metal-organic compounds
Tetrachloridodi-μ3-oxido-tetrakis(μ2-propan-2-olato-κ2O:O)ditin(II)ditin(IV)
aDepartment of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bInstitute of Organic Chemistry, Murmanskaya Street 4, 253660, Ukraine
*Correspondence e-mail: bruschem@gmail.com
The centrosymmetric tetranuclear title molecule, [Sn4(C3H7O)4Cl4O2], contains two types of Sn atoms, SnII and SnIV. The SnII atom has a trigonal–pyramidal coordination environment and is bonded to two O atoms from two isopropanolate groups and one μ3-oxide atom. The SnIV atom has an octahedral coordination environment, formed by two chloride atoms, two μ3-oxide atoms and two O atoms from isopropanolate groups.
CCDC reference: 981323
Related literature
For the synthesis and structures of related tin and titanium complexes, see: Boyle et al. (2002); Eslava et al. (2010); Fric & Schubert (2008); Harrison et al. (1978); Mijatovic et al. (2001); Mokal et al. (1994); Vatsa et al. (1991); Verdenelli et al. (2000).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 2000); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 981323
10.1107/S1600536814000816/hy2641sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814000816/hy2641Isup2.hkl
To a solution of (diisopropoxydichlorido)tin (1.54 g, 5 mmol) in 5 ml of toluene was added N,N,N-tris(trimethylsilyl)aminoiminophosphorane (0.695 g, 2.5 mmol) in 3 ml of toluene and stirred for 4 h. The resulting solution was concentrated to 4 ml and cooled to -25°C. After two days, resulting crystals were filtered from the solution and dried in vacuum (yield: 0.454 g, 41%). Analysis, calculated for C12H28Cl4O6Sn4: C 16.26, H 3.16, Cl 16.03, O 10.83, Sn 53.72%; found: C 16.01, H 3.56, Cl 16.25, O 10.94, Sn 53.24%.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.98 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).
Compound with the same symmetry and similar coordination environment as in the title compound was studied in the work of Boyle et al. (2002). However it has tin atoms with equal
in opposite with our compound, which has different oxidation states and coordination environments of metal atoms. The same situation persists with other compounds of tin and titanium with similar coordination geometry and identical oxidation states of the metal atoms (Eslava et al., 2010; Fric & Schubert, 2008; Harrison et al., 1978; Mijatovic et al., 2001; Mokal et al., 1994; Vatsa et al., 1991; Verdenelli et al., 2000). The title compound has two types of tin atoms. The SnII atom is three-coordinated and has a trigonal-pyramidal environment. The SnIV atom is hexa-coordinated and has an octahedral environment. Literature search did not provide any information about similar compounds, which have simultaneously two tin atoms with different oxidation states. In the title compound this is possible due to two chloride atoms for each SnIV atom.For the synthesis and structures of related tin and titanium complexes, see: Boyle et al. (2002); Eslava et al. (2010); Fric & Schubert (2008); Harrison et al. (1978); Mijatovic et al. (2001); Mokal et al. (1994); Vatsa et al. (1991); Verdenelli et al. (2000).
Data collection: COLLECT (Nonius, 2000); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted. [Symmetry code: (i) 1-x, 1-y, 1-z.] |
[Sn4(C3H7O)4Cl4O2] | F(000) = 832 |
Mr = 884.98 | Dx = 2.272 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3853 reflections |
a = 6.4423 (3) Å | θ = 2.1–31.1° |
b = 17.8302 (7) Å | µ = 4.25 mm−1 |
c = 11.6843 (5) Å | T = 296 K |
β = 105.474 (2)° | Block, colorless |
V = 1293.5 (1) Å3 | 0.36 × 0.17 × 0.12 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 3853 independent reflections |
Radiation source: fine-focus sealed tube | 2930 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
φ and ω scans with κ offset | θmax = 31.1°, θmin = 2.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −9→9 |
Tmin = 0.310, Tmax = 0.629 | k = −25→21 |
14221 measured reflections | l = −16→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.P)2 + 2.1387P] where P = (Fo2 + 2Fc2)/3 |
3853 reflections | (Δ/σ)max = 0.001 |
118 parameters | Δρmax = 0.93 e Å−3 |
0 restraints | Δρmin = −0.80 e Å−3 |
[Sn4(C3H7O)4Cl4O2] | V = 1293.5 (1) Å3 |
Mr = 884.98 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.4423 (3) Å | µ = 4.25 mm−1 |
b = 17.8302 (7) Å | T = 296 K |
c = 11.6843 (5) Å | 0.36 × 0.17 × 0.12 mm |
β = 105.474 (2)° |
Nonius KappaCCD diffractometer | 3853 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 2930 reflections with I > 2σ(I) |
Tmin = 0.310, Tmax = 0.629 | Rint = 0.041 |
14221 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.061 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.93 e Å−3 |
3853 reflections | Δρmin = −0.80 e Å−3 |
118 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.47306 (5) | 0.589199 (15) | 0.51770 (2) | 0.02814 (8) | |
Sn2 | 0.07243 (5) | 0.494763 (16) | 0.33749 (3) | 0.03368 (8) | |
Cl1 | 0.1984 (2) | 0.65257 (7) | 0.58158 (12) | 0.0527 (3) | |
Cl2 | 0.6589 (2) | 0.69913 (7) | 0.49108 (12) | 0.0538 (3) | |
O1 | 0.6730 (5) | 0.57626 (15) | 0.6906 (2) | 0.0358 (7) | |
O2 | 0.2858 (5) | 0.58942 (15) | 0.3422 (2) | 0.0347 (7) | |
O3 | 0.2987 (4) | 0.48801 (13) | 0.5045 (2) | 0.0271 (6) | |
C1 | 0.6845 (8) | 0.6280 (3) | 0.7884 (4) | 0.0430 (11) | |
H1 | 0.6029 | 0.6732 | 0.7566 | 0.052* | |
C2 | 0.9156 (9) | 0.6503 (3) | 0.8431 (5) | 0.0674 (17) | |
H2A | 0.9729 | 0.6733 | 0.7838 | 0.101* | |
H2B | 0.9987 | 0.6065 | 0.8737 | 0.101* | |
H2C | 0.9223 | 0.6852 | 0.9066 | 0.101* | |
C3 | 0.5808 (11) | 0.5926 (4) | 0.8751 (5) | 0.083 (2) | |
H3A | 0.4334 | 0.5810 | 0.8360 | 0.124* | |
H3B | 0.5860 | 0.6268 | 0.9393 | 0.124* | |
H3C | 0.6562 | 0.5474 | 0.9056 | 0.124* | |
C4 | 0.2592 (8) | 0.6511 (2) | 0.2583 (4) | 0.0423 (11) | |
H4 | 0.3093 | 0.6973 | 0.3024 | 0.051* | |
C5 | 0.3896 (12) | 0.6379 (4) | 0.1741 (6) | 0.100 (3) | |
H5A | 0.5384 | 0.6332 | 0.2170 | 0.150* | |
H5B | 0.3728 | 0.6794 | 0.1199 | 0.150* | |
H5C | 0.3425 | 0.5926 | 0.1304 | 0.150* | |
C6 | 0.0244 (10) | 0.6592 (3) | 0.1970 (6) | 0.086 (2) | |
H6A | −0.0541 | 0.6678 | 0.2549 | 0.130* | |
H6B | −0.0269 | 0.6142 | 0.1536 | 0.130* | |
H6C | 0.0039 | 0.7009 | 0.1431 | 0.130* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.02865 (15) | 0.02228 (14) | 0.03221 (15) | 0.00089 (12) | 0.00591 (11) | −0.00050 (12) |
Sn2 | 0.03055 (16) | 0.03210 (16) | 0.03533 (16) | −0.00024 (13) | 0.00347 (12) | 0.00033 (13) |
Cl1 | 0.0432 (7) | 0.0410 (7) | 0.0770 (9) | 0.0083 (5) | 0.0215 (6) | −0.0119 (6) |
Cl2 | 0.0424 (7) | 0.0356 (6) | 0.0738 (9) | −0.0129 (5) | −0.0009 (6) | 0.0116 (6) |
O1 | 0.0380 (17) | 0.0359 (17) | 0.0309 (15) | 0.0064 (13) | 0.0044 (13) | −0.0096 (13) |
O2 | 0.0364 (17) | 0.0268 (15) | 0.0370 (15) | −0.0058 (13) | 0.0032 (13) | 0.0050 (13) |
O3 | 0.0297 (15) | 0.0200 (14) | 0.0302 (14) | 0.0016 (11) | 0.0058 (11) | −0.0004 (11) |
C1 | 0.053 (3) | 0.040 (3) | 0.033 (2) | 0.007 (2) | 0.005 (2) | −0.014 (2) |
C2 | 0.062 (4) | 0.076 (4) | 0.060 (3) | −0.013 (3) | 0.011 (3) | −0.035 (3) |
C3 | 0.103 (5) | 0.098 (5) | 0.058 (3) | −0.031 (4) | 0.042 (4) | −0.035 (3) |
C4 | 0.049 (3) | 0.031 (2) | 0.042 (3) | −0.003 (2) | 0.003 (2) | 0.014 (2) |
C5 | 0.137 (7) | 0.088 (5) | 0.102 (5) | 0.023 (5) | 0.078 (5) | 0.041 (4) |
C6 | 0.079 (5) | 0.064 (4) | 0.093 (5) | 0.004 (3) | −0.017 (4) | 0.042 (4) |
Sn1—O1 | 2.099 (3) | C2—H2A | 0.9600 |
Sn1—O2 | 2.084 (3) | C2—H2B | 0.9600 |
Sn1—O3 | 2.109 (2) | C2—H2C | 0.9600 |
Sn1—O3i | 2.081 (3) | C3—H3A | 0.9600 |
Sn1—Cl1 | 2.3808 (12) | C3—H3B | 0.9600 |
Sn1—Cl2 | 2.3604 (11) | C3—H3C | 0.9600 |
Sn1—Sn1i | 3.2382 (5) | C4—C5 | 1.473 (7) |
Sn2—O1i | 2.165 (3) | C4—C6 | 1.498 (7) |
Sn2—O2 | 2.168 (3) | C4—H4 | 0.9800 |
Sn2—O3 | 2.105 (2) | C5—H5A | 0.9600 |
O1—C1 | 1.456 (5) | C5—H5B | 0.9600 |
O2—C4 | 1.453 (5) | C5—H5C | 0.9600 |
C1—C3 | 1.494 (7) | C6—H6A | 0.9600 |
C1—C2 | 1.508 (7) | C6—H6B | 0.9600 |
C1—H1 | 0.9800 | C6—H6C | 0.9600 |
O3i—Sn1—O2 | 96.97 (10) | C3—C1—C2 | 113.2 (4) |
O3i—Sn1—O1 | 76.99 (10) | O1—C1—H1 | 108.3 |
O2—Sn1—O1 | 173.28 (10) | C3—C1—H1 | 108.3 |
O3i—Sn1—O3 | 78.77 (11) | C2—C1—H1 | 108.3 |
O2—Sn1—O3 | 76.86 (10) | C1—C2—H2A | 109.5 |
O1—Sn1—O3 | 98.87 (10) | C1—C2—H2B | 109.5 |
O3i—Sn1—Cl2 | 97.63 (8) | H2A—C2—H2B | 109.5 |
O2—Sn1—Cl2 | 92.84 (8) | C1—C2—H2C | 109.5 |
O1—Sn1—Cl2 | 90.89 (9) | H2A—C2—H2C | 109.5 |
O3—Sn1—Cl2 | 168.46 (7) | H2B—C2—H2C | 109.5 |
O3i—Sn1—Cl1 | 164.20 (8) | C1—C3—H3A | 109.5 |
O2—Sn1—Cl1 | 91.38 (9) | C1—C3—H3B | 109.5 |
O1—Sn1—Cl1 | 93.83 (8) | H3A—C3—H3B | 109.5 |
O3—Sn1—Cl1 | 90.17 (8) | C1—C3—H3C | 109.5 |
Cl2—Sn1—Cl1 | 95.32 (5) | H3A—C3—H3C | 109.5 |
O3i—Sn1—Sn1i | 39.70 (7) | H3B—C3—H3C | 109.5 |
O2—Sn1—Sn1i | 85.98 (7) | O2—C4—C5 | 110.1 (4) |
O1—Sn1—Sn1i | 87.47 (7) | O2—C4—C6 | 108.6 (4) |
O3—Sn1—Sn1i | 39.06 (7) | C5—C4—C6 | 112.3 (5) |
Cl2—Sn1—Sn1i | 136.34 (4) | O2—C4—H4 | 108.6 |
Cl1—Sn1—Sn1i | 128.33 (3) | C5—C4—H4 | 108.6 |
O3—Sn2—O1i | 75.04 (10) | C6—C4—H4 | 108.6 |
O3—Sn2—O2 | 75.14 (10) | C4—C5—H5A | 109.5 |
O1i—Sn2—O2 | 87.61 (11) | C4—C5—H5B | 109.5 |
C1—O1—Sn1 | 125.2 (2) | H5A—C5—H5B | 109.5 |
C1—O1—Sn2i | 127.4 (3) | C4—C5—H5C | 109.5 |
Sn1—O1—Sn2i | 102.33 (11) | H5A—C5—H5C | 109.5 |
C4—O2—Sn1 | 126.8 (2) | H5B—C5—H5C | 109.5 |
C4—O2—Sn2 | 127.8 (2) | C4—C6—H6A | 109.5 |
Sn1—O2—Sn2 | 102.71 (11) | C4—C6—H6B | 109.5 |
Sn1i—O3—Sn2 | 105.05 (11) | H6A—C6—H6B | 109.5 |
Sn1i—O3—Sn1 | 101.23 (11) | C4—C6—H6C | 109.5 |
Sn2—O3—Sn1 | 104.02 (10) | H6A—C6—H6C | 109.5 |
O1—C1—C3 | 109.0 (4) | H6B—C6—H6C | 109.5 |
O1—C1—C2 | 109.7 (4) | ||
O3i—Sn1—O1—C1 | 162.0 (3) | O1i—Sn2—O3—Sn1i | −5.91 (11) |
O3—Sn1—O1—C1 | −121.8 (3) | O2—Sn2—O3—Sn1i | −97.42 (13) |
Cl2—Sn1—O1—C1 | 64.4 (3) | O1i—Sn2—O3—Sn1 | 100.06 (12) |
Cl1—Sn1—O1—C1 | −31.0 (3) | O2—Sn2—O3—Sn1 | 8.55 (10) |
Sn1i—Sn1—O1—C1 | −159.3 (3) | O3i—Sn1—O3—Sn1i | 0.0 |
O3i—Sn1—O1—Sn2i | 5.81 (11) | O2—Sn1—O3—Sn1i | 99.98 (12) |
O3—Sn1—O1—Sn2i | 82.02 (12) | O1—Sn1—O3—Sn1i | −74.73 (11) |
Cl2—Sn1—O1—Sn2i | −91.81 (10) | Cl2—Sn1—O3—Sn1i | 72.8 (4) |
Cl1—Sn1—O1—Sn2i | 172.79 (10) | Cl1—Sn1—O3—Sn1i | −168.64 (9) |
Sn1i—Sn1—O1—Sn2i | 44.54 (9) | O3i—Sn1—O3—Sn2 | −108.82 (14) |
O3i—Sn1—O2—C4 | −112.5 (3) | O2—Sn1—O3—Sn2 | −8.83 (11) |
O3—Sn1—O2—C4 | 170.8 (3) | O1—Sn1—O3—Sn2 | 176.45 (11) |
Cl2—Sn1—O2—C4 | −14.4 (3) | Cl2—Sn1—O3—Sn2 | −36.0 (4) |
Cl1—Sn1—O2—C4 | 81.0 (3) | Cl1—Sn1—O3—Sn2 | 82.55 (10) |
Sn1i—Sn1—O2—C4 | −150.7 (3) | Sn1i—Sn1—O3—Sn2 | −108.82 (14) |
O3i—Sn1—O2—Sn2 | 85.22 (12) | Sn1—O1—C1—C3 | 108.1 (4) |
O3—Sn1—O2—Sn2 | 8.53 (10) | Sn2i—O1—C1—C3 | −101.7 (4) |
Cl2—Sn1—O2—Sn2 | −176.73 (10) | Sn1—O1—C1—C2 | −127.4 (4) |
Cl1—Sn1—O2—Sn2 | −81.33 (10) | Sn2i—O1—C1—C2 | 22.8 (5) |
Sn1i—Sn1—O2—Sn2 | 47.00 (9) | Sn1—O2—C4—C5 | 102.9 (5) |
O3—Sn2—O2—C4 | −170.6 (3) | Sn2—O2—C4—C5 | −99.2 (5) |
O1i—Sn2—O2—C4 | 114.2 (3) | Sn1—O2—C4—C6 | −133.8 (4) |
O3—Sn2—O2—Sn1 | −8.61 (10) | Sn2—O2—C4—C6 | 24.1 (5) |
O1i—Sn2—O2—Sn1 | −83.76 (12) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Sn1—O1 | 2.099 (3) | Sn1—Cl2 | 2.3604 (11) |
Sn1—O2 | 2.084 (3) | Sn2—O1i | 2.165 (3) |
Sn1—O3 | 2.109 (2) | Sn2—O2 | 2.168 (3) |
Sn1—O3i | 2.081 (3) | Sn2—O3 | 2.105 (2) |
Sn1—Cl1 | 2.3808 (12) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241–2009).
References
Boyle, T. J., Alam, T. M., Rodriguez, M. A. & Zechmann, C. A. (2002). Inorg. Chem. 41, 2574–2582. Web of Science CSD CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eslava, S., McPartlin, M., Thomson, R. I., Rawson, J. M. & Wright, D. S. (2010). Inorg. Chem. 49, 11532–11540. Web of Science CSD CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fric, H. & Schubert, U. (2008). J. Sol-Gel Sci. Technol. 48, 2–5. Web of Science CSD CrossRef CAS Google Scholar
Harrison, P. G., Haylett, B. J. & King, T. J. (1978). Chem. Commun. pp. 112–113. CrossRef Web of Science Google Scholar
Mijatovic, I., Kickelbick, G. & Schubert, U. (2001). Eur. J. Inorg. Chem. pp. 1933–1935. CrossRef Google Scholar
Mokal, V. B., Jain, V. K. & Tiekink, E. R. T. (1994). J. Organomet. Chem. 471, 53–61. CrossRef CAS Web of Science Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vatsa, C., Jain, V. K., Das, T. K. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 421, 21–28. CAS Google Scholar
Verdenelli, M., Parola, S., Hubert-Pfalzgraf, L. G. & Lecocq, S. (2000). Polyhedron, 19, 2069–2075. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compound with the same symmetry and similar coordination environment as in the title compound was studied in the work of Boyle et al. (2002). However it has tin atoms with equal oxidation state, in opposite with our compound, which has different oxidation states and coordination environments of metal atoms. The same situation persists with other compounds of tin and titanium with similar coordination geometry and identical oxidation states of the metal atoms (Eslava et al., 2010; Fric & Schubert, 2008; Harrison et al., 1978; Mijatovic et al., 2001; Mokal et al., 1994; Vatsa et al., 1991; Verdenelli et al., 2000). The title compound has two types of tin atoms. The SnII atom is three-coordinated and has a trigonal-pyramidal environment. The SnIV atom is hexa-coordinated and has an octahedral environment. Literature search did not provide any information about similar compounds, which have simultaneously two tin atoms with different oxidation states. In the title compound this is possible due to two chloride atoms for each SnIV atom.