metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m45-m46

Tetra­chloridodi-μ3-oxido-tetra­kis­(μ2-propan-2-olato-κ2O:O)ditin(II)ditin(IV)

aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bInstitute of Organic Chemistry, Murmanskaya Street 4, 253660, Ukraine
*Correspondence e-mail: bruschem@gmail.com

(Received 30 December 2013; accepted 13 January 2014; online 18 January 2014)

The centrosymmetric tetranuclear title molecule, [Sn4(C3H7O)4Cl4O2], contains two types of Sn atoms, SnII and SnIV. The SnII atom has a trigonal–pyramidal coordination environment and is bonded to two O atoms from two iso­propano­late groups and one μ3-oxide atom. The SnIV atom has an octa­hedral coordination environment, formed by two chloride atoms, two μ3-oxide atoms and two O atoms from iso­propano­late groups.

Related literature

For the synthesis and structures of related tin and titanium complexes, see: Boyle et al. (2002[Boyle, T. J., Alam, T. M., Rodriguez, M. A. & Zechmann, C. A. (2002). Inorg. Chem. 41, 2574-2582.]); Eslava et al. (2010[Eslava, S., McPartlin, M., Thomson, R. I., Rawson, J. M. & Wright, D. S. (2010). Inorg. Chem. 49, 11532-11540.]); Fric & Schubert (2008[Fric, H. & Schubert, U. (2008). J. Sol-Gel Sci. Technol. 48, 2-5.]); Harrison et al. (1978[Harrison, P. G., Haylett, B. J. & King, T. J. (1978). Chem. Commun. pp. 112-113.]); Mijatovic et al. (2001[Mijatovic, I., Kickelbick, G. & Schubert, U. (2001). Eur. J. Inorg. Chem. pp. 1933-1935.]); Mokal et al. (1994[Mokal, V. B., Jain, V. K. & Tiekink, E. R. T. (1994). J. Organomet. Chem. 471, 53-61.]); Vatsa et al. (1991[Vatsa, C., Jain, V. K., Das, T. K. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 421, 21-28.]); Verdenelli et al. (2000[Verdenelli, M., Parola, S., Hubert-Pfalzgraf, L. G. & Lecocq, S. (2000). Polyhedron, 19, 2069-2075.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn4(C3H7O)4Cl4O2]

  • Mr = 884.98

  • Monoclinic, P 21 /c

  • a = 6.4423 (3) Å

  • b = 17.8302 (7) Å

  • c = 11.6843 (5) Å

  • β = 105.474 (2)°

  • V = 1293.5 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.25 mm−1

  • T = 296 K

  • 0.36 × 0.17 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.310, Tmax = 0.629

  • 14221 measured reflections

  • 3853 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.061

  • S = 1.10

  • 3853 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.80 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—O1 2.099 (3)
Sn1—O2 2.084 (3)
Sn1—O3 2.109 (2)
Sn1—O3i 2.081 (3)
Sn1—Cl1 2.3808 (12)
Sn1—Cl2 2.3604 (11)
Sn2—O1i 2.165 (3)
Sn2—O2 2.168 (3)
Sn2—O3 2.105 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Compound with the same symmetry and similar coordination environment as in the title compound was studied in the work of Boyle et al. (2002). However it has tin atoms with equal oxidation state, in opposite with our compound, which has different oxidation states and coordination environments of metal atoms. The same situation persists with other compounds of tin and titanium with similar coordination geometry and identical oxidation states of the metal atoms (Eslava et al., 2010; Fric & Schubert, 2008; Harrison et al., 1978; Mijatovic et al., 2001; Mokal et al., 1994; Vatsa et al., 1991; Verdenelli et al., 2000). The title compound has two types of tin atoms. The SnII atom is three-coordinated and has a trigonal-pyramidal environment. The SnIV atom is hexa-coordinated and has an octahedral environment. Literature search did not provide any information about similar compounds, which have simultaneously two tin atoms with different oxidation states. In the title compound this is possible due to two chloride atoms for each SnIV atom.

Related literature top

For the synthesis and structures of related tin and titanium complexes, see: Boyle et al. (2002); Eslava et al. (2010); Fric & Schubert (2008); Harrison et al. (1978); Mijatovic et al. (2001); Mokal et al. (1994); Vatsa et al. (1991); Verdenelli et al. (2000).

Experimental top

To a solution of (diisopropoxydichlorido)tin (1.54 g, 5 mmol) in 5 ml of toluene was added N,N,N-tris(trimethylsilyl)aminoiminophosphorane (0.695 g, 2.5 mmol) in 3 ml of toluene and stirred for 4 h. The resulting solution was concentrated to 4 ml and cooled to -25°C. After two days, resulting crystals were filtered from the solution and dried in vacuum (yield: 0.454 g, 41%). Analysis, calculated for C12H28Cl4O6Sn4: C 16.26, H 3.16, Cl 16.03, O 10.83, Sn 53.72%; found: C 16.01, H 3.56, Cl 16.25, O 10.94, Sn 53.24%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.98 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

Compound with the same symmetry and similar coordination environment as in the title compound was studied in the work of Boyle et al. (2002). However it has tin atoms with equal oxidation state, in opposite with our compound, which has different oxidation states and coordination environments of metal atoms. The same situation persists with other compounds of tin and titanium with similar coordination geometry and identical oxidation states of the metal atoms (Eslava et al., 2010; Fric & Schubert, 2008; Harrison et al., 1978; Mijatovic et al., 2001; Mokal et al., 1994; Vatsa et al., 1991; Verdenelli et al., 2000). The title compound has two types of tin atoms. The SnII atom is three-coordinated and has a trigonal-pyramidal environment. The SnIV atom is hexa-coordinated and has an octahedral environment. Literature search did not provide any information about similar compounds, which have simultaneously two tin atoms with different oxidation states. In the title compound this is possible due to two chloride atoms for each SnIV atom.

For the synthesis and structures of related tin and titanium complexes, see: Boyle et al. (2002); Eslava et al. (2010); Fric & Schubert (2008); Harrison et al. (1978); Mijatovic et al. (2001); Mokal et al. (1994); Vatsa et al. (1991); Verdenelli et al. (2000).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted. [Symmetry code: (i) 1-x, 1-y, 1-z.]
Tetrachloridodi-µ3-oxido-tetrakis(µ2-propan-2-olato-κ2O:O)ditin(II)ditin(IV) top
Crystal data top
[Sn4(C3H7O)4Cl4O2]F(000) = 832
Mr = 884.98Dx = 2.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3853 reflections
a = 6.4423 (3) Åθ = 2.1–31.1°
b = 17.8302 (7) ŵ = 4.25 mm1
c = 11.6843 (5) ÅT = 296 K
β = 105.474 (2)°Block, colorless
V = 1293.5 (1) Å30.36 × 0.17 × 0.12 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3853 independent reflections
Radiation source: fine-focus sealed tube2930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scans with κ offsetθmax = 31.1°, θmin = 2.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.310, Tmax = 0.629k = 2521
14221 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.P)2 + 2.1387P]
where P = (Fo2 + 2Fc2)/3
3853 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Sn4(C3H7O)4Cl4O2]V = 1293.5 (1) Å3
Mr = 884.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.4423 (3) ŵ = 4.25 mm1
b = 17.8302 (7) ÅT = 296 K
c = 11.6843 (5) Å0.36 × 0.17 × 0.12 mm
β = 105.474 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3853 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2930 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.629Rint = 0.041
14221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.10Δρmax = 0.93 e Å3
3853 reflectionsΔρmin = 0.80 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.47306 (5)0.589199 (15)0.51770 (2)0.02814 (8)
Sn20.07243 (5)0.494763 (16)0.33749 (3)0.03368 (8)
Cl10.1984 (2)0.65257 (7)0.58158 (12)0.0527 (3)
Cl20.6589 (2)0.69913 (7)0.49108 (12)0.0538 (3)
O10.6730 (5)0.57626 (15)0.6906 (2)0.0358 (7)
O20.2858 (5)0.58942 (15)0.3422 (2)0.0347 (7)
O30.2987 (4)0.48801 (13)0.5045 (2)0.0271 (6)
C10.6845 (8)0.6280 (3)0.7884 (4)0.0430 (11)
H10.60290.67320.75660.052*
C20.9156 (9)0.6503 (3)0.8431 (5)0.0674 (17)
H2A0.97290.67330.78380.101*
H2B0.99870.60650.87370.101*
H2C0.92230.68520.90660.101*
C30.5808 (11)0.5926 (4)0.8751 (5)0.083 (2)
H3A0.43340.58100.83600.124*
H3B0.58600.62680.93930.124*
H3C0.65620.54740.90560.124*
C40.2592 (8)0.6511 (2)0.2583 (4)0.0423 (11)
H40.30930.69730.30240.051*
C50.3896 (12)0.6379 (4)0.1741 (6)0.100 (3)
H5A0.53840.63320.21700.150*
H5B0.37280.67940.11990.150*
H5C0.34250.59260.13040.150*
C60.0244 (10)0.6592 (3)0.1970 (6)0.086 (2)
H6A0.05410.66780.25490.130*
H6B0.02690.61420.15360.130*
H6C0.00390.70090.14310.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02865 (15)0.02228 (14)0.03221 (15)0.00089 (12)0.00591 (11)0.00050 (12)
Sn20.03055 (16)0.03210 (16)0.03533 (16)0.00024 (13)0.00347 (12)0.00033 (13)
Cl10.0432 (7)0.0410 (7)0.0770 (9)0.0083 (5)0.0215 (6)0.0119 (6)
Cl20.0424 (7)0.0356 (6)0.0738 (9)0.0129 (5)0.0009 (6)0.0116 (6)
O10.0380 (17)0.0359 (17)0.0309 (15)0.0064 (13)0.0044 (13)0.0096 (13)
O20.0364 (17)0.0268 (15)0.0370 (15)0.0058 (13)0.0032 (13)0.0050 (13)
O30.0297 (15)0.0200 (14)0.0302 (14)0.0016 (11)0.0058 (11)0.0004 (11)
C10.053 (3)0.040 (3)0.033 (2)0.007 (2)0.005 (2)0.014 (2)
C20.062 (4)0.076 (4)0.060 (3)0.013 (3)0.011 (3)0.035 (3)
C30.103 (5)0.098 (5)0.058 (3)0.031 (4)0.042 (4)0.035 (3)
C40.049 (3)0.031 (2)0.042 (3)0.003 (2)0.003 (2)0.014 (2)
C50.137 (7)0.088 (5)0.102 (5)0.023 (5)0.078 (5)0.041 (4)
C60.079 (5)0.064 (4)0.093 (5)0.004 (3)0.017 (4)0.042 (4)
Geometric parameters (Å, º) top
Sn1—O12.099 (3)C2—H2A0.9600
Sn1—O22.084 (3)C2—H2B0.9600
Sn1—O32.109 (2)C2—H2C0.9600
Sn1—O3i2.081 (3)C3—H3A0.9600
Sn1—Cl12.3808 (12)C3—H3B0.9600
Sn1—Cl22.3604 (11)C3—H3C0.9600
Sn1—Sn1i3.2382 (5)C4—C51.473 (7)
Sn2—O1i2.165 (3)C4—C61.498 (7)
Sn2—O22.168 (3)C4—H40.9800
Sn2—O32.105 (2)C5—H5A0.9600
O1—C11.456 (5)C5—H5B0.9600
O2—C41.453 (5)C5—H5C0.9600
C1—C31.494 (7)C6—H6A0.9600
C1—C21.508 (7)C6—H6B0.9600
C1—H10.9800C6—H6C0.9600
O3i—Sn1—O296.97 (10)C3—C1—C2113.2 (4)
O3i—Sn1—O176.99 (10)O1—C1—H1108.3
O2—Sn1—O1173.28 (10)C3—C1—H1108.3
O3i—Sn1—O378.77 (11)C2—C1—H1108.3
O2—Sn1—O376.86 (10)C1—C2—H2A109.5
O1—Sn1—O398.87 (10)C1—C2—H2B109.5
O3i—Sn1—Cl297.63 (8)H2A—C2—H2B109.5
O2—Sn1—Cl292.84 (8)C1—C2—H2C109.5
O1—Sn1—Cl290.89 (9)H2A—C2—H2C109.5
O3—Sn1—Cl2168.46 (7)H2B—C2—H2C109.5
O3i—Sn1—Cl1164.20 (8)C1—C3—H3A109.5
O2—Sn1—Cl191.38 (9)C1—C3—H3B109.5
O1—Sn1—Cl193.83 (8)H3A—C3—H3B109.5
O3—Sn1—Cl190.17 (8)C1—C3—H3C109.5
Cl2—Sn1—Cl195.32 (5)H3A—C3—H3C109.5
O3i—Sn1—Sn1i39.70 (7)H3B—C3—H3C109.5
O2—Sn1—Sn1i85.98 (7)O2—C4—C5110.1 (4)
O1—Sn1—Sn1i87.47 (7)O2—C4—C6108.6 (4)
O3—Sn1—Sn1i39.06 (7)C5—C4—C6112.3 (5)
Cl2—Sn1—Sn1i136.34 (4)O2—C4—H4108.6
Cl1—Sn1—Sn1i128.33 (3)C5—C4—H4108.6
O3—Sn2—O1i75.04 (10)C6—C4—H4108.6
O3—Sn2—O275.14 (10)C4—C5—H5A109.5
O1i—Sn2—O287.61 (11)C4—C5—H5B109.5
C1—O1—Sn1125.2 (2)H5A—C5—H5B109.5
C1—O1—Sn2i127.4 (3)C4—C5—H5C109.5
Sn1—O1—Sn2i102.33 (11)H5A—C5—H5C109.5
C4—O2—Sn1126.8 (2)H5B—C5—H5C109.5
C4—O2—Sn2127.8 (2)C4—C6—H6A109.5
Sn1—O2—Sn2102.71 (11)C4—C6—H6B109.5
Sn1i—O3—Sn2105.05 (11)H6A—C6—H6B109.5
Sn1i—O3—Sn1101.23 (11)C4—C6—H6C109.5
Sn2—O3—Sn1104.02 (10)H6A—C6—H6C109.5
O1—C1—C3109.0 (4)H6B—C6—H6C109.5
O1—C1—C2109.7 (4)
O3i—Sn1—O1—C1162.0 (3)O1i—Sn2—O3—Sn1i5.91 (11)
O3—Sn1—O1—C1121.8 (3)O2—Sn2—O3—Sn1i97.42 (13)
Cl2—Sn1—O1—C164.4 (3)O1i—Sn2—O3—Sn1100.06 (12)
Cl1—Sn1—O1—C131.0 (3)O2—Sn2—O3—Sn18.55 (10)
Sn1i—Sn1—O1—C1159.3 (3)O3i—Sn1—O3—Sn1i0.0
O3i—Sn1—O1—Sn2i5.81 (11)O2—Sn1—O3—Sn1i99.98 (12)
O3—Sn1—O1—Sn2i82.02 (12)O1—Sn1—O3—Sn1i74.73 (11)
Cl2—Sn1—O1—Sn2i91.81 (10)Cl2—Sn1—O3—Sn1i72.8 (4)
Cl1—Sn1—O1—Sn2i172.79 (10)Cl1—Sn1—O3—Sn1i168.64 (9)
Sn1i—Sn1—O1—Sn2i44.54 (9)O3i—Sn1—O3—Sn2108.82 (14)
O3i—Sn1—O2—C4112.5 (3)O2—Sn1—O3—Sn28.83 (11)
O3—Sn1—O2—C4170.8 (3)O1—Sn1—O3—Sn2176.45 (11)
Cl2—Sn1—O2—C414.4 (3)Cl2—Sn1—O3—Sn236.0 (4)
Cl1—Sn1—O2—C481.0 (3)Cl1—Sn1—O3—Sn282.55 (10)
Sn1i—Sn1—O2—C4150.7 (3)Sn1i—Sn1—O3—Sn2108.82 (14)
O3i—Sn1—O2—Sn285.22 (12)Sn1—O1—C1—C3108.1 (4)
O3—Sn1—O2—Sn28.53 (10)Sn2i—O1—C1—C3101.7 (4)
Cl2—Sn1—O2—Sn2176.73 (10)Sn1—O1—C1—C2127.4 (4)
Cl1—Sn1—O2—Sn281.33 (10)Sn2i—O1—C1—C222.8 (5)
Sn1i—Sn1—O2—Sn247.00 (9)Sn1—O2—C4—C5102.9 (5)
O3—Sn2—O2—C4170.6 (3)Sn2—O2—C4—C599.2 (5)
O1i—Sn2—O2—C4114.2 (3)Sn1—O2—C4—C6133.8 (4)
O3—Sn2—O2—Sn18.61 (10)Sn2—O2—C4—C624.1 (5)
O1i—Sn2—O2—Sn183.76 (12)
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) top
Sn1—O12.099 (3)Sn1—Cl22.3604 (11)
Sn1—O22.084 (3)Sn2—O1i2.165 (3)
Sn1—O32.109 (2)Sn2—O22.168 (3)
Sn1—O3i2.081 (3)Sn2—O32.105 (2)
Sn1—Cl12.3808 (12)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).

References

First citationBoyle, T. J., Alam, T. M., Rodriguez, M. A. & Zechmann, C. A. (2002). Inorg. Chem. 41, 2574–2582.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEslava, S., McPartlin, M., Thomson, R. I., Rawson, J. M. & Wright, D. S. (2010). Inorg. Chem. 49, 11532–11540.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFric, H. & Schubert, U. (2008). J. Sol-Gel Sci. Technol. 48, 2–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, P. G., Haylett, B. J. & King, T. J. (1978). Chem. Commun. pp. 112–113.  CrossRef Web of Science Google Scholar
First citationMijatovic, I., Kickelbick, G. & Schubert, U. (2001). Eur. J. Inorg. Chem. pp. 1933–1935.  CrossRef Google Scholar
First citationMokal, V. B., Jain, V. K. & Tiekink, E. R. T. (1994). J. Organomet. Chem. 471, 53–61.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVatsa, C., Jain, V. K., Das, T. K. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 421, 21–28.  CAS Google Scholar
First citationVerdenelli, M., Parola, S., Hubert-Pfalzgraf, L. G. & Lecocq, S. (2000). Polyhedron, 19, 2069–2075.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m45-m46
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds