
H7BC0.19250.89750.36410.051*
C8B0.1611 (2)0.71668 (13)0.40888 (9)0.0202 (4)
C9B0.0913 (2)0.68677 (14)0.45423 (9)0.0221 (4)
C10B0.0060 (2)0.63968 (15)0.44322 (10)0.0272 (5)
H10B0.03470.63180.40690.033*
C11B0.0611 (2)0.60415 (17)0.48537 (12)0.0330 (6)
H11B0.12530.57010.47790.040*
C12B0.0223 (2)0.61863 (19)0.53844 (11)0.0379 (7)
H12B0.06140.59550.56730.045*
C13B0.0732 (2)0.6666 (2)0.54952 (11)0.0366 (6)
H13B0.09840.67710.58590.044*
C14B0.1321 (2)0.69935 (15)0.50742 (10)0.0279 (5)
H14B0.20000.73030.51490.034*
C15B0.1576 (2)0.82364 (15)0.22050 (10)0.0264 (5)
C16B0.2749 (2)0.86002 (15)0.21381 (10)0.0267 (5)
C17B0.3289 (2)0.90612 (16)0.25359 (11)0.0321 (6)
H17B0.29560.90990.28790.039*
C18B0.4309 (3)0.94661 (17)0.24345 (13)0.0387 (6)
H18B0.46630.97870.27060.046*
C19B0.4817 (3)0.94033 (17)0.19372 (13)0.0372 (6)
H19B0.55090.96870.18660.045*
C20B0.4305 (2)0.89232 (17)0.15445 (12)0.0345 (6)
H20B0.46630.88670.12080.041*
C21B0.3280 (2)0.85279 (16)0.16411 (11)0.0296 (5)
H21B0.29320.82050.13690.035*
O1C0.32753 (15)0.60991 (10)0.32491 (6)0.0229 (3)
O2C0.49974 (15)0.70749 (10)0.29840 (7)0.0230 (3)
O3C0.16902 (17)0.46986 (11)0.31788 (8)0.0331 (4)
C1C0.3010 (2)0.60812 (13)0.27299 (9)0.0214 (4)
C2C0.3681 (2)0.64691 (14)0.23363 (10)0.0241 (5)
C3C0.3266 (2)0.64560 (15)0.17862 (10)0.0278 (5)
H3CA0.37040.67250.15290.033*
C4C0.2259 (3)0.60711 (17)0.16093 (10)0.0317 (6)
C5C0.1635 (2)0.56738 (16)0.19942 (10)0.0293 (5)
H5CA0.09420.53990.18790.035*
C6C0.1993 (2)0.56678 (14)0.25364 (10)0.0238 (5)
C7C0.1833 (3)0.6079 (2)0.10236 (11)0.0433 (7)
H7CA0.23460.64110.08200.065*
H7CB0.10160.62700.09920.065*
H7CC0.18580.55600.08780.065*
C8C0.4756 (2)0.68717 (14)0.25044 (10)0.0232 (5)
C9C0.5663 (2)0.70757 (14)0.21124 (10)0.0254 (5)
C10C0.6301 (2)0.77469 (15)0.22062 (10)0.0277 (5)
H10C0.61290.80630.25040.033*
C11C0.7187 (3)0.79563 (16)0.18670 (12)0.0338 (6)
H11C0.76170.84160.19310.041*
C12C0.7444 (3)0.74934 (19)0.14349 (13)0.0413 (7)
H12C0.80590.76320.12060.050*
C13C0.6805 (3)0.68285 (19)0.13359 (13)0.0422 (7)
H13C0.69760.65160.10360.051*
C14C0.5913 (3)0.66184 (16)0.16748 (12)0.0343 (6)
H14C0.54760.61630.16070.041*
C15C0.1273 (2)0.52477 (14)0.29308 (10)0.0244 (5)
C16C0.0036 (2)0.55076 (14)0.30089 (10)0.0250 (5)
C17C0.0408 (2)0.61907 (15)0.27878 (11)0.0305 (5)
H17C0.00770.64980.25730.037*
C18C0.1556 (3)0.64190 (18)0.28816 (14)0.0397 (7)
H18C0.18550.68820.27300.048*
C19C0.2271 (3)0.59739 (19)0.31970 (14)0.0417 (7)
H19C0.30560.61330.32620.050*
C20C0.1829 (3)0.52935 (18)0.34171 (13)0.0390 (7)
H20C0.23140.49880.36330.047*
C21C0.0688 (2)0.50623 (15)0.33220 (11)0.0301 (5)
H21C0.03940.45960.34710.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0200 (2)0.0188 (2)0.01894 (19)0.00065 (14)0.00017 (13)0.00137 (14)
O1A0.0307 (9)0.0180 (8)0.0235 (8)0.0033 (6)0.0002 (7)0.0001 (6)
O2A0.0243 (8)0.0183 (8)0.0228 (8)0.0010 (6)0.0029 (6)0.0006 (6)
O3A0.0395 (12)0.0282 (11)0.0885 (18)0.0021 (9)0.0051 (11)0.0192 (11)
C1A0.0228 (11)0.0203 (11)0.0254 (11)0.0004 (9)0.0065 (9)0.0006 (9)
C2A0.0256 (11)0.0199 (11)0.0227 (11)0.0001 (9)0.0032 (8)0.0004 (9)
C3A0.0237 (11)0.0248 (12)0.0255 (11)0.0019 (9)0.0028 (9)0.0005 (9)
C4A0.0236 (11)0.0279 (13)0.0283 (12)0.0022 (10)0.0057 (9)0.0039 (10)
C5A0.0308 (13)0.0221 (12)0.0324 (13)0.0045 (10)0.0080 (10)0.0049 (10)
C6A0.0267 (12)0.0216 (12)0.0306 (12)0.0018 (9)0.0073 (9)0.0006 (9)
C7A0.0289 (13)0.0310 (13)0.0351 (13)0.0049 (10)0.0021 (10)0.0078 (11)
C8A0.0196 (10)0.0236 (12)0.0225 (11)0.0009 (9)0.0041 (8)0.0005 (9)
C9A0.0197 (10)0.0220 (11)0.0254 (11)0.0006 (9)0.0017 (8)0.0022 (9)
C10A0.0229 (11)0.0230 (12)0.0302 (12)0.0002 (9)0.0022 (9)0.0001 (9)
C11A0.0271 (12)0.0179 (11)0.0424 (14)0.0010 (9)0.0033 (10)0.0030 (10)
C12A0.0261 (12)0.0279 (13)0.0378 (14)0.0006 (10)0.0014 (10)0.0142 (11)
C13A0.0227 (11)0.0354 (14)0.0250 (11)0.0021 (10)0.0001 (9)0.0057 (10)
C14A0.0234 (11)0.0251 (12)0.0248 (11)0.0000 (9)0.0022 (9)0.0012 (9)
C15A0.0345 (14)0.0186 (12)0.0422 (14)0.0000 (10)0.0052 (11)0.0010 (10)
C16A0.0329 (13)0.0174 (11)0.0345 (13)0.0002 (10)0.0025 (10)0.0046 (10)
C17A0.0398 (15)0.0253 (13)0.0369 (14)0.0027 (11)0.0029 (11)0.0014 (11)
C18A0.0386 (15)0.0316 (14)0.0412 (15)0.0050 (12)0.0039 (12)0.0014 (12)
C19A0.0276 (13)0.0315 (14)0.0453 (15)0.0009 (11)0.0014 (11)0.0084 (12)
C20A0.0353 (14)0.0304 (14)0.0336 (13)0.0008 (11)0.0064 (11)0.0043 (11)
C21A0.0338 (13)0.0237 (12)0.0336 (13)0.0011 (10)0.0027 (10)0.0031 (10)
O1B0.0217 (8)0.0233 (8)0.0205 (7)0.0031 (6)0.0024 (6)0.0048 (6)
O2B0.0236 (8)0.0235 (8)0.0194 (8)0.0016 (6)0.0011 (6)0.0034 (6)
O3B0.0351 (11)0.0653 (15)0.0208 (9)0.0087 (10)0.0006 (7)0.0042 (9)
C1B0.0215 (11)0.0163 (10)0.0211 (10)0.0000 (8)0.0002 (8)0.0008 (8)
C2B0.0240 (11)0.0191 (11)0.0206 (10)0.0010 (9)0.0013 (8)0.0007 (8)
C3B0.0256 (12)0.0245 (12)0.0208 (11)0.0003 (9)0.0039 (9)0.0008 (9)
C4B0.0241 (12)0.0230 (12)0.0299 (12)0.0014 (9)0.0004 (9)0.0020 (9)
C5B0.0243 (11)0.0246 (12)0.0274 (12)0.0028 (9)0.0030 (9)0.0054 (9)
C6B0.0257 (12)0.0207 (11)0.0226 (11)0.0010 (9)0.0002 (9)0.0027 (9)
C7B0.0259 (12)0.0411 (15)0.0349 (14)0.0081 (11)0.0034 (10)0.0052 (12)
C8B0.0237 (11)0.0179 (10)0.0192 (10)0.0016 (8)0.0024 (8)0.0017 (8)
C9B0.0241 (11)0.0212 (11)0.0212 (11)0.0020 (9)0.0029 (8)0.0030 (9)
C10B0.0276 (12)0.0283 (12)0.0256 (12)0.0003 (10)0.0005 (9)0.0026 (10)
C11B0.0239 (12)0.0346 (14)0.0407 (14)0.0033 (10)0.0034 (10)0.0106 (12)
C12B0.0274 (13)0.0556 (19)0.0313 (13)0.0029 (12)0.0067 (10)0.0189 (13)
C13B0.0306 (13)0.0591 (19)0.0201 (11)0.0046 (13)0.0016 (10)0.0069 (12)
C14B0.0268 (12)0.0340 (14)0.0230 (12)0.0009 (10)0.0005 (9)0.0009 (10)
C15B0.0282 (12)0.0268 (12)0.0241 (12)0.0036 (10)0.0001 (9)0.0071 (9)
C16B0.0299 (12)0.0249 (12)0.0252 (11)0.0036 (10)0.0018 (9)0.0101 (9)
C17B0.0340 (14)0.0298 (13)0.0330 (13)0.0019 (11)0.0060 (10)0.0049 (11)
C18B0.0396 (15)0.0323 (15)0.0445 (16)0.0046 (12)0.0044 (12)0.0008 (12)
C19B0.0308 (14)0.0308 (14)0.0507 (17)0.0026 (11)0.0099 (12)0.0103 (12)
C20B0.0326 (13)0.0368 (15)0.0350 (14)0.0075 (11)0.0103 (11)0.0121 (11)
C21B0.0294 (12)0.0317 (13)0.0277 (12)0.0062 (10)0.0029 (10)0.0087 (10)
O1C0.0256 (8)0.0210 (8)0.0219 (8)0.0029 (6)0.0016 (6)0.0004 (6)
O2C0.0221 (8)0.0244 (9)0.0226 (8)0.0004 (6)0.0018 (6)0.0005 (6)
O3C0.0320 (10)0.0247 (9)0.0420 (10)0.0010 (8)0.0037 (8)0.0058 (8)
C1C0.0210 (11)0.0205 (11)0.0226 (11)0.0006 (9)0.0004 (8)0.0011 (9)
C2C0.0262 (11)0.0213 (11)0.0249 (11)0.0021 (9)0.0018 (9)0.0013 (9)
C3C0.0324 (13)0.0288 (13)0.0226 (11)0.0015 (10)0.0036 (9)0.0001 (9)
C4C0.0374 (14)0.0350 (14)0.0223 (11)0.0018 (11)0.0033 (10)0.0015 (10)
C5C0.0285 (12)0.0302 (13)0.0289 (12)0.0031 (10)0.0032 (9)0.0053 (10)
C6C0.0226 (11)0.0216 (11)0.0269 (11)0.0002 (9)0.0002 (9)0.0013 (9)
C7C0.0485 (17)0.0557 (19)0.0249 (13)0.0068 (15)0.0050 (12)0.0002 (13)
C8C0.0251 (12)0.0187 (11)0.0259 (11)0.0047 (9)0.0035 (9)0.0015 (9)
C9C0.0252 (12)0.0239 (12)0.0273 (12)0.0025 (9)0.0040 (9)0.0028 (9)
C10C0.0298 (12)0.0249 (12)0.0282 (12)0.0001 (10)0.0019 (9)0.0037 (10)
C11C0.0311 (14)0.0313 (14)0.0389 (15)0.0044 (11)0.0007 (11)0.0088 (11)
C12C0.0408 (16)0.0409 (16)0.0437 (16)0.0028 (13)0.0172 (12)0.0117 (13)
C13C0.0497 (18)0.0371 (16)0.0420 (16)0.0002 (14)0.0234 (14)0.0006 (13)
C14C0.0384 (15)0.0276 (13)0.0380 (14)0.0024 (11)0.0135 (11)0.0014 (11)
C15C0.0253 (11)0.0204 (11)0.0271 (11)0.0028 (9)0.0032 (9)0.0031 (9)
C16C0.0240 (11)0.0220 (11)0.0287 (12)0.0027 (9)0.0025 (9)0.0031 (9)
C17C0.0284 (12)0.0244 (12)0.0380 (14)0.0003 (10)0.0032 (10)0.0006 (10)
C18C0.0306 (14)0.0328 (15)0.0550 (18)0.0074 (11)0.0058 (12)0.0044 (13)
C19C0.0243 (13)0.0443 (17)0.0567 (18)0.0012 (12)0.0039 (12)0.0182 (14)
C20C0.0339 (14)0.0375 (16)0.0462 (16)0.0108 (12)0.0096 (12)0.0122 (13)
C21C0.0304 (13)0.0256 (12)0.0343 (13)0.0076 (10)0.0032 (10)0.0033 (10)
Geometric parameters (Å, º) top
Co—O1B1.9063 (16)C9B—C10B1.390 (4)
Co—O1C1.9414 (17)C9B—C14B1.391 (3)
Co—O1A1.9470 (17)C10B—C11B1.390 (4)
Co—O2B1.9682 (17)C10B—H10B0.9500
Co—O2C1.9749 (17)C11B—C12B1.388 (4)
Co—O2A1.9793 (16)C11B—H11B0.9500
O1A—C1A1.279 (3)C12B—C13B1.383 (4)
O2A—C8A1.247 (3)C12B—H12B0.9500
O3A—C15A1.222 (3)C13B—C14B1.389 (4)
C1A—C2A1.432 (3)C13B—H13B0.9500
C1A—C6A1.435 (3)C14B—H14B0.9500
C2A—C3A1.413 (3)C15B—C16B1.487 (4)
C2A—C8A1.459 (3)C16B—C17B1.391 (4)
C3A—C4A1.387 (4)C16B—C21B1.402 (4)
C3A—H3AA0.9500C17B—C18B1.387 (4)
C4A—C5A1.401 (4)C17B—H17B0.9500
C4A—C7A1.510 (3)C18B—C19B1.389 (4)
C5A—C6A1.386 (4)C18B—H18B0.9500
C5A—H5AA0.9500C19B—C20B1.390 (4)
C6A—C15A1.495 (4)C19B—H19B0.9500
C7A—H7AA0.9800C20B—C21B1.380 (4)
C7A—H7AB0.9800C20B—H20B0.9500
C7A—H7AC0.9800C21B—H21B0.9500
C8A—C9A1.488 (3)O1C—C1C1.306 (3)
C9A—C10A1.399 (3)O2C—C8C1.257 (3)
C9A—C14A1.399 (3)O3C—C15C1.224 (3)
C10A—C11A1.384 (4)C1C—C6C1.421 (3)
C10A—H10A0.9500C1C—C2C1.436 (3)
C11A—C12A1.394 (4)C2C—C3C1.418 (3)
C11A—H11A0.9500C2C—C8C1.447 (3)
C12A—C13A1.386 (4)C3C—C4C1.375 (4)
C12A—H12A0.9500C3C—H3CA0.9500
C13A—C14A1.389 (4)C4C—C5C1.400 (4)
C13A—H13A0.9500C4C—C7C1.506 (4)
C14A—H14A0.9500C5C—C6C1.383 (3)
C15A—C16A1.497 (4)C5C—H5CA0.9500
C16A—C17A1.392 (4)C6C—C15C1.496 (3)
C16A—C21A1.394 (4)C7C—H7CA0.9800
C17A—C18A1.390 (4)C7C—H7CB0.9800
C17A—H17A0.9500C7C—H7CC0.9800
C18A—C19A1.382 (4)C8C—C9C1.490 (3)
C18A—H18A0.9500C9C—C14C1.389 (4)
C19A—C20A1.384 (4)C9C—C10C1.394 (4)
C19A—H19A0.9500C10C—C11C1.388 (4)
C20A—C21A1.388 (4)C10C—H10C0.9500
C20A—H20A0.9500C11C—C12C1.386 (5)
C21A—H21A0.9500C11C—H11C0.9500
O1B—C1B1.290 (3)C12C—C13C1.387 (5)
O2B—C8B1.256 (3)C12C—H12C0.9500
O3B—C15B1.219 (3)C13C—C14C1.392 (4)
C1B—C6B1.429 (3)C13C—H13C0.9500
C1B—C2B1.437 (3)C14C—H14C0.9500
C2B—C3B1.415 (3)C15C—C16C1.491 (3)
C2B—C8B1.443 (3)C16C—C21C1.394 (4)
C3B—C4B1.379 (3)C16C—C17C1.400 (4)
C3B—H3BA0.9500C17C—C18C1.387 (4)
C4B—C5B1.407 (3)C17C—H17C0.9500
C4B—C7B1.513 (3)C18C—C19C1.391 (5)
C5B—C6B1.377 (3)C18C—H18C0.9500
C5B—H5BA0.9500C19C—C20C1.394 (5)
C6B—C15B1.511 (3)C19C—H19C0.9500
C7B—H7BA0.9800C20C—C21C1.382 (4)
C7B—H7BB0.9800C20C—H20C0.9500
C7B—H7BC0.9800C21C—H21C0.9500
C8B—C9B1.499 (3)
O1B—Co—O1C89.93 (7)O2B—C8B—C9B113.7 (2)
O1B—Co—O1A91.73 (7)C2B—C8B—C9B121.5 (2)
O1C—Co—O1A178.32 (7)C10B—C9B—C14B120.0 (2)
O1B—Co—O2B90.02 (7)C10B—C9B—C8B120.0 (2)
O1C—Co—O2B90.44 (7)C14B—C9B—C8B119.5 (2)
O1A—Co—O2B89.35 (7)C11B—C10B—C9B119.9 (2)
O1B—Co—O2C88.19 (7)C11B—C10B—H10B120.1
O1C—Co—O2C87.01 (7)C9B—C10B—H10B120.1
O1A—Co—O2C93.25 (7)C12B—C11B—C10B119.8 (3)
O2B—Co—O2C176.88 (7)C12B—C11B—H11B120.1
O1B—Co—O2A178.76 (7)C10B—C11B—H11B120.1
O1C—Co—O2A89.87 (7)C13B—C12B—C11B120.3 (2)
O1A—Co—O2A88.47 (7)C13B—C12B—H12B119.8
O2B—Co—O2A88.75 (7)C11B—C12B—H12B119.8
O2C—Co—O2A93.02 (7)C12B—C13B—C14B120.0 (3)
C1A—O1A—Co129.76 (16)C12B—C13B—H13B120.0
C8A—O2A—Co130.35 (16)C14B—C13B—H13B120.0
O1A—C1A—C2A125.2 (2)C13B—C14B—C9B119.8 (2)
O1A—C1A—C6A118.1 (2)C13B—C14B—H14B120.1
C2A—C1A—C6A116.7 (2)C9B—C14B—H14B120.1
C3A—C2A—C1A119.6 (2)O3B—C15B—C16B120.7 (2)
C3A—C2A—C8A120.6 (2)O3B—C15B—C6B117.5 (2)
C1A—C2A—C8A119.8 (2)C16B—C15B—C6B121.8 (2)
C4A—C3A—C2A122.4 (2)C17B—C16B—C21B118.9 (2)
C4A—C3A—H3AA118.8C17B—C16B—C15B122.1 (2)
C2A—C3A—H3AA118.8C21B—C16B—C15B118.8 (2)
C3A—C4A—C5A117.5 (2)C18B—C17B—C16B120.5 (3)
C3A—C4A—C7A121.0 (2)C18B—C17B—H17B119.8
C5A—C4A—C7A121.5 (2)C16B—C17B—H17B119.8
C6A—C5A—C4A122.3 (2)C17B—C18B—C19B120.2 (3)
C6A—C5A—H5AA118.8C17B—C18B—H18B119.9
C4A—C5A—H5AA118.8C19B—C18B—H18B119.9
C5A—C6A—C1A120.5 (2)C18B—C19B—C20B119.6 (3)
C5A—C6A—C15A118.8 (2)C18B—C19B—H19B120.2
C1A—C6A—C15A120.4 (2)C20B—C19B—H19B120.2
C4A—C7A—H7AA109.5C21B—C20B—C19B120.3 (3)
C4A—C7A—H7AB109.5C21B—C20B—H20B119.8
H7AA—C7A—H7AB109.5C19B—C20B—H20B119.8
C4A—C7A—H7AC109.5C20B—C21B—C16B120.4 (3)
H7AA—C7A—H7AC109.5C20B—C21B—H21B119.8
H7AB—C7A—H7AC109.5C16B—C21B—H21B119.8
O2A—C8A—C2A123.8 (2)C1C—O1C—Co118.70 (15)
O2A—C8A—C9A115.0 (2)C8C—O2C—Co124.66 (16)
C2A—C8A—C9A121.2 (2)O1C—C1C—C6C119.0 (2)
C10A—C9A—C14A119.2 (2)O1C—C1C—C2C123.7 (2)
C10A—C9A—C8A118.1 (2)C6C—C1C—C2C117.2 (2)
C14A—C9A—C8A122.5 (2)C3C—C2C—C1C119.0 (2)
C11A—C10A—C9A120.2 (2)C3C—C2C—C8C121.0 (2)
C11A—C10A—H10A119.9C1C—C2C—C8C119.9 (2)
C9A—C10A—H10A119.9C4C—C3C—C2C122.8 (2)
C10A—C11A—C12A120.3 (2)C4C—C3C—H3CA118.6
C10A—C11A—H11A119.9C2C—C3C—H3CA118.6
C12A—C11A—H11A119.9C3C—C4C—C5C117.6 (2)
C13A—C12A—C11A119.8 (2)C3C—C4C—C7C121.5 (3)
C13A—C12A—H12A120.1C5C—C4C—C7C120.9 (3)
C11A—C12A—H12A120.1C6C—C5C—C4C122.2 (2)
C12A—C13A—C14A120.3 (2)C6C—C5C—H5CA118.9
C12A—C13A—H13A119.8C4C—C5C—H5CA118.9
C14A—C13A—H13A119.8C5C—C6C—C1C121.0 (2)
C13A—C14A—C9A120.1 (2)C5C—C6C—C15C119.8 (2)
C13A—C14A—H14A119.9C1C—C6C—C15C119.2 (2)
C9A—C14A—H14A119.9C4C—C7C—H7CA109.5
O3A—C15A—C6A120.2 (3)C4C—C7C—H7CB109.5
O3A—C15A—C16A119.7 (3)H7CA—C7C—H7CB109.5
C6A—C15A—C16A120.1 (2)C4C—C7C—H7CC109.5
C17A—C16A—C21A119.1 (3)H7CA—C7C—H7CC109.5
C17A—C16A—C15A118.6 (2)H7CB—C7C—H7CC109.5
C21A—C16A—C15A122.3 (2)O2C—C8C—C2C123.3 (2)
C18A—C17A—C16A120.9 (3)O2C—C8C—C9C115.1 (2)
C18A—C17A—H17A119.6C2C—C8C—C9C121.6 (2)
C16A—C17A—H17A119.6C14C—C9C—C10C119.6 (2)
C19A—C18A—C17A119.5 (3)C14C—C9C—C8C122.9 (2)
C19A—C18A—H18A120.3C10C—C9C—C8C117.4 (2)
C17A—C18A—H18A120.3C11C—C10C—C9C120.3 (3)
C18A—C19A—C20A120.1 (3)C11C—C10C—H10C119.8
C18A—C19A—H19A120.0C9C—C10C—H10C119.8
C20A—C19A—H19A120.0C12C—C11C—C10C119.8 (3)
C19A—C20A—C21A120.6 (3)C12C—C11C—H11C120.1
C19A—C20A—H20A119.7C10C—C11C—H11C120.1
C21A—C20A—H20A119.7C11C—C12C—C13C120.2 (3)
C20A—C21A—C16A119.8 (3)C11C—C12C—H12C119.9
C20A—C21A—H21A120.1C13C—C12C—H12C119.9
C16A—C21A—H21A120.1C12C—C13C—C14C120.1 (3)
C1B—O1B—Co129.72 (14)C12C—C13C—H13C120.0
C8B—O2B—Co128.88 (15)C14C—C13C—H13C120.0
O1B—C1B—C6B117.9 (2)C9C—C14C—C13C120.0 (3)
O1B—C1B—C2B125.1 (2)C9C—C14C—H14C120.0
C6B—C1B—C2B117.0 (2)C13C—C14C—H14C120.0
C3B—C2B—C1B119.3 (2)O3C—C15C—C16C121.0 (2)
C3B—C2B—C8B120.1 (2)O3C—C15C—C6C120.5 (2)
C1B—C2B—C8B120.6 (2)C16C—C15C—C6C118.5 (2)
C4B—C3B—C2B122.6 (2)C21C—C16C—C17C119.3 (2)
C4B—C3B—H3BA118.7C21C—C16C—C15C118.7 (2)
C2B—C3B—H3BA118.7C17C—C16C—C15C122.0 (2)
C3B—C4B—C5B117.4 (2)C18C—C17C—C16C120.1 (3)
C3B—C4B—C7B121.3 (2)C18C—C17C—H17C120.0
C5B—C4B—C7B121.3 (2)C16C—C17C—H17C120.0
C6B—C5B—C4B122.4 (2)C17C—C18C—C19C120.3 (3)
C6B—C5B—H5BA118.8C17C—C18C—H18C119.8
C4B—C5B—H5BA118.8C19C—C18C—H18C119.8
C5B—C6B—C1B120.8 (2)C18C—C19C—C20C119.6 (3)
C5B—C6B—C15B118.9 (2)C18C—C19C—H19C120.2
C1B—C6B—C15B119.9 (2)C20C—C19C—H19C120.2
C4B—C7B—H7BA109.5C21C—C20C—C19C120.2 (3)
C4B—C7B—H7BB109.5C21C—C20C—H20C119.9
H7BA—C7B—H7BB109.5C19C—C20C—H20C119.9
C4B—C7B—H7BC109.5C20C—C21C—C16C120.5 (3)
H7BA—C7B—H7BC109.5C20C—C21C—H21C119.7
H7BB—C7B—H7BC109.5C16C—C21C—H21C119.7
O2B—C8B—C2B124.7 (2)
O1B—Co—O1A—C1A172.3 (2)C3B—C2B—C8B—C9B11.1 (3)
O2B—Co—O1A—C1A97.7 (2)C1B—C2B—C8B—C9B170.4 (2)
O2C—Co—O1A—C1A84.0 (2)O2B—C8B—C9B—C10B121.5 (2)
O2A—Co—O1A—C1A9.0 (2)C2B—C8B—C9B—C10B57.5 (3)
O1C—Co—O2A—C8A179.2 (2)O2B—C8B—C9B—C14B51.4 (3)
O1A—Co—O2A—C8A0.7 (2)C2B—C8B—C9B—C14B129.7 (3)
O2B—Co—O2A—C8A88.7 (2)C14B—C9B—C10B—C11B1.1 (4)
O2C—Co—O2A—C8A93.8 (2)C8B—C9B—C10B—C11B171.7 (2)
Co—O1A—C1A—C2A5.2 (3)C9B—C10B—C11B—C12B3.0 (4)
Co—O1A—C1A—C6A174.29 (16)C10B—C11B—C12B—C13B1.8 (5)
O1A—C1A—C2A—C3A169.3 (2)C11B—C12B—C13B—C14B1.3 (5)
C6A—C1A—C2A—C3A10.1 (3)C12B—C13B—C14B—C9B3.1 (4)
O1A—C1A—C2A—C8A9.9 (4)C10B—C9B—C14B—C13B1.9 (4)
C6A—C1A—C2A—C8A170.6 (2)C8B—C9B—C14B—C13B174.8 (2)
C1A—C2A—C3A—C4A4.1 (4)C5B—C6B—C15B—O3B46.5 (4)
C8A—C2A—C3A—C4A176.7 (2)C1B—C6B—C15B—O3B126.7 (3)
C2A—C3A—C4A—C5A3.0 (4)C5B—C6B—C15B—C16B129.9 (3)
C2A—C3A—C4A—C7A177.0 (2)C1B—C6B—C15B—C16B56.9 (3)
C3A—C4A—C5A—C6A3.6 (4)O3B—C15B—C16B—C17B160.0 (3)
C7A—C4A—C5A—C6A176.4 (2)C6B—C15B—C16B—C17B16.3 (4)
C4A—C5A—C6A—C1A2.9 (4)O3B—C15B—C16B—C21B14.6 (4)
C4A—C5A—C6A—C15A177.9 (2)C6B—C15B—C16B—C21B169.1 (2)
O1A—C1A—C6A—C5A169.9 (2)C21B—C16B—C17B—C18B2.5 (4)
C2A—C1A—C6A—C5A9.6 (3)C15B—C16B—C17B—C18B172.0 (3)
O1A—C1A—C6A—C15A5.1 (3)C16B—C17B—C18B—C19B1.3 (4)
C2A—C1A—C6A—C15A175.4 (2)C17B—C18B—C19B—C20B1.0 (5)
Co—O2A—C8A—C2A13.9 (3)C18B—C19B—C20B—C21B1.9 (4)
Co—O2A—C8A—C9A165.00 (15)C19B—C20B—C21B—C16B0.6 (4)
C3A—C2A—C8A—O2A159.7 (2)C17B—C16B—C21B—C20B1.6 (4)
C1A—C2A—C8A—O2A19.6 (3)C15B—C16B—C21B—C20B173.2 (2)
C3A—C2A—C8A—C9A21.5 (3)O1B—Co—O1C—C1C39.09 (17)
C1A—C2A—C8A—C9A159.2 (2)O2B—Co—O1C—C1C129.11 (17)
O2A—C8A—C9A—C10A31.2 (3)O2C—Co—O1C—C1C49.11 (17)
C2A—C8A—C9A—C10A149.9 (2)O2A—Co—O1C—C1C142.14 (17)
O2A—C8A—C9A—C14A143.8 (2)O1B—Co—O2C—C8C52.61 (19)
C2A—C8A—C9A—C14A35.1 (3)O1C—Co—O2C—C8C37.41 (19)
C14A—C9A—C10A—C11A3.3 (4)O1A—Co—O2C—C8C144.25 (19)
C8A—C9A—C10A—C11A178.5 (2)O2A—Co—O2C—C8C127.12 (19)
C9A—C10A—C11A—C12A2.2 (4)Co—O1C—C1C—C6C141.27 (18)
C10A—C11A—C12A—C13A0.4 (4)Co—O1C—C1C—C2C37.7 (3)
C11A—C12A—C13A—C14A1.8 (4)O1C—C1C—C2C—C3C175.6 (2)
C12A—C13A—C14A—C9A0.6 (4)C6C—C1C—C2C—C3C3.4 (3)
C10A—C9A—C14A—C13A1.9 (4)O1C—C1C—C2C—C8C3.8 (4)
C8A—C9A—C14A—C13A176.8 (2)C6C—C1C—C2C—C8C177.2 (2)
C5A—C6A—C15A—O3A36.1 (4)C1C—C2C—C3C—C4C1.6 (4)
C1A—C6A—C15A—O3A139.0 (3)C8C—C2C—C3C—C4C179.0 (2)
C5A—C6A—C15A—C16A141.4 (3)C2C—C3C—C4C—C5C0.5 (4)
C1A—C6A—C15A—C16A43.6 (4)C2C—C3C—C4C—C7C179.0 (3)
O3A—C15A—C16A—C17A31.6 (4)C3C—C4C—C5C—C6C0.8 (4)
C6A—C15A—C16A—C17A150.9 (3)C7C—C4C—C5C—C6C178.8 (3)
O3A—C15A—C16A—C21A145.5 (3)C4C—C5C—C6C—C1C1.2 (4)
C6A—C15A—C16A—C21A31.9 (4)C4C—C5C—C6C—C15C178.6 (2)
C21A—C16A—C17A—C18A1.0 (4)O1C—C1C—C6C—C5C175.8 (2)
C15A—C16A—C17A—C18A178.2 (3)C2C—C1C—C6C—C5C3.2 (4)
C16A—C17A—C18A—C19A2.0 (4)O1C—C1C—C6C—C15C1.6 (3)
C17A—C18A—C19A—C20A1.3 (4)C2C—C1C—C6C—C15C179.4 (2)
C18A—C19A—C20A—C21A0.5 (4)Co—O2C—C8C—C2C10.6 (3)
C19A—C20A—C21A—C16A1.6 (4)Co—O2C—C8C—C9C169.42 (15)
C17A—C16A—C21A—C20A0.8 (4)C3C—C2C—C8C—O2C160.4 (2)
C15A—C16A—C21A—C20A176.3 (2)C1C—C2C—C8C—O2C18.9 (4)
O1C—Co—O1B—C1B86.8 (2)C3C—C2C—C8C—C9C19.5 (4)
O1A—Co—O1B—C1B93.0 (2)C1C—C2C—C8C—C9C161.1 (2)
O2B—Co—O1B—C1B3.6 (2)O2C—C8C—C9C—C14C145.7 (3)
O2C—Co—O1B—C1B173.8 (2)C2C—C8C—C9C—C14C34.3 (4)
O1B—Co—O2B—C8B9.7 (2)O2C—C8C—C9C—C10C32.4 (3)
O1C—Co—O2B—C8B80.2 (2)C2C—C8C—C9C—C10C147.5 (2)
O1A—Co—O2B—C8B101.5 (2)C14C—C9C—C10C—C11C0.4 (4)
O2A—Co—O2B—C8B170.1 (2)C8C—C9C—C10C—C11C177.8 (2)
Co—O1B—C1B—C6B175.28 (16)C9C—C10C—C11C—C12C0.4 (4)
Co—O1B—C1B—C2B1.2 (3)C10C—C11C—C12C—C13C1.1 (5)
O1B—C1B—C2B—C3B176.5 (2)C11C—C12C—C13C—C14C0.9 (5)
C6B—C1B—C2B—C3B7.0 (3)C10C—C9C—C14C—C13C0.6 (4)
O1B—C1B—C2B—C8B2.1 (4)C8C—C9C—C14C—C13C177.5 (3)
C6B—C1B—C2B—C8B174.5 (2)C12C—C13C—C14C—C9C0.0 (5)
C1B—C2B—C3B—C4B2.8 (4)C5C—C6C—C15C—O3C116.0 (3)
C8B—C2B—C3B—C4B178.7 (2)C1C—C6C—C15C—O3C66.6 (3)
C2B—C3B—C4B—C5B3.3 (4)C5C—C6C—C15C—C16C63.3 (3)
C2B—C3B—C4B—C7B178.4 (2)C1C—C6C—C15C—C16C114.1 (3)
C3B—C4B—C5B—C6B5.1 (4)O3C—C15C—C16C—C21C7.4 (4)
C7B—C4B—C5B—C6B176.6 (3)C6C—C15C—C16C—C21C171.9 (2)
C4B—C5B—C6B—C1B0.6 (4)O3C—C15C—C16C—C17C171.2 (2)
C4B—C5B—C6B—C15B173.7 (2)C6C—C15C—C16C—C17C9.5 (3)
O1B—C1B—C6B—C5B177.8 (2)C21C—C16C—C17C—C18C0.1 (4)
C2B—C1B—C6B—C5B5.4 (3)C15C—C16C—C17C—C18C178.5 (2)
O1B—C1B—C6B—C15B9.2 (3)C16C—C17C—C18C—C19C0.3 (4)
C2B—C1B—C6B—C15B167.6 (2)C17C—C18C—C19C—C20C0.3 (5)
Co—O2B—C8B—C2B13.4 (3)C18C—C19C—C20C—C21C0.1 (5)
Co—O2B—C8B—C9B165.51 (15)C19C—C20C—C21C—C16C0.4 (4)
C3B—C2B—C8B—O2B170.1 (2)C17C—C16C—C21C—C20C0.4 (4)
C1B—C2B—C8B—O2B8.4 (4)C15C—C16C—C21C—C20C178.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg7, Cg9, Cg11 and Cg12 are the centroids of the C9A–C14A, C9C–C14C, C16B–C21B and C16C–C21C rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12A—H12A···O2Bi0.952.603.442 (3)147
C13A—H13A···O3Ci0.952.483.278 (3)141
C13B—H13B···O3Bii0.952.393.311 (3)162
C11C—H11C···O3Ciii0.952.403.313 (3)161
C10B—H10B···Cg120.952.703.634 (3)166
C11B—H11B···Cg7iv0.952.723.479 (3)137
C18C—H18C···Cg9iv0.952.993.720 (4)135
C20C—H20C···Cg11v0.952.883.332 (3)110
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg7, Cg9, Cg11 and Cg12 are the centroids of the C9A–C14A, C9C–C14C, C16B–C21B and C16C–C21C rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12A—H12A···O2Bi0.952.603.442 (3)147.4
C13A—H13A···O3Ci0.952.483.278 (3)141.4
C13B—H13B···O3Bii0.952.393.311 (3)162.2
C11C—H11C···O3Ciii0.952.403.313 (3)160.5
C10B—H10B···Cg120.952.703.634 (3)166.0
C11B—H11B···Cg7iv0.952.723.479 (3)137.0
C18C—H18C···Cg9iv0.952.993.720 (4)135.0
C20C—H20C···Cg11v0.952.883.332 (3)110.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+2, y1/2, z+1/2.
 

Acknowledgements

AKG thanks the MHRD for the award of a GATE Fellowship. RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer as well as the Howard University Nanoscience Facility for access to liquid nitro­gen.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBurschka, J., Kessler, F., Nazeeruddin, M. K. & Grätzel, M. (2013). Chem. Mater. 25, 2986–2990.  Web of Science CrossRef CAS Google Scholar
First citationChurch, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125.  CrossRef PubMed CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationErkkila, K. E., Odom, D. T. & Barton, J. K. (1999). Chem. Rev. 99, 2777–2795.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGenerex, J. C. & Barton, J. K. (2010). Chem. Rev. 110, 1642–1662.  Web of Science PubMed Google Scholar
First citationGupta, S. K., Anjana, C., Sen, N., Butcher, R. J. & Jasinski, J. P. (2012b). Polyhedron, 43, 8–14.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, S. K., Anjana, C., Sen, N., Jasinski, J. P. & Golen, J. A. (2012a). J. Chem. Crystallogr. 42, 960–967.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, S. K., Hitchock, P. B. & Kushwah, Y. S. (2002). Polyhedron, 21, 1787–1793.  Web of Science CrossRef CAS Google Scholar
First citationHuang, Q.-P., Zhang, C.-L., Zhao, R.-X., Yang, L. & Jiang, X.-F. (2013). Acta Cryst. E69, m601.  CSD CrossRef IUCr Journals Google Scholar
First citationMetcalfe, C. & Thomas, J. A. (2003). Chem. Soc. Rev. 32, 215–224.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOlsson, R. T., Salazar-Alvarez, G., Hedenqvist, M. S., Gedde, U. W., Lindberg, F. & Savage, S. J. (2005). Chem. Mater. 17, 5109–5118.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m67-m68
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds