metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m71-m72

[μ-3,3′-Diiso­propyl-1,1′-(propane-1,3-di­yl)bis­­(1,3-diazinan-2-yl­­idene)]bis­­[bromido­(η4-cyclo­octa-1,5-diene)rhodium(I)]

aInstitut für Polymerchemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany, and bInstitut für Allgemeine Anorganische und Theoretische Chemie, Universität Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
*Correspondence e-mail: michael.buchmeiser@ipoc.uni-stuttgart.de

(Received 19 December 2013; accepted 16 January 2014; online 31 January 2014)

The title compound, [Rh2Br2(C8H12)2(C17H32N4)], was obtained by the reaction of 3,3′-(propane-1,3-di­yl)bis­(1-isopropyl-3,4,5,6-tetra­hydro­pyrimidin-1-ium) bromide and [{Rh(cod)Cl}2] (cod is cyclo­octa-1,5-diene) in tetra­hydro­furan. The two RhI atoms each have a distorted square-planar coordination environment, defined by a bidentate cod ligand, a bromide anion and one C atom of the bridging bidentate bis-N-heterocyclcic carbene (NHC) ligand. The average Rh—CNHC distance is 2.038 (7) Å, suggesting that the bond has a major σ contribution with very little back donation. The distances between the cod ligands and the RhI atoms vary between 2.104 (4) and 2.210 (4) Å.

Related literature

For general background on the development of N-heterocyclic carbenes (NHC) as replacements for phosphines in the area of organometallic catalysis and Rh–NHC-based complexes, see: Herrmann et al. (1996[Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1996). Chem. Eur. J. 2, 772-780.], 1997[Herrmann, W. A., Fischer, J., Köcher, C. & Artus, G. R. J. (1997). J. Organomet. Chem. 530, 259-262.]); Mayr et al. (2004[Mayr, M., Wurst, K., Ongania, K. & Buchmeiser, M. R. (2004). Chem. Eur. J. 10, 1256-1266.]); Díez-González et al. (2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]). For examples of the application of RhI complexes as catalysts in hydro­formyl­ation reactions, see: Evans et al. (1968[Evans, D., Osborn, J. A. & Wilkinson, G. J. (1968). J. Chem. Soc. A, pp. 3133-3142.]); Reindl et al. (2013[Reindl, S. A., Pöthig, A., Drees, M., Bechlars, B., Herdtweck, E., Herrmann, W. A. & Kühn, F. E. (2013). Organometallics, 32, 4082-4091.]). For the synthesis of homobimetallic RhI–NHC complexes and their application as catalysts in hydro­silylations, see: Huckaba et al. (2013[Huckaba, A. J., Hollis, T. K. & Reilly, S. W. (2013). Organometallics, 32, 6248-6256.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh2Br2(C8H12)2(C17H32N4)]

  • Mr = 874.46

  • Orthorhombic, P b c a

  • a = 16.4075 (2) Å

  • b = 15.7975 (3) Å

  • c = 27.1065 (4) Å

  • V = 7025.94 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 233 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.432, Tmax = 0.755

  • 57878 measured reflections

  • 6186 independent reflections

  • 5045 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.078

  • S = 1.06

  • 6186 reflections

  • 402 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The hydroformylation reaction is one of the most important catalytic reactions at an industrial level that can be employed for the conversion of alkenes, carbon monoxide and hydrogen into aldehydes and alcohols. Most of the hydroformylation catalysts so far were based on rhodium and phosphine ligands (e.g., the Wilkinson-catalyst [RhCl(PPh3)3] (Evans et al., 1968). However, phosphine ligands have some common disadvantages as they are easily oxidized by molecular oxygen in solution. Furthermore, phosphines and CO show similar binding constants to rhodium. Due to the fact that CO-pressures applied during hydroformylation are quite high, an excess of phosphine is required to generate a sterically demanding environment around the active rhodium-center, a prerequisite for high n/iso-ratios. N-heterocyclic carbenes (NHCs), owing to their strong σ donation and the excellent stability, have been widely applied as an ideal replacement for phosphines in the area of organometallic catalysis (Díez-González et al., 2009). Within that context, homobimetallic rhodium(I) NHC complexes have been reported to represent versatile catalysts for the hydrosilylation of e.g. aldehydes, ketones, alkenes, nitriles, isocyanates and tertiary amides. (Huckaba et al., 2013). The title compound was prepared by the reaction of 3,3'- (propane-1,3-diyl)bis(1-isopropyl-3,4,5,6-tetrahydropyrimidin-1-ium) bromide and [{Rh(cod)Cl}2] in anhydrous THF. It crystallizes in the space group Pbca (No.61). The structure exhibits a typical pesudo-square planar ligand environment for the Rh(I) centers which are coordinated by a bidentate cycloocta-1,5-diene (cod) ligand, one carbon atom of the bridging bis-N-heterocyclic carbene ligand and one bromide atom. The molecular structure is closely similar to that of the recently reported compounds bromo(η4-1,5-cyclooctadiene){1,3-bis(2-propyl)-3,4,5,6- tetrahydropyrimidin- 2-ylidene}rhodium and bromo(η4-1,5-cyclooctadiene){1,3-dimesityl-3,4,5,6- tetrahydropyrimidin- 2-ylidene}rhodium (Mayr et al., 2004).

Related literature top

For general background on the development of N-heterocyclic carbenes (NHC) as replacements for phosphines in the area of organometallic catalysis and Rh–NHC-based complexes, see: Herrmann et al. (1996, 1997); Mayr et al. (2004); Díez-González et al. (2009). For examples of the application of RhI complexes as catalysts in hydroformylation reactions, see: Evans et al. (1968); Reindl et al. (2013). For the synthesis of homobimetallic rhodium(I) NHC complexes and their application as catalysts in hydrosilylations, see: Huckaba et al. (2013).

Experimental top

[{Rh(cod)Cl}2] (200 mg, 0.47 mmol) was dissolved in anhydrous THF (5 ml), and lithium tert-butoxide (91 mg, 1.14 mmol) was added under vigorous stirring. The mixture was stirred for another 30 min at room temperature, then 3,3'-(propane-1,3-diyl)bis(1-isopropyl-3,4,5,6-tetrahydropyrimidin-1-ium)bromide (220 mg, 0.49 mmol) was added. The reaction mixture was stirred overnight at 65°C, after this time TLC showed no further conversion. The solvent was removed in vacuo and the product was purified by column chromatography (silica gel) using dichloromethane:ethanol (250:4) as the mobile phase. The product eluted as a yellow band in the second fraction. The product fractions were pooled and evaporated to dryness to yield a yellow solid (230 mg, 56%). Yellow crystals suitable for X-ray analysis were obtained by layering pentane over a dilute solution of the title compound in CH2Cl2 at -30°C.

Refinement top

All hydrogen positions could be localised, but were only refined regularly with bond restraints of 93 pm at the double bonds of cyclooctadiene (C1, C2, C5, C6, C9, C10, C13 and C14). All other hydrogens were calculated by geometrical methods and refined as a riding model with temperature factors Ueq 1.2 or 1.5 (methyