metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m58-m59

Tetra­kis[bis­­(pyridin-2-yl)amine-κN2](nitrato-κO)silver(I)

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 62, Kiev 01601, Ukraine, bDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and cDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80108 Joensuu, Finland
*Correspondence e-mail: lyulya200288@mail.ru

(Received 24 December 2013; accepted 14 January 2014; online 22 January 2014)

In the title complex, [Ag(NO3)(C10H9N3)4], the nitrate ligand is found to be disordered over two sets of positions, with occupancy factors of 0.473 (5) and 0.527 (5). The AgI ion is located in a square-pyramidal coordination environment formed by four N atoms from four bis­(pyridin-2-yl)amine ligands and one O atom from a nitrate ligand. Weak inter­actions between the AgI ions and the nitrate anions acting in a monodentate mode [Ag⋯O = 2.791 (13) and 2.816 (9) Å for the major component of the nitrate ligand, and 2.865 (8) and 2.837 (8) Å for the minor component] link the complex mol­ecules into a chain along [001]. N—H⋯O hydrogen bonds are observed.

Related literature

For the use of silver complexes in medicine, see: Kascatan-Nebioglu et al. (2007[Kascatan-Nebioglu, A., Panzner, M. J. & Tessier, C. A. (2007). Coord. Chem. Rev. 5-6, 884-895.]); Kasuga et al. (2006[Kasuga, N. C., Yamamoto, R. & Hara, A. (2006). Inorg. Chim. Acta, 13, 4412-4416.]). For the use of silver complexes as functional materials, see: Park et al. (2011[Park, W. J., Choe, J. & Lee, S. M. (2011). Polyhedron, 3, 465-469.]); Takeuchi et al. (2001[Takeuchi, K. J., Marschilok, A. C. & Davis, S. M. (2001). Coord. Chem. Rev. 219-221, 283-310.]). For the ligand synthesis, see: Wibaut & Dingemanse (1923[Wibaut, J. P. & Dingemanse, E. (1923). Recl. Trav. Chim. Pays-Bas, 42, 243-250.]). For related structures, see: Fritsky et al. (2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]); Jing et al. (2011[Jing, X., Zhu, Y.-L., Ma, K.-R., Cao, L. & Shao, S. (2011). Acta Cryst. E67, m957-m958.]); Moroz et al. (2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]); Penkova et al. (2009[Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960-6971.]); Zhang & Yang (2011[Zhang, F. & Yang, Y.-L. (2011). Acta Cryst. E67, m1863.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C10H9N3)4]

  • Mr = 854.69

  • Monoclinic, P 21 /c

  • a = 12.2801 (16) Å

  • b = 23.038 (3) Å

  • c = 13.7091 (16) Å

  • β = 104.499 (4)°

  • V = 3754.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 100 K

  • 0.29 × 0.06 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.982

  • 11456 measured reflections

  • 6643 independent reflections

  • 3690 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.151

  • S = 1.01

  • 6643 reflections

  • 509 parameters

  • 29 restraints

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −2.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1Bi 0.88 2.15 2.959 (14) 152
N2—H2⋯O1Ai 0.88 2.27 3.089 (16) 155
N5—H5⋯O3B 0.88 2.22 3.075 (10) 163
N5—H5⋯O2A 0.88 2.40 3.271 (11) 172
N8—H8⋯O3Ai 0.88 2.21 3.073 (12) 168
N11—H11⋯O2B 0.88 2.26 3.129 (10) 168
N11—H11⋯O2A 0.88 2.27 3.093 (11) 156
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Some of silver compounds are proved to be useful in medicine. The silver complexes display antimicrobial activities against bacteria, yeasts and molds (Kascatan-Nebioglu et al., 2007; Kasuga et al., 2006). Silver complexes also display conductivity, luminescence and photoluminescence (Park et al., 2011; Takeuchi et al., 2001). In this study we have chosen bis(pyridin-2-yl)amine (dipam) as a ligand.

