metal-organic compounds
Tetrakis[bis(pyridin-2-yl)amine-κN2](nitrato-κO)silver(I)
aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 62, Kiev 01601, Ukraine, bDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and cDepartment of Chemistry, University of Joensuu, PO Box 111, FI-80108 Joensuu, Finland
*Correspondence e-mail: lyulya200288@mail.ru
In the title complex, [Ag(NO3)(C10H9N3)4], the nitrate ligand is found to be disordered over two sets of positions, with occupancy factors of 0.473 (5) and 0.527 (5). The AgI ion is located in a square-pyramidal coordination environment formed by four N atoms from four bis(pyridin-2-yl)amine ligands and one O atom from a nitrate ligand. Weak interactions between the AgI ions and the nitrate anions acting in a monodentate mode [Ag⋯O = 2.791 (13) and 2.816 (9) Å for the major component of the nitrate ligand, and 2.865 (8) and 2.837 (8) Å for the minor component] link the complex molecules into a chain along [001]. N—H⋯O hydrogen bonds are observed.
CCDC reference: 981511
Related literature
For the use of silver complexes in medicine, see: Kascatan-Nebioglu et al. (2007); Kasuga et al. (2006). For the use of silver complexes as functional materials, see: Park et al. (2011); Takeuchi et al. (2001). For the ligand synthesis, see: Wibaut & Dingemanse (1923). For related structures, see: Fritsky et al. (2006); Jing et al. (2011); Moroz et al. (2012); Penkova et al. (2009); Zhang & Yang (2011).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 981511
10.1107/S1600536814000907/hy2640sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814000907/hy2640Isup2.hkl
A solution of silver(I) nitrate (42 mg, 0.25 mmol) in methanol (5 ml) was added to a solution of bis(pyridin-2-yl)amine (171 mg, 1 mmol) in methanol (10 ml). Resulting mixture was stirred for 1 h. After filtering, the filtrate was left for a slow evaporation. Colorless crystals of the title compound, which formed during one week, were filtered out and air dried (yield: 152 mg, 21%). Analysis, calculated for C40H36AgN13O3: C 56.2, H 4.2, N 21.3%; found: C 56.6, H 3.8, N 21.6%.
The nitrate anion was disordered over two sets of sites with occupancies 0.527 (5) and 0.473 (5). The N—O and O—O distances as well as the anisotropic displacement parameters of the N and O atoms within these disordered anions were restrained to be similar. Furthermore, the geometry of the nitrate anion was restrained to be planar. One of the pyridyl N atoms (N7) was restrained so that its Uij components approximate to isotropic behavior. H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 and N—H = 0.88 Å and with Uiso(H) = 1.2Ueq(C, N). The highest residual peak is located 0.30 Å from atom O3A and the deepest hole is located 0.12 Å from atom O2A.
Some of silver compounds are proved to be useful in medicine. The silver complexes display antimicrobial activities against bacteria, yeasts and molds (Kascatan-Nebioglu et al., 2007; Kasuga et al., 2006). Silver complexes also display conductivity, luminescence and
(Park et al., 2011; Takeuchi et al., 2001). In this study we have chosen bis(pyridin-2-yl)amine (dipam) as a ligand.The preparation of dipam was reported by Wibaut & Dingemanse (1923) and since that time it was widely used for constructing complexes with transition metals. Two crystalline modifications of the compound C10H9N3 are known, one with melting point at 84°, while a second melts at 94°C. In this paper we report the synthesis and characterization of the title compound. The nitrate anion in the complex is disordered between two sets of positions [occupancy factors are equal to 0.473 (5) and 0.527 (5)]. In both cases coordination environment of the AgI ion is formed by four N atoms from four dipam ligands [Ag—N distances fall in a range of 2.420 (9)–2.532 (9) Å]. On the contrary to the already reported compounds, the title complex contains monodentately coordinated dipam ligands. The coordinated environment of the pentacoordinated AgI ion is completed by an O atom (O2A or O1B) from the nitrate anion [Ag1—O2A = 2.511 (8), Ag1—O1Bi = 2.648 (12) Å. Symmetry code: (i) x, 1/2-y, -1/2+z]. The observed metal–ligand bond distances are typical for silver(I) complexes (Jing et al., 2011; Zhang & Yang, 2011). The AgI ion in the complex slightly deviates (0.061 Å) from the mean plane formed by the coordinated N atoms (N1, N4, N7, N10) from four dipam ligands. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2006; Moroz et al., 2012; Penkova et al., 2009).
For the use of silver complexes in medicine, see: Kascatan-Nebioglu et al. (2007); Kasuga et al. (2006). For the use of silver complexes as functional materials, see: Park et al. (2011); Takeuchi et al. (2001). For the ligand synthesis, see: Wibaut & Dingemanse (1923). For related structures, see: Fritsky et al. (2006); Jing et al. (2011); Moroz et al. (2012); Penkova et al. (2009); Zhang & Yang (2011).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. The minor disordered fraction has been omitted for clarity. | |
Fig. 2. The unit cell of the title complex. H atoms and minor disordered atoms has been omitted for clarity. |
[Ag(NO3)(C10H9N3)4] | F(000) = 1752 |
Mr = 854.69 | Dx = 1.512 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1361 reflections |
a = 12.2801 (16) Å | θ = 2.3–21.1° |
b = 23.038 (3) Å | µ = 0.60 mm−1 |
c = 13.7091 (16) Å | T = 100 K |
β = 104.499 (4)° | Needle, colourless |
V = 3754.9 (8) Å3 | 0.29 × 0.06 × 0.03 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 6643 independent reflections |
Radiation source: fine-focus sealed tube | 3690 reflections with I > 2σ(I) |
Flat graphite crystal monochromator | Rint = 0.049 |
Detector resolution: 16 pixels mm-1 | θmax = 25.1°, θmin = 1.8° |
φ and ω scans | h = −11→14 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −15→27 |
Tmin = 0.958, Tmax = 0.982 | l = −16→13 |
11456 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0609P)2 + 2.4207P] where P = (Fo2 + 2Fc2)/3 |
6643 reflections | (Δ/σ)max < 0.001 |
509 parameters | Δρmax = 1.05 e Å−3 |
29 restraints | Δρmin = −2.19 e Å−3 |
[Ag(NO3)(C10H9N3)4] | V = 3754.9 (8) Å3 |
Mr = 854.69 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.2801 (16) Å | µ = 0.60 mm−1 |
b = 23.038 (3) Å | T = 100 K |
c = 13.7091 (16) Å | 0.29 × 0.06 × 0.03 mm |
β = 104.499 (4)° |
Bruker APEXII CCD diffractometer | 6643 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3690 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.982 | Rint = 0.049 |
11456 measured reflections |
R[F2 > 2σ(F2)] = 0.061 | 29 restraints |
wR(F2) = 0.151 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.05 e Å−3 |
6643 reflections | Δρmin = −2.19 e Å−3 |
509 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.17127 (4) | 0.24786 (2) | 0.08079 (4) | 0.02838 (16) | |
N13A | 0.1669 (9) | 0.2518 (5) | 0.3523 (7) | 0.0369 (9) | 0.473 (5) |
O1A | 0.1909 (13) | 0.2997 (5) | 0.3987 (10) | 0.0369 (9) | 0.473 (5) |
O2A | 0.1631 (9) | 0.2582 (4) | 0.2612 (6) | 0.0369 (9) | 0.473 (5) |
O3A | 0.1481 (8) | 0.2072 (4) | 0.3856 (7) | 0.0369 (9) | 0.473 (5) |
N13B | 0.1685 (9) | 0.2611 (4) | 0.3255 (7) | 0.0369 (9) | 0.527 (5) |
O1B | 0.1745 (11) | 0.2885 (5) | 0.3983 (9) | 0.0369 (9) | 0.527 (5) |
O2B | 0.2496 (7) | 0.2419 (4) | 0.2957 (6) | 0.0369 (9) | 0.527 (5) |
O3B | 0.0812 (7) | 0.2619 (4) | 0.2508 (6) | 0.0369 (9) | 0.527 (5) |
N1 | −0.0337 (5) | 0.2501 (3) | 0.0273 (5) | 0.0564 (19) | |
N2 | −0.0488 (5) | 0.1740 (2) | −0.0804 (4) | 0.0340 (14) | |
H2 | 0.0246 | 0.1784 | −0.0666 | 0.041* | |
N3 | −0.2006 (5) | 0.1208 (2) | −0.1780 (4) | 0.0303 (14) | |
N4 | 0.1850 (5) | 0.1399 (3) | 0.1059 (5) | 0.0432 (17) | |
N5 | 0.0397 (5) | 0.1353 (3) | 0.1806 (5) | 0.0455 (17) | |
H5 | 0.0669 | 0.1693 | 0.2037 | 0.055* | |
N6 | −0.1073 (5) | 0.0700 (3) | 0.1722 (4) | 0.0376 (15) | |
N7 | 0.3748 (7) | 0.2493 (3) | 0.1219 (6) | 0.093 (3) | |
N8 | 0.3872 (6) | 0.3217 (3) | 0.0092 (6) | 0.085 (3) | |
H8 | 0.3194 | 0.3089 | −0.0202 | 0.102* | |
N9 | 0.5243 (5) | 0.3905 (3) | −0.0021 (5) | 0.0366 (15) | |
N10 | 0.1604 (7) | 0.3575 (4) | 0.0857 (6) | 0.097 (4) | |
N11 | 0.2960 (6) | 0.3680 (3) | 0.2315 (5) | 0.061 (2) | |
H11 | 0.2777 | 0.3318 | 0.2403 | 0.073* | |
N12 | 0.4227 (5) | 0.4422 (2) | 0.2989 (4) | 0.0365 (15) | |
C1 | −0.0789 (7) | 0.2885 (4) | 0.0804 (8) | 0.075 (3) | |
H1 | −0.0312 | 0.3175 | 0.1179 | 0.090* | |
C2 | −0.1912 (7) | 0.2880 (4) | 0.0834 (8) | 0.069 (3) | |
H2A | −0.2207 | 0.3164 | 0.1200 | 0.082* | |
C3 | −0.2571 (6) | 0.2447 (3) | 0.0315 (6) | 0.052 (2) | |
H3 | −0.3340 | 0.2425 | 0.0324 | 0.062* | |
C4 | −0.2129 (6) | 0.2042 (3) | −0.0227 (6) | 0.0403 (19) | |
H4 | −0.2579 | 0.1732 | −0.0568 | 0.048* | |
C5 | −0.1022 (6) | 0.2099 (3) | −0.0257 (6) | 0.0362 (19) | |
C6 | −0.0910 (6) | 0.1323 (3) | −0.1533 (5) | 0.0268 (15) | |
C7 | −0.0146 (6) | 0.1047 (3) | −0.1987 (5) | 0.0268 (15) | |
H7 | 0.0634 | 0.1136 | −0.1790 | 0.032* | |
C8 | −0.0560 (6) | 0.0645 (3) | −0.2724 (5) | 0.0318 (17) | |
H8A | −0.0067 | 0.0453 | −0.3053 | 0.038* | |
C9 | −0.1701 (6) | 0.0521 (3) | −0.2987 (5) | 0.0305 (17) | |
H9 | −0.2000 | 0.0242 | −0.3493 | 0.037* | |
C10 | −0.2385 (6) | 0.0807 (3) | −0.2507 (5) | 0.0332 (18) | |
H10 | −0.3167 | 0.0722 | −0.2691 | 0.040* | |
C11 | 0.2549 (6) | 0.1156 (3) | 0.0550 (6) | 0.0358 (18) | |
H11A | 0.3122 | 0.1393 | 0.0403 | 0.043* | |
C12 | 0.2479 (5) | 0.0602 (3) | 0.0239 (5) | 0.0306 (16) | |
H12 | 0.2995 | 0.0450 | −0.0108 | 0.037* | |
C13 | 0.1633 (6) | 0.0254 (3) | 0.0438 (5) | 0.0324 (18) | |
H13 | 0.1549 | −0.0137 | 0.0212 | 0.039* | |
C14 | 0.0918 (5) | 0.0486 (3) | 0.0969 (5) | 0.0298 (16) | |
H14 | 0.0348 | 0.0253 | 0.1129 | 0.036* | |
C15 | 0.1037 (6) | 0.1056 (3) | 0.1262 (5) | 0.0349 (18) | |
C16 | −0.0589 (6) | 0.1202 (3) | 0.2041 (5) | 0.0355 (18) | |
C17 | −0.1048 (6) | 0.1600 (3) | 0.2615 (6) | 0.043 (2) | |
H17 | −0.0673 | 0.1955 | 0.2834 | 0.051* | |
C18 | −0.2037 (6) | 0.1468 (3) | 0.2850 (6) | 0.044 (2) | |
H18 | −0.2362 | 0.1725 | 0.3240 | 0.053* | |
C19 | −0.2555 (6) | 0.0941 (3) | 0.2499 (6) | 0.042 (2) | |
H19 | −0.3252 | 0.0837 | 0.2632 | 0.050* | |
C20 | −0.2045 (6) | 0.0583 (4) | 0.1966 (6) | 0.044 (2) | |
H20 | −0.2400 | 0.0223 | 0.1748 | 0.053* | |
C21 | 0.4230 (9) | 0.2173 (4) | 0.2021 (7) | 0.083 (4) | |
H21 | 0.3813 | 0.1852 | 0.2171 | 0.100* | |
C22 | 0.5258 (7) | 0.2263 (3) | 0.2637 (6) | 0.047 (2) | |
H22 | 0.5548 | 0.2025 | 0.3209 | 0.056* | |
C23 | 0.5858 (6) | 0.2714 (4) | 0.2398 (6) | 0.049 (2) | |
H23 | 0.6575 | 0.2800 | 0.2827 | 0.059* | |
C24 | 0.5457 (6) | 0.3047 (3) | 0.1557 (5) | 0.0355 (17) | |
H24 | 0.5890 | 0.3356 | 0.1390 | 0.043* | |
C25 | 0.4404 (7) | 0.2919 (3) | 0.0961 (6) | 0.051 (2) | |
C26 | 0.4229 (6) | 0.3683 (3) | −0.0391 (6) | 0.0351 (18) | |
C27 | 0.3477 (6) | 0.3905 (3) | −0.1247 (6) | 0.042 (2) | |
H27 | 0.2746 | 0.3743 | −0.1484 | 0.050* | |
C28 | 0.3816 (6) | 0.4356 (3) | −0.1732 (5) | 0.0313 (17) | |
H28 | 0.3333 | 0.4504 | −0.2333 | 0.038* | |
C29 | 0.4856 (6) | 0.4602 (3) | −0.1358 (6) | 0.039 (2) | |
H29 | 0.5097 | 0.4927 | −0.1675 | 0.047* | |
C30 | 0.5527 (7) | 0.4360 (4) | −0.0511 (6) | 0.049 (2) | |
H30 | 0.6249 | 0.4526 | −0.0250 | 0.059* | |
C31 | 0.0905 (9) | 0.3789 (5) | 0.0006 (8) | 0.113 (5) | |
H31 | 0.0403 | 0.3528 | −0.0421 | 0.136* | |
C32 | 0.0884 (8) | 0.4364 (5) | −0.0274 (7) | 0.085 (4) | |
H32 | 0.0382 | 0.4503 | −0.0873 | 0.102* | |
C33 | 0.1623 (7) | 0.4723 (4) | 0.0356 (7) | 0.053 (2) | |
H33 | 0.1632 | 0.5124 | 0.0194 | 0.064* | |
C34 | 0.2357 (6) | 0.4522 (4) | 0.1221 (6) | 0.044 (2) | |
H34 | 0.2877 | 0.4774 | 0.1648 | 0.053* | |
C35 | 0.2309 (7) | 0.3937 (4) | 0.1445 (6) | 0.060 (3) | |
C36 | 0.3838 (6) | 0.3890 (3) | 0.3064 (5) | 0.0314 (16) | |
C37 | 0.4302 (5) | 0.3523 (3) | 0.3872 (5) | 0.0323 (17) | |
H37 | 0.4012 | 0.3143 | 0.3898 | 0.039* | |
C38 | 0.5182 (6) | 0.3718 (3) | 0.4631 (6) | 0.0348 (18) | |
H38 | 0.5500 | 0.3480 | 0.5196 | 0.042* | |
C39 | 0.5595 (7) | 0.4273 (3) | 0.4548 (6) | 0.043 (2) | |
H39 | 0.6208 | 0.4423 | 0.5052 | 0.051* | |
C40 | 0.5100 (7) | 0.4597 (3) | 0.3725 (6) | 0.043 (2) | |
H40 | 0.5395 | 0.4974 | 0.3670 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0302 (3) | 0.0252 (3) | 0.0316 (3) | −0.0075 (3) | 0.01118 (19) | −0.0037 (3) |
N13A | 0.0408 (19) | 0.038 (2) | 0.0324 (19) | −0.008 (2) | 0.0101 (18) | −0.0068 (19) |
O1A | 0.0408 (19) | 0.038 (2) | 0.0324 (19) | −0.008 (2) | 0.0101 (18) | −0.0068 (19) |
O2A | 0.0408 (19) | 0.038 (2) | 0.0324 (19) | −0.008 (2) | 0.0101 (18) | −0.0068 (19) |
O3A | 0.0408 (19) | 0.038 (2) | 0.0324 (19) | −0.008 (2) | 0.0101 (18) | −0.0068 (19) |
N13B | 0.0408 (19) | 0.038 (2) | 0.0324 (19) | −0.008 (2) | 0.0101 (18) | −0.0068 (19) |
O1B | 0.0408 (19) | 0.038 (2) | 0.0324 (19) | −0.008 (2) | 0.0101 (18) | −0.0068 (19) |
O2B | 0.0408 (19) | 0.038 (2) | 0.0324 (19) | −0.008 (2) | 0.0101 (18) | −0.0068 (19) |
O3B | 0.0408 (19) | 0.038 (2) | 0.0324 (19) | −0.008 (2) | 0.0101 (18) | −0.0068 (19) |
N1 | 0.040 (3) | 0.052 (4) | 0.091 (5) | −0.021 (4) | 0.043 (4) | −0.044 (5) |
N2 | 0.029 (3) | 0.032 (3) | 0.045 (4) | −0.009 (3) | 0.018 (3) | −0.017 (3) |
N3 | 0.032 (3) | 0.026 (3) | 0.034 (4) | −0.007 (3) | 0.012 (3) | −0.002 (3) |
N4 | 0.048 (4) | 0.043 (4) | 0.044 (4) | −0.011 (3) | 0.023 (4) | −0.014 (3) |
N5 | 0.046 (4) | 0.051 (4) | 0.049 (4) | −0.023 (3) | 0.031 (3) | −0.028 (3) |
N6 | 0.034 (4) | 0.054 (4) | 0.027 (3) | −0.015 (3) | 0.013 (3) | −0.008 (3) |
N7 | 0.100 (5) | 0.065 (4) | 0.077 (5) | −0.048 (5) | −0.045 (4) | 0.034 (5) |
N8 | 0.080 (6) | 0.055 (4) | 0.082 (6) | −0.053 (4) | −0.052 (4) | 0.047 (4) |
N9 | 0.031 (3) | 0.043 (4) | 0.036 (4) | −0.009 (3) | 0.008 (3) | 0.004 (3) |
N10 | 0.094 (7) | 0.099 (6) | 0.068 (6) | −0.080 (6) | −0.038 (5) | 0.050 (5) |
N11 | 0.067 (5) | 0.064 (5) | 0.038 (4) | −0.051 (4) | −0.013 (4) | 0.019 (4) |
N12 | 0.037 (4) | 0.036 (3) | 0.037 (4) | −0.020 (3) | 0.009 (3) | 0.001 (3) |
C1 | 0.057 (6) | 0.065 (6) | 0.120 (9) | −0.041 (5) | 0.056 (6) | −0.064 (6) |
C2 | 0.059 (6) | 0.064 (6) | 0.100 (8) | −0.029 (5) | 0.051 (6) | −0.053 (6) |
C3 | 0.035 (4) | 0.058 (5) | 0.071 (5) | −0.017 (4) | 0.030 (4) | −0.031 (5) |
C4 | 0.040 (4) | 0.038 (4) | 0.049 (5) | −0.014 (3) | 0.023 (4) | −0.019 (4) |
C5 | 0.038 (4) | 0.029 (4) | 0.051 (5) | −0.015 (3) | 0.029 (4) | −0.018 (4) |
C6 | 0.036 (4) | 0.018 (3) | 0.029 (4) | 0.000 (3) | 0.013 (3) | −0.001 (3) |
C7 | 0.031 (4) | 0.019 (3) | 0.033 (4) | −0.003 (3) | 0.012 (3) | −0.006 (3) |
C8 | 0.044 (5) | 0.023 (4) | 0.034 (4) | −0.004 (3) | 0.021 (4) | −0.002 (3) |
C9 | 0.051 (5) | 0.019 (3) | 0.021 (4) | 0.000 (3) | 0.007 (4) | −0.001 (3) |
C10 | 0.041 (5) | 0.019 (3) | 0.038 (5) | −0.005 (3) | 0.007 (4) | −0.004 (3) |
C11 | 0.029 (4) | 0.035 (4) | 0.048 (5) | −0.006 (3) | 0.019 (4) | −0.002 (4) |
C12 | 0.024 (4) | 0.034 (4) | 0.034 (4) | −0.002 (3) | 0.005 (3) | −0.004 (3) |
C13 | 0.030 (4) | 0.029 (4) | 0.031 (4) | 0.002 (3) | −0.004 (4) | 0.004 (3) |
C14 | 0.026 (4) | 0.035 (4) | 0.029 (4) | −0.007 (3) | 0.008 (3) | 0.007 (3) |
C15 | 0.028 (4) | 0.051 (5) | 0.027 (4) | −0.017 (4) | 0.011 (3) | −0.011 (4) |
C16 | 0.025 (4) | 0.057 (5) | 0.025 (4) | −0.013 (3) | 0.008 (3) | −0.002 (4) |
C17 | 0.045 (5) | 0.047 (5) | 0.042 (5) | −0.015 (4) | 0.021 (4) | −0.010 (4) |
C18 | 0.036 (4) | 0.059 (5) | 0.042 (5) | −0.002 (4) | 0.019 (4) | 0.004 (4) |
C19 | 0.028 (4) | 0.062 (6) | 0.037 (5) | −0.006 (4) | 0.012 (4) | 0.012 (4) |
C20 | 0.032 (4) | 0.061 (5) | 0.037 (5) | −0.018 (4) | 0.005 (4) | −0.003 (4) |
C21 | 0.109 (9) | 0.046 (5) | 0.057 (6) | −0.044 (5) | −0.049 (6) | 0.024 (5) |
C22 | 0.054 (5) | 0.038 (4) | 0.042 (5) | 0.010 (4) | 0.002 (4) | 0.012 (4) |
C23 | 0.030 (4) | 0.076 (6) | 0.035 (5) | 0.004 (4) | −0.001 (4) | 0.006 (4) |
C24 | 0.029 (4) | 0.043 (4) | 0.035 (4) | 0.002 (3) | 0.009 (3) | 0.002 (4) |
C25 | 0.063 (6) | 0.031 (4) | 0.041 (5) | −0.019 (4) | −0.023 (4) | 0.009 (4) |
C26 | 0.038 (4) | 0.021 (4) | 0.041 (5) | −0.008 (3) | 0.000 (4) | 0.003 (3) |
C27 | 0.033 (4) | 0.033 (4) | 0.050 (5) | −0.009 (3) | −0.010 (4) | 0.020 (4) |
C28 | 0.036 (4) | 0.029 (4) | 0.030 (4) | 0.002 (3) | 0.009 (3) | 0.004 (3) |
C29 | 0.046 (5) | 0.038 (4) | 0.038 (5) | −0.011 (4) | 0.018 (4) | 0.003 (4) |
C30 | 0.040 (5) | 0.061 (6) | 0.044 (6) | −0.024 (4) | 0.005 (4) | 0.006 (5) |
C31 | 0.101 (9) | 0.120 (10) | 0.080 (8) | −0.073 (8) | −0.052 (7) | 0.058 (7) |
C32 | 0.055 (6) | 0.117 (9) | 0.065 (7) | −0.050 (6) | −0.017 (5) | 0.053 (6) |
C33 | 0.040 (5) | 0.075 (6) | 0.050 (6) | −0.003 (5) | 0.021 (5) | 0.031 (5) |
C34 | 0.034 (4) | 0.061 (5) | 0.040 (5) | −0.014 (4) | 0.011 (4) | 0.009 (4) |
C35 | 0.057 (6) | 0.077 (6) | 0.039 (5) | −0.036 (5) | 0.001 (4) | 0.034 (5) |
C36 | 0.032 (4) | 0.035 (4) | 0.027 (4) | −0.010 (3) | 0.007 (3) | 0.000 (3) |
C37 | 0.029 (4) | 0.036 (4) | 0.033 (4) | −0.009 (3) | 0.010 (3) | −0.007 (3) |
C38 | 0.036 (4) | 0.037 (4) | 0.033 (4) | 0.009 (3) | 0.013 (4) | −0.003 (3) |
C39 | 0.044 (5) | 0.043 (5) | 0.036 (5) | −0.015 (4) | 0.002 (4) | −0.003 (4) |
C40 | 0.054 (5) | 0.043 (5) | 0.032 (5) | −0.021 (4) | 0.013 (4) | −0.003 (4) |
Ag1—N7 | 2.420 (9) | C8—H8A | 0.9500 |
Ag1—N1 | 2.439 (6) | C9—C10 | 1.361 (9) |
Ag1—N4 | 2.511 (6) | C9—H9 | 0.9500 |
Ag1—N10 | 2.532 (9) | C10—H10 | 0.9500 |
Ag1—O2A | 2.511 (8) | C11—C12 | 1.343 (9) |
Ag1—O1Bi | 2.648 (12) | C11—H11A | 0.9500 |
N13A—O3A | 1.172 (11) | C12—C13 | 1.392 (9) |
N13A—O2A | 1.247 (11) | C12—H12 | 0.9500 |
N13A—O1A | 1.269 (12) | C13—C14 | 1.381 (9) |
N13B—O1B | 1.168 (11) | C13—H13 | 0.9500 |
N13B—O2B | 1.248 (10) | C14—C15 | 1.372 (9) |
N13B—O3B | 1.284 (11) | C14—H14 | 0.9500 |
N1—C5 | 1.337 (8) | C16—C17 | 1.414 (10) |
N1—C1 | 1.350 (9) | C17—C18 | 1.367 (9) |
N2—C5 | 1.386 (8) | C17—H17 | 0.9500 |
N2—C6 | 1.389 (8) | C18—C19 | 1.397 (10) |
N2—H2 | 0.8800 | C18—H18 | 0.9500 |
N3—C6 | 1.330 (8) | C19—C20 | 1.356 (10) |
N3—C10 | 1.352 (8) | C19—H19 | 0.9500 |
N4—C11 | 1.355 (8) | C20—H20 | 0.9500 |
N4—C15 | 1.355 (8) | C21—C22 | 1.347 (11) |
N5—C16 | 1.374 (8) | C21—H21 | 0.9500 |
N5—C15 | 1.391 (8) | C22—C23 | 1.360 (11) |
N5—H5 | 0.8800 | C22—H22 | 0.9500 |
N6—C16 | 1.325 (9) | C23—C24 | 1.371 (10) |
N6—C20 | 1.344 (9) | C23—H23 | 0.9500 |
N7—C21 | 1.335 (10) | C24—C25 | 1.378 (10) |
N7—C25 | 1.371 (10) | C24—H24 | 0.9500 |
N8—C25 | 1.388 (9) | C26—C27 | 1.395 (9) |
N8—C26 | 1.390 (9) | C27—C28 | 1.355 (9) |
N8—H8 | 0.8800 | C27—H27 | 0.9500 |
N9—C26 | 1.325 (8) | C28—C29 | 1.373 (10) |
N9—C30 | 1.337 (9) | C28—H28 | 0.9500 |
N10—C35 | 1.320 (10) | C29—C30 | 1.363 (11) |
N10—C31 | 1.357 (11) | C29—H29 | 0.9500 |
N11—C36 | 1.377 (9) | C30—H30 | 0.9500 |
N11—C35 | 1.389 (10) | C31—C32 | 1.377 (13) |
N11—H11 | 0.8800 | C31—H31 | 0.9500 |
N12—C36 | 1.330 (8) | C32—C33 | 1.366 (12) |
N12—C40 | 1.337 (9) | C32—H32 | 0.9500 |
C1—C2 | 1.390 (11) | C33—C34 | 1.378 (11) |
C1—H1 | 0.9500 | C33—H33 | 0.9500 |
C2—C3 | 1.366 (10) | C34—C35 | 1.387 (11) |
C2—H2A | 0.9500 | C34—H34 | 0.9500 |
C3—C4 | 1.385 (9) | C36—C37 | 1.396 (9) |
C3—H3 | 0.9500 | C37—C38 | 1.374 (9) |
C4—C5 | 1.377 (9) | C37—H37 | 0.9500 |
C4—H4 | 0.9500 | C38—C39 | 1.391 (9) |
C6—C7 | 1.401 (8) | C38—H38 | 0.9500 |
C7—C8 | 1.371 (9) | C39—C40 | 1.362 (10) |
C7—H7 | 0.9500 | C39—H39 | 0.9500 |
C8—C9 | 1.387 (9) | C40—H40 | 0.9500 |
N7—Ag1—N1 | 175.6 (3) | C12—C13—H13 | 120.5 |
N7—Ag1—N4 | 87.2 (2) | C15—C14—C13 | 119.3 (6) |
N1—Ag1—N4 | 95.2 (2) | C15—C14—H14 | 120.3 |
N7—Ag1—O2A | 93.6 (3) | C13—C14—H14 | 120.3 |
N1—Ag1—O2A | 90.1 (3) | N4—C15—C14 | 121.9 (6) |
N4—Ag1—O2A | 88.7 (3) | N4—C15—N5 | 111.6 (6) |
N7—Ag1—N10 | 92.2 (3) | C14—C15—N5 | 126.5 (6) |
N1—Ag1—N10 | 86.0 (2) | N6—C16—N5 | 119.5 (6) |
N4—Ag1—N10 | 170.8 (2) | N6—C16—C17 | 122.8 (6) |
O2A—Ag1—N10 | 82.2 (3) | N5—C16—C17 | 117.7 (6) |
O3A—N13A—O2A | 122.1 (10) | C18—C17—C16 | 119.2 (7) |
O3A—N13A—O1A | 127.7 (10) | C18—C17—H17 | 120.4 |
O2A—N13A—O1A | 110.2 (11) | C16—C17—H17 | 120.4 |
N13A—O2A—Ag1 | 167.1 (8) | C17—C18—C19 | 117.8 (7) |
O1B—N13B—O2B | 125.9 (11) | C17—C18—H18 | 121.1 |
O1B—N13B—O3B | 122.3 (11) | C19—C18—H18 | 121.1 |
O2B—N13B—O3B | 108.6 (8) | C20—C19—C18 | 118.9 (7) |
C5—N1—C1 | 117.3 (6) | C20—C19—H19 | 120.6 |
C5—N1—Ag1 | 127.6 (5) | C18—C19—H19 | 120.6 |
C1—N1—Ag1 | 112.6 (5) | N6—C20—C19 | 124.8 (7) |
C5—N2—C6 | 131.3 (6) | N6—C20—H20 | 117.6 |
C5—N2—H2 | 114.4 | C19—C20—H20 | 117.6 |
C6—N2—H2 | 114.4 | N7—C21—C22 | 125.7 (8) |
C6—N3—C10 | 117.6 (6) | N7—C21—H21 | 117.1 |
C11—N4—C15 | 117.4 (6) | C22—C21—H21 | 117.1 |
C11—N4—Ag1 | 111.6 (4) | C21—C22—C23 | 116.5 (8) |
C15—N4—Ag1 | 125.3 (5) | C21—C22—H22 | 121.8 |
C16—N5—C15 | 130.7 (6) | C23—C22—H22 | 121.8 |
C16—N5—H5 | 114.7 | C22—C23—C24 | 121.9 (7) |
C15—N5—H5 | 114.7 | C22—C23—H23 | 119.0 |
C16—N6—C20 | 116.4 (6) | C24—C23—H23 | 119.0 |
C21—N7—C25 | 116.1 (7) | C23—C24—C25 | 117.7 (7) |
C21—N7—Ag1 | 113.8 (7) | C23—C24—H24 | 121.2 |
C25—N7—Ag1 | 126.1 (6) | C25—C24—H24 | 121.2 |
C25—N8—C26 | 130.9 (7) | N7—C25—C24 | 121.7 (7) |
C25—N8—H8 | 114.5 | N7—C25—N8 | 113.3 (7) |
C26—N8—H8 | 114.5 | C24—C25—N8 | 124.9 (7) |
C26—N9—C30 | 116.6 (7) | N9—C26—N8 | 119.6 (7) |
C35—N10—C31 | 118.3 (9) | N9—C26—C27 | 122.8 (6) |
C35—N10—Ag1 | 127.9 (7) | N8—C26—C27 | 117.6 (6) |
C31—N10—Ag1 | 111.4 (7) | C28—C27—C26 | 118.2 (7) |
C36—N11—C35 | 131.8 (7) | C28—C27—H27 | 120.9 |
C36—N11—H11 | 114.1 | C26—C27—H27 | 120.9 |
C35—N11—H11 | 114.1 | C27—C28—C29 | 120.3 (7) |
C36—N12—C40 | 117.1 (6) | C27—C28—H28 | 119.8 |
N1—C1—C2 | 123.8 (7) | C29—C28—H28 | 119.8 |
N1—C1—H1 | 118.1 | C30—C29—C28 | 117.1 (7) |
C2—C1—H1 | 118.1 | C30—C29—H29 | 121.4 |
C3—C2—C1 | 116.9 (7) | C28—C29—H29 | 121.4 |
C3—C2—H2A | 121.5 | N9—C30—C29 | 124.8 (7) |
C1—C2—H2A | 121.5 | N9—C30—H30 | 117.6 |
C2—C3—C4 | 120.8 (7) | C29—C30—H30 | 117.6 |
C2—C3—H3 | 119.6 | N10—C31—C32 | 123.5 (9) |
C4—C3—H3 | 119.6 | N10—C31—H31 | 118.3 |
C5—C4—C3 | 118.2 (6) | C32—C31—H31 | 118.3 |
C5—C4—H4 | 120.9 | C33—C32—C31 | 116.4 (9) |
C3—C4—H4 | 120.9 | C33—C32—H32 | 121.8 |
N1—C5—C4 | 122.8 (6) | C31—C32—H32 | 121.8 |
N1—C5—N2 | 112.8 (6) | C32—C33—C34 | 121.9 (9) |
C4—C5—N2 | 124.3 (6) | C32—C33—H33 | 119.1 |
N3—C6—N2 | 119.5 (6) | C34—C33—H33 | 119.1 |
N3—C6—C7 | 122.9 (6) | C33—C34—C35 | 117.6 (8) |
N2—C6—C7 | 117.6 (6) | C33—C34—H34 | 121.2 |
C8—C7—C6 | 117.9 (6) | C35—C34—H34 | 121.2 |
C8—C7—H7 | 121.0 | N10—C35—C34 | 122.3 (8) |
C6—C7—H7 | 121.0 | N10—C35—N11 | 113.9 (8) |
C7—C8—C9 | 119.6 (6) | C34—C35—N11 | 123.8 (8) |
C7—C8—H8A | 120.2 | N12—C36—N11 | 119.6 (6) |
C9—C8—H8A | 120.2 | N12—C36—C37 | 122.4 (6) |
C10—C9—C8 | 118.7 (6) | N11—C36—C37 | 117.9 (6) |
C10—C9—H9 | 120.6 | C38—C37—C36 | 119.4 (6) |
C8—C9—H9 | 120.6 | C38—C37—H37 | 120.3 |
N3—C10—C9 | 123.2 (7) | C36—C37—H37 | 120.3 |
N3—C10—H10 | 118.4 | C37—C38—C39 | 118.2 (7) |
C9—C10—H10 | 118.4 | C37—C38—H38 | 120.9 |
C12—C11—N4 | 123.9 (6) | C39—C38—H38 | 120.9 |
C12—C11—H11A | 118.1 | C40—C39—C38 | 118.4 (7) |
N4—C11—H11A | 118.1 | C40—C39—H39 | 120.8 |
C11—C12—C13 | 118.5 (6) | C38—C39—H39 | 120.8 |
C11—C12—H12 | 120.7 | N12—C40—C39 | 124.6 (7) |
C13—C12—H12 | 120.7 | N12—C40—H40 | 117.7 |
C14—C13—C12 | 119.0 (6) | C39—C40—H40 | 117.7 |
C14—C13—H13 | 120.5 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1Bi | 0.88 | 2.15 | 2.959 (14) | 152 |
N2—H2···O1Ai | 0.88 | 2.27 | 3.089 (16) | 155 |
N5—H5···O3B | 0.88 | 2.22 | 3.075 (10) | 163 |
N5—H5···O2A | 0.88 | 2.40 | 3.271 (11) | 172 |
N8—H8···O3Ai | 0.88 | 2.21 | 3.073 (12) | 168 |
N11—H11···O2B | 0.88 | 2.26 | 3.129 (10) | 168 |
N11—H11···O2A | 0.88 | 2.27 | 3.093 (11) | 156 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1Bi | 0.88 | 2.15 | 2.959 (14) | 152 |
N2—H2···O1Ai | 0.88 | 2.27 | 3.089 (16) | 155 |
N5—H5···O3B | 0.88 | 2.22 | 3.075 (10) | 163 |
N5—H5···O2A | 0.88 | 2.40 | 3.271 (11) | 172 |
N8—H8···O3Ai | 0.88 | 2.21 | 3.073 (12) | 168 |
N11—H11···O2B | 0.88 | 2.26 | 3.129 (10) | 168 |
N11—H11···O2A | 0.88 | 2.27 | 3.093 (11) | 156 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Acknowledgements
We thank Saint Petersburg State University for research grant No. 2013–2015 (12.38.781.2013).
References
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127. Web of Science CSD CrossRef Google Scholar
Jing, X., Zhu, Y.-L., Ma, K.-R., Cao, L. & Shao, S. (2011). Acta Cryst. E67, m957–m958. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kascatan-Nebioglu, A., Panzner, M. J. & Tessier, C. A. (2007). Coord. Chem. Rev. 5–6, 884–895. Google Scholar
Kasuga, N. C., Yamamoto, R. & Hara, A. (2006). Inorg. Chim. Acta, 13, 4412–4416. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Park, W. J., Choe, J. & Lee, S. M. (2011). Polyhedron, 3, 465–469. Web of Science CrossRef Google Scholar
Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). Inorg. Chem. 48, 6960–6971. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takeuchi, K. J., Marschilok, A. C. & Davis, S. M. (2001). Coord. Chem. Rev. 219–221, 283–310. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wibaut, J. P. & Dingemanse, E. (1923). Recl. Trav. Chim. Pays-Bas, 42, 243–250. Google Scholar
Zhang, F. & Yang, Y.-L. (2011). Acta Cryst. E67, m1863. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some of silver compounds are proved to be useful in medicine. The silver complexes display antimicrobial activities against bacteria, yeasts and molds (Kascatan-Nebioglu et al., 2007; Kasuga et al., 2006). Silver complexes also display conductivity, luminescence and photoluminescence (Park et al., 2011; Takeuchi et al., 2001). In this study we have chosen bis(pyridin-2-yl)amine (dipam) as a ligand.
The preparation of dipam was reported by Wibaut & Dingemanse (1923) and since that time it was widely used for constructing complexes with transition metals. Two crystalline modifications of the compound C10H9N3 are known, one with melting point at 84°, while a second melts at 94°C. In this paper we report the synthesis and characterization of the title compound. The nitrate anion in the complex is disordered between two sets of positions [occupancy factors are equal to 0.473 (5) and 0.527 (5)]. In both cases coordination environment of the AgI ion is formed by four N atoms from four dipam ligands [Ag—N distances fall in a range of 2.420 (9)–2.532 (9) Å]. On the contrary to the already reported compounds, the title complex contains monodentately coordinated dipam ligands. The coordinated environment of the pentacoordinated AgI ion is completed by an O atom (O2A or O1B) from the nitrate anion [Ag1—O2A = 2.511 (8), Ag1—O1Bi = 2.648 (12) Å. Symmetry code: (i) x, 1/2-y, -1/2+z]. The observed metal–ligand bond distances are typical for silver(I) complexes (Jing et al., 2011; Zhang & Yang, 2011). The AgI ion in the complex slightly deviates (0.061 Å) from the mean plane formed by the coordinated N atoms (N1, N4, N7, N10) from four dipam ligands. The C—N and C—C bond lengths in the pyridine rings are normal for 2-substituted pyridine derivatives (Fritsky et al., 2006; Moroz et al., 2012; Penkova et al., 2009).