The preparation of dipam was reported by Wibaut & Dingemanse (1923) and since that time it was widely used for constructing complexes with transition metals. Two crystalline modifications of the compound C10H9N3 are known, one with melting point at 84°, while a second melts at 94°C. In this paper we report the synthesis and characterization of the title compound. The nitrate anion in the complex is disordered between two sets of positions [occupancy factors are equal to 0.473 (5) and 0.527 (5)]. In both cases coordination environment of the AgI ion is formed by four N atoms from four dipam ligands [Ag—N distances fall in a range of 2.420 (9)–2.532 (9) Å]. On the contrary to the already reported compounds, the title complex contains monodentately coordinated dipam ligands. The coordinated environment of the pentacoordinated AgI ion is completed by an O atom (O2A or O1B) from the nitrate anion [Ag1—O2A = 2.511 (8), Ag1—O1Bi = 2.648 (12) Å. Symmetry code: (i) x, 1/2-y, -1/2+z]. The observed metal–ligand bond distances are typical for silver(I) complexes (Jing et al., 2011; Zhang & Yang, 2011). The AgI ion in the complex slightly deviates (0.061 Å) from the mean plane formed by the coordinated N atoms (N1, N4, N7, N10) from four dipam ligands. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2006; Moroz et al., 2012; Penkova et al., 2009).

Related literature top

For the use of silver complexes in medicine, see: Kascatan-Nebioglu et al. (2007); Kasuga et al. (2006). For the use of silver complexes as functional materials, see: Park et al. (2011); Takeuchi et al. (2001). For the ligand synthesis, see: Wibaut & Dingemanse (1923). For related structures, see: Fritsky et al. (2006); Jing et al. (2011); Moroz et al. (2012); Penkova et al. (2009); Zhang & Yang (2011).

Experimental top

A solution of silver(I) nitrate (42 mg, 0.25 mmol) in methanol (5 ml) was added to a solution of bis(pyridin-2-yl)amine (171 mg, 1 mmol) in methanol (10 ml). Resulting mixture was stirred for 1 h. After filtering, the filtrate was left for a slow evaporation. Colorless crystals of the title compound, which formed during one week, were filtered out and air dried (yield: 152 mg, 21%). Analysis, calculated for C40H36AgN13O3: C 56.2, H 4.2, N 21.3%; found: C 56.6, H 3.8, N 21.6%.

Refinement top

The nitrate anion was disordered over two sets of sites with occupancies 0.527 (5) and 0.473 (5). The N—O and O—O distances as well as the anisotropic displacement parameters of the N and O atoms within these disordered anions were restrained to be similar. Furthermore, the geometry of the nitrate anion was restrained to be planar. One of the pyridyl N atoms (N7) was restrained so that its Uij components approximate to isotropic behavior. H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 and N—H = 0.88 Å and with Uiso(H) = 1.2Ueq(C, N). The highest residual peak is located 0.30 Å from atom O3A and the deepest hole is located 0.12 Å from atom O2A.

Structure description top

Some of silver compounds are proved to be useful in medicine. The silver complexes display antimicrobial activities against bacteria, yeasts and molds (Kascatan-Nebioglu et al., 2007; Kasuga et al., 2006). Silver complexes also display conductivity, luminescence and photoluminescence (Park et al., 2011; Takeuchi et al., 2001). In this study we have chosen bis(pyridin-2-yl)amine (dipam) as a ligand.

The preparation of dipam was reported by Wibaut & Dingemanse (1923) and since that time it was widely used for constructing complexes with transition metals. Two crystalline modifications of the compound C10H9N3 are known, one with melting point at 84°, while a second melts at 94°C. In this paper we report the synthesis and characterization of the title compound. The nitrate anion in the complex is disordered between two sets of positions [occupancy factors are equal to 0.473 (5) and 0.527 (5)]. In both cases coordination environment of the AgI ion is formed by four N atoms from four dipam ligands [Ag—N distances fall in a range of 2.420 (9)–2.532 (9) Å]. On the contrary to the already reported compounds, the title complex contains monodentately coordinated dipam ligands. The coordinated environment of the pentacoordinated AgI ion is completed by an O atom (O2A or O1B) from the nitrate anion [Ag1—O2A = 2.511 (8), Ag1—O1Bi = 2.648 (12) Å. Symmetry code: (i) x, 1/2-y, -1/2+z]. The observed metal–ligand bond distances are typical for silver(I) complexes (Jing et al., 2011; Zhang & Yang, 2011). The AgI ion in the complex slightly deviates (0.061 Å) from the mean plane formed by the coordinated N atoms (N1, N4, N7, N10) from four dipam ligands. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2006; Moroz et al., 2012; Penkova et al., 2009).

For the use of silver complexes in medicine, see: Kascatan-Nebioglu et al. (2007); Kasuga et al. (2006). For the use of silver complexes as functional materials, see: Park et al. (2011); Takeuchi et al. (2001). For the ligand synthesis, see: Wibaut & Dingemanse (1923). For related structures, see: Fritsky et al. (2006); Jing et al. (2011); Moroz et al. (2012); Penkova et al. (2009); Zhang & Yang (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. The minor disordered fraction has been omitted for clarity.
[Figure 2] Fig. 2. The unit cell of the title complex. H atoms and minor disordered atoms has been omitted for clarity.
Tetrakis[bis(pyridin-2-yl)amine-κN2](nitrato-κO)silver(I) top
Crystal data top
[Ag(NO3)(C10H9N3)4]F(000) = 1752
Mr = 854.69Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1361 reflections
a = 12.2801 (16) Åθ = 2.3–21.1°
b = 23.038 (3) ŵ = 0.60 mm1
c = 13.7091 (16) ÅT = 100 K
β = 104.499 (4)°Needle, colourless
V = 3754.9 (8) Å30.29 × 0.06 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6643 independent reflections
Radiation source: fine-focus sealed tube3690 reflections with I > 2σ(I)
Flat graphite crystal monochromatorRint = 0.049
Detector resolution: 16 pixels mm-1θmax = 25.1°, θmin = 1.8°
φ and ω scansh = 1114
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1527
Tmin = 0.958, Tmax = 0.982l = 1613
11456 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0609P)2 + 2.4207P]
where P = (Fo2 + 2Fc2)/3
6643 reflections(Δ/σ)max < 0.001
509 parametersΔρmax = 1.05 e Å3
29 restraintsΔρmin = 2.19 e Å3
Crystal data top
[Ag(NO3)(C10H9N3)4]V = 3754.9 (8) Å3
Mr = 854.69Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2801 (16) ŵ = 0.60 mm1
b = 23.038 (3) ÅT = 100 K
c = 13.7091 (16) Å0.29 × 0.06 × 0.03 mm
β = 104.499 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
6643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3690 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.982Rint = 0.049
11456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06129 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.01Δρmax = 1.05 e Å3
6643 reflectionsΔρmin = 2.19 e Å3
509 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.17127 (4)0.24786 (2)0.08079 (4)0.02838 (16)
N13A0.1669 (9)0.2518 (5)0.3523 (7)0.0369 (9)0.473 (5)
O1A0.1909 (13)0.2997 (5)0.3987 (10)0.0369 (9)0.473 (5)
O2A0.1631 (9)0.2582 (4)0.2612 (6)0.0369 (9)0.473 (5)
O3A0.1481 (8)0.2072 (4)0.3856 (7)0.0369 (9)0.473 (5)
N13B0.1685 (9)0.2611 (4)0.3255 (7)0.0369 (9)0.527 (5)
O1B0.1745 (11)0.2885 (5)0.3983 (9)0.0369 (9)0.527 (5)
O2B0.2496 (7)0.2419 (4)0.2957 (6)0.0369 (9)0.527 (5)
O3B0.0812 (7)0.2619 (4)0.2508 (6)0.0369 (9)0.527 (5)
N10.0337 (5)0.2501 (3)0.0273 (5)0.0564 (19)
N20.0488 (5)0.1740 (2)0.0804 (4)0.0340 (14)
H20.02460.17840.06660.041*
N30.2006 (5)0.1208 (2)0.1780 (4)0.0303 (14)
N40.1850 (5)0.1399 (3)0.1059 (5)0.0432 (17)
N50.0397 (5)0.1353 (3)0.1806 (5)0.0455 (17)
H50.06690.16930.20370.055*
N60.1073 (5)0.0700 (3)0.1722 (4)0.0376 (15)
N70.3748 (7)0.2493 (3)0.1219 (6)0.093 (3)
N80.3872 (6)0.3217 (3)0.0092 (6)0.085 (3)
H80.31940.30890.02020.102*
N90.5243 (5)0.3905 (3)0.0021 (5)0.0366 (15)
N100.1604 (7)0.3575 (4)0.0857 (6)0.097 (4)
N110.2960 (6)0.3680 (3)0.2315 (5)0.061 (2)
H110.27770.33180.24030.073*
N120.4227 (5)0.4422 (2)0.2989 (4)0.0365 (15)
C10.0789 (7)0.2885 (4)0.0804 (8)0.075 (3)
H10.03120.31750.11790.090*
C20.1912 (7)0.2880 (4)0.0834 (8)0.069 (3)
H2A0.22070.31640.12000.082*
C30.2571 (6)0.2447 (3)0.0315 (6)0.052 (2)
H30.33400.24250.03240.062*
C40.2129 (6)0.2042 (3)0.0227 (6)0.0403 (19)
H40.25790.17320.05680.048*
C50.1022 (6)0.2099 (3)0.0257 (6)0.0362 (19)
C60.0910 (6)0.1323 (3)0.1533 (5)0.0268 (15)
C70.0146 (6)0.1047 (3)0.1987 (5)0.0268 (15)
H70.06340.11360.17900.032*
C80.0560 (6)0.0645 (3)0.2724 (5)0.0318 (17)
H8A0.00670.04530.30530.038*
C90.1701 (6)0.0521 (3)0.2987 (5)0.0305 (17)
H90.20000.02420.34930.037*
C100.2385 (6)0.0807 (3)0.2507 (5)0.0332 (18)
H100.31670.07220.26910.040*
C110.2549 (6)0.1156 (3)0.0550 (6)0.0358 (18)
H11A0.31220.13930.04030.043*
C120.2479 (5)0.0602 (3)0.0239 (5)0.0306 (16)
H120.29950.04500.01080.037*
C130.1633 (6)0.0254 (3)0.0438 (5)0.0324 (18)
H130.15490.01370.02120.039*
C140.0918 (5)0.0486 (3)0.0969 (5)0.0298 (16)
H140.03480.02530.11290.036*
C150.1037 (6)0.1056 (3)0.1262 (5)0.0349 (18)
C160.0589 (6)0.1202 (3)0.2041 (5)0.0355 (18)
C170.1048 (6)0.1600 (3)0.2615 (6)0.043 (2)
H170.06730.19550.28340.051*
C180.2037 (6)0.1468 (3)0.2850 (6)0.044 (2)
H180.23620.17250.32400.053*
C190.2555 (6)0.0941 (3)0.2499 (6)0.042 (2)
H190.32520.08370.26320.050*
C200.2045 (6)0.0583 (4)0.1966 (6)0.044 (2)
H200.24000.02230.17480.053*
C210.4230 (9)0.2173 (4)0.2021 (7)0.083 (4)
H210.38130.18520.21710.100*
C220.5258 (7)0.2263 (3)0.2637 (6)0.047 (2)
H220.55480.20250.32090.056*
C230.5858 (6)0.2714 (4)0.2398 (6)0.049 (2)
H230.65750.28000.28270.059*
C240.5457 (6)0.3047 (3)0.1557 (5)0.0355 (17)
H240.58900.33560.13900.043*
C250.4404 (7)0.2919 (3)0.0961 (6)0.051 (2)
C260.4229 (6)0.3683 (3)0.0391 (6)0.0351 (18)
C270.3477 (6)0.3905 (3)0.1247 (6)0.042 (2)
H270.27460.37430.14840.050*
C280.3816 (6)0.4356 (3)0.1732 (5)0.0313 (17)
H280.33330.45040.23330.038*
C290.4856 (6)0.4602 (3)0.1358 (6)0.039 (2)
H290.50970.49270.16750.047*
C300.5527 (7)0.4360 (4)0.0511 (6)0.049 (2)
H300.62490.45260.02500.059*
C310.0905 (9)0.3789 (5)0.0006 (8)0.113 (5)
H310.04030.35280.04210.136*
C320.0884 (8)0.4364 (5)0.0274 (7)0.085 (4)
H320.03820.45030.08730.102*
C330.1623 (7)0.4723 (4)0.0356 (7)0.053 (2)
H330.16320.51240.01940.064*
C340.2357 (6)0.4522 (4)0.1221 (6)0.044 (2)
H340.28770.47740.16480.053*
C350.2309 (7)0.3937 (4)0.1445 (6)0.060 (3)
C360.3838 (6)0.3890 (3)0.3064 (5)0.0314 (16)
C370.4302 (5)0.3523 (3)0.3872 (5)0.0323 (17)
H370.40120.31430.38980.039*
C380.5182 (6)0.3718 (3)0.4631 (6)0.0348 (18)
H380.55000.34800.51960.042*
C390.5595 (7)0.4273 (3)0.4548 (6)0.043 (2)
H390.62080.44230.50520.051*
C400.5100 (7)0.4597 (3)0.3725 (6)0.043 (2)
H400.53950.49740.36700.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0302 (3)0.0252 (3)0.0316 (3)0.0075 (3)0.01118 (19)0.0037 (3)
N13A0.0408 (19)0.038 (2)0.0324 (19)0.008 (2)0.0101 (18)0.0068 (19)
O1A0.0408 (19)0.038 (2)0.0324 (19)0.008 (2)0.0101 (18)0.0068 (19)
O2A0.0408 (19)0.038 (2)0.0324 (19)0.008 (2)0.0101 (18)0.0068 (19)
O3A0.0408 (19)0.038 (2)0.0324 (19)0.008 (2)0.0101 (18)0.0068 (19)
N13B0.0408 (19)0.038 (2)0.0324 (19)0.008 (2)0.0101 (18)0.0068 (19)
O1B0.0408 (19)0.038 (2)0.0324 (19)0.008 (2)0.0101 (18)0.0068 (19)
O2B0.0408 (19)0.038 (2)0.0324 (19)0.008 (2)0.0101 (18)0.0068 (19)
O3B0.0408 (19)0.038 (2)0.0324 (19)0.008 (2)0.0101 (18)0.0068 (19)
N10.040 (3)0.052 (4)0.091 (5)0.021 (4)0.043 (4)0.044 (5)
N20.029 (3)0.032 (3)0.045 (4)0.009 (3)0.018 (3)0.017 (3)
N30.032 (3)0.026 (3)0.034 (4)0.007 (3)0.012 (3)0.002 (3)
N40.048 (4)0.043 (4)0.044 (4)0.011 (3)0.023 (4)0.014 (3)
N50.046 (4)0.051 (4)0.049 (4)0.023 (3)0.031 (3)0.028 (3)
N60.034 (4)0.054 (4)0.027 (3)0.015 (3)0.013 (3)0.008 (3)
N70.100 (5)0.065 (4)0.077 (5)0.048 (5)0.045 (4)0.034 (5)
N80.080 (6)0.055 (4)0.082 (6)0.053 (4)0.052 (4)0.047 (4)
N90.031 (3)0.043 (4)0.036 (4)0.009 (3)0.008 (3)0.004 (3)
N100.094 (7)0.099 (6)0.068 (6)0.080 (6)0.038 (5)0.050 (5)
N110.067 (5)0.064 (5)0.038 (4)0.051 (4)0.013 (4)0.019 (4)
N120.037 (4)0.036 (3)0.037 (4)0.020 (3)0.009 (3)0.001 (3)
C10.057 (6)0.065 (6)0.120 (9)0.041 (5)0.056 (6)0.064 (6)
C20.059 (6)0.064 (6)0.100 (8)0.029 (5)0.051 (6)0.053 (6)
C30.035 (4)0.058 (5)0.071 (5)0.017 (4)0.030 (4)0.031 (5)
C40.040 (4)0.038 (4)0.049 (5)0.014 (3)0.023 (4)0.019 (4)
C50.038 (4)0.029 (4)0.051 (5)0.015 (3)0.029 (4)0.018 (4)
C60.036 (4)0.018 (3)0.029 (4)0.000 (3)0.013 (3)0.001 (3)
C70.031 (4)0.019 (3)0.033 (4)0.003 (3)0.012 (3)0.006 (3)
C80.044 (5)0.023 (4)0.034 (4)0.004 (3)0.021 (4)0.002 (3)
C90.051 (5)0.019 (3)0.021 (4)0.000 (3)0.007 (4)0.001 (3)
C100.041 (5)0.019 (3)0.038 (5)0.005 (3)0.007 (4)0.004 (3)
C110.029 (4)0.035 (4)0.048 (5)0.006 (3)0.019 (4)0.002 (4)
C120.024 (4)0.034 (4)0.034 (4)0.002 (3)0.005 (3)0.004 (3)
C130.030 (4)0.029 (4)0.031 (4)0.002 (3)0.004 (4)0.004 (3)
C140.026 (4)0.035 (4)0.029 (4)0.007 (3)0.008 (3)0.007 (3)
C150.028 (4)0.051 (5)0.027 (4)0.017 (4)0.011 (3)0.011 (4)
C160.025 (4)0.057 (5)0.025 (4)0.013 (3)0.008 (3)0.002 (4)
C170.045 (5)0.047 (5)0.042 (5)0.015 (4)0.021 (4)0.010 (4)
C180.036 (4)0.059 (5)0.042 (5)0.002 (4)0.019 (4)0.004 (4)
C190.028 (4)0.062 (6)0.037 (5)0.006 (4)0.012 (4)0.012 (4)
C200.032 (4)0.061 (5)0.037 (5)0.018 (4)0.005 (4)0.003 (4)
C210.109 (9)0.046 (5)0.057 (6)0.044 (5)0.049 (6)0.024 (5)
C220.054 (5)0.038 (4)0.042 (5)0.010 (4)0.002 (4)0.012 (4)
C230.030 (4)0.076 (6)0.035 (5)0.004 (4)0.001 (4)0.006 (4)
C240.029 (4)0.043 (4)0.035 (4)0.002 (3)0.009 (3)0.002 (4)
C250.063 (6)0.031 (4)0.041 (5)0.019 (4)0.023 (4)0.009 (4)
C260.038 (4)0.021 (4)0.041 (5)0.008 (3)0.000 (4)0.003 (3)
C270.033 (4)0.033 (4)0.050 (5)0.009 (3)0.010 (4)0.020 (4)
C280.036 (4)0.029 (4)0.030 (4)0.002 (3)0.009 (3)0.004 (3)
C290.046 (5)0.038 (4)0.038 (5)0.011 (4)0.018 (4)0.003 (4)
C300.040 (5)0.061 (6)0.044 (6)0.024 (4)0.005 (4)0.006 (5)
C310.101 (9)0.120 (10)0.080 (8)0.073 (8)0.052 (7)0.058 (7)
C320.055 (6)0.117 (9)0.065 (7)0.050 (6)0.017 (5)0.053 (6)
C330.040 (5)0.075 (6)0.050 (6)0.003 (5)0.021 (5)0.031 (5)
C340.034 (4)0.061 (5)0.040 (5)0.014 (4)0.011 (4)0.009 (4)
C350.057 (6)0.077 (6)0.039 (5)0.036 (5)0.001 (4)0.034 (5)
C360.032 (4)0.035 (4)0.027 (4)0.010 (3)0.007 (3)0.000 (3)
C370.029 (4)0.036 (4)0.033 (4)0.009 (3)0.010 (3)0.007 (3)
C380.036 (4)0.037 (4)0.033 (4)0.009 (3)0.013 (4)0.003 (3)
C390.044 (5)0.043 (5)0.036 (5)0.015 (4)0.002 (4)0.003 (4)
C400.054 (5)0.043 (5)0.032 (5)0.021 (4)0.013 (4)0.003 (4)
Geometric parameters (Å, º) top
Ag1—N72.420 (9)C8—H8A0.9500
Ag1—N12.439 (6)C9—C101.361 (9)
Ag1—N42.511 (6)C9—H90.9500
Ag1—N102.532 (9)C10—H100.9500
Ag1—O2A2.511 (8)C11—C121.343 (9)
Ag1—O1Bi2.648 (12)C11—H11A0.9500
N13A—O3A1.172 (11)C12—C131.392 (9)
N13A—O2A1.247 (11)C12—H120.9500
N13A—O1A1.269 (12)C13—C141.381 (9)
N13B—O1B1.168 (11)C13—H130.9500
N13B—O2B1.248 (10)C14—C151.372 (9)
N13B—O3B1.284 (11)C14—H140.9500
N1—C51.337 (8)C16—C171.414 (10)
N1—C11.350 (9)C17—C181.367 (9)
N2—C51.386 (8)C17—H170.9500
N2—C61.389 (8)C18—C191.397 (10)
N2—H20.8800C18—H180.9500
N3—C61.330 (8)C19—C201.356 (10)
N3—C101.352 (8)C19—H190.9500
N4—C111.355 (8)C20—H200.9500
N4—C151.355 (8)C21—C221.347 (11)
N5—C161.374 (8)C21—H210.9500
N5—C151.391 (8)C22—C231.360 (11)
N5—H50.8800C22—H220.9500
N6—C161.325 (9)C23—C241.371 (10)
N6—C201.344 (9)C23—H230.9500
N7—C211.335 (10)C24—C251.378 (10)
N7—C251.371 (10)C24—H240.9500
N8—C251.388 (9)C26—C271.395 (9)
N8—C261.390 (9)C27—C281.355 (9)
N8—H80.8800C27—H270.9500
N9—C261.325 (8)C28—C291.373 (10)
N9—C301.337 (9)C28—H280.9500
N10—C351.320 (10)C29—C301.363 (11)
N10—C311.357 (11)C29—H290.9500
N11—C361.377 (9)C30—H300.9500
N11—C351.389 (10)C31—C321.377 (13)
N11—H110.8800C31—H310.9500
N12—C361.330 (8)C32—C331.366 (12)
N12—C401.337 (9)C32—H320.9500
C1—C21.390 (11)C33—C341.378 (11)
C1—H10.9500C33—H330.9500
C2—C31.366 (10)C34—C351.387 (11)
C2—H2A0.9500C34—H340.9500
C3—C41.385 (9)C36—C371.396 (9)
C3—H30.9500C37—C381.374 (9)
C4—C51.377 (9)C37—H370.9500
C4—H40.9500C38—C391.391 (9)
C6—C71.401 (8)C38—H380.9500
C7—C81.371 (9)C39—C401.362 (10)
C7—H70.9500C39—H390.9500
C8—C91.387 (9)C40—H400.9500
N7—Ag1—N1175.6 (3)C12—C13—H13120.5
N7—Ag1—N487.2 (2)C15—C14—C13119.3 (6)
N1—Ag1—N495.2 (2)C15—C14—H14120.3
N7—Ag1—O2A93.6 (3)C13—C14—H14120.3
N1—Ag1—O2A90.1 (3)N4—C15—C14121.9 (6)
N4—Ag1—O2A88.7 (3)N4—C15—N5111.6 (6)
N7—Ag1—N1092.2 (3)C14—C15—N5126.5 (6)
N1—Ag1—N1086.0 (2)N6—C16—N5119.5 (6)
N4—Ag1—N10170.8 (2)N6—C16—C17122.8 (6)
O2A—Ag1—N1082.2 (3)N5—C16—C17117.7 (6)
O3A—N13A—O2A122.1 (10)C18—C17—C16119.2 (7)
O3A—N13A—O1A127.7 (10)C18—C17—H17120.4
O2A—N13A—O1A110.2 (11)C16—C17—H17120.4
N13A—O2A—Ag1167.1 (8)C17—C18—C19117.8 (7)
O1B—N13B—O2B125.9 (11)C17—C18—H18121.1
O1B—N13B—O3B122.3 (11)C19—C18—H18121.1
O2B—N13B—O3B108.6 (8)C20—C19—C18118.9 (7)
C5—N1—C1117.3 (6)C20—C19—H19120.6
C5—N1—Ag1127.6 (5)C18—C19—H19120.6
C1—N1—Ag1112.6 (5)N6—C20—C19124.8 (7)
C5—N2—C6131.3 (6)N6—C20—H20117.6
C5—N2—H2114.4C19—C20—H20117.6
C6—N2—H2114.4N7—C21—C22125.7 (8)
C6—N3—C10117.6 (6)N7—C21—H21117.1
C11—N4—C15117.4 (6)C22—C21—H21117.1
C11—N4—Ag1111.6 (4)C21—C22—C23116.5 (8)
C15—N4—Ag1125.3 (5)C21—C22—H22121.8
C16—N5—C15130.7 (6)C23—C22—H22121.8
C16—N5—H5114.7C22—C23—C24121.9 (7)
C15—N5—H5114.7C22—C23—H23119.0
C16—N6—C20116.4 (6)C24—C23—H23119.0
C21—N7—C25116.1 (7)C23—C24—C25117.7 (7)
C21—N7—Ag1113.8 (7)C23—C24—H24121.2
C25—N7—Ag1126.1 (6)C25—C24—H24121.2
C25—N8—C26130.9 (7)N7—C25—C24121.7 (7)
C25—N8—H8114.5N7—C25—N8113.3 (7)
C26—N8—H8114.5C24—C25—N8124.9 (7)
C26—N9—C30116.6 (7)N9—C26—N8119.6 (7)
C35—N10—C31118.3 (9)N9—C26—C27122.8 (6)
C35—N10—Ag1127.9 (7)N8—C26—C27117.6 (6)
C31—N10—Ag1111.4 (7)C28—C27—C26118.2 (7)
C36—N11—C35131.8 (7)C28—C27—H27120.9
C36—N11—H11114.1C26—C27—H27120.9
C35—N11—H11114.1C27—C28—C29120.3 (7)
C36—N12—C40117.1 (6)C27—C28—H28119.8
N1—C1—C2123.8 (7)C29—C28—H28119.8
N1—C1—H1118.1C30—C29—C28117.1 (7)
C2—C1—H1118.1C30—C29—H29121.4
C3—C2—C1116.9 (7)C28—C29—H29121.4
C3—C2—H2A121.5N9—C30—C29124.8 (7)
C1—C2—H2A121.5N9—C30—H30117.6
C2—C3—C4120.8 (7)C29—C30—H30117.6
C2—C3—H3119.6N10—C31—C32123.5 (9)
C4—C3—H3119.6N10—C31—H31118.3
C5—C4—C3118.2 (6)C32—C31—H31118.3
C5—C4—H4120.9C33—C32—C31116.4 (9)
C3—C4—H4120.9C33—C32—H32121.8
N1—C5—C4122.8 (6)C31—C32—H32121.8
N1—C5—N2112.8 (6)C32—C33—C34121.9 (9)
C4—C5—N2124.3 (6)C32—C33—H33119.1
N3—C6—N2119.5 (6)C34—C33—H33119.1
N3—C6—C7122.9 (6)C33—C34—C35117.6 (8)
N2—C6—C7117.6 (6)C33—C34—H34121.2
C8—C7—C6117.9 (6)C35—C34—H34121.2
C8—C7—H7121.0N10—C35—C34122.3 (8)
C6—C7—H7121.0N10—C35—N11113.9 (8)
C7—C8—C9119.6 (6)C34—C35—N11123.8 (8)
C7—C8—H8A120.2N12—C36—N11119.6 (6)
C9—C8—H8A120.2N12—C36—C37122.4 (6)
C10—C9—C8118.7 (6)N11—C36—C37117.9 (6)
C10—C9—H9120.6C38—C37—C36119.4 (6)
C8—C9—H9120.6C38—C37—H37120.3
N3—C10—C9123.2 (7)C36—C37—H37120.3
N3—C10—H10118.4C37—C38—C39118.2 (7)
C9—C10—H10118.4C37—C38—H38120.9
C12—C11—N4123.9 (6)C39—C38—H38120.9
C12—C11—H11A118.1C40—C39—C38118.4 (7)
N4—C11—H11A118.1C40—C39—H39120.8
C11—C12—C13118.5 (6)C38—C39—H39120.8
C11—C12—H12120.7N12—C40—C39124.6 (7)
C13—C12—H12120.7N12—C40—H40117.7
C14—C13—C12119.0 (6)C39—C40—H40117.7
C14—C13—H13120.5
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1Bi0.882.152.959 (14)152
N2—H2···O1Ai0.882.273.089 (16)155
N5—H5···O3B0.882.223.075 (10)163
N5—H5···O2A0.882.403.271 (11)172
N8—H8···O3Ai0.882.213.073 (12)168
N11—H11···O2B0.882.263.129 (10)168
N11—H11···O2A0.882.273.093 (11)156
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1Bi0.882.152.959 (14)152
N2—H2···O1Ai0.882.273.089 (16)155
N5—H5···O3B0.882.223.075 (10)163
N5—H5···O2A0.882.403.271 (11)172
N8—H8···O3Ai0.882.213.073 (12)168
N11—H11···O2B0.882.263.129 (10)168
N11—H11···O2A0.882.273.093 (11)156
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank Saint Petersburg State University for research grant No. 2013–2015 (12.38.781.2013).

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationJing, X., Zhu, Y.-L., Ma, K.-R., Cao, L. & Shao, S. (2011). Acta Cryst. E67, m957–m958.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKascatan-Nebioglu, A., Panzner, M. J. & Tessier, C. A. (2007). Coord. Chem. Rev. 5–6, 884–895.  Google Scholar
First citationKasuga, N. C., Yamamoto, R. & Hara, A. (2006). Inorg. Chim. Acta, 13, 4412–4416.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPark, W. J., Choe, J. & Lee, S. M. (2011). Polyhedron, 3, 465–469.  Web of Science CrossRef Google Scholar
First citationPenkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakeuchi, K. J., Marschilok, A. C. & Davis, S. M. (2001). Coord. Chem. Rev. 219–221, 283–310.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWibaut, J. P. & Dingemanse, E. (1923). Recl. Trav. Chim. Pays-Bas, 42, 243–250.  Google Scholar
First citationZhang, F. & Yang, Y.-L. (2011). Acta Cryst. E67, m1863.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m58-m59
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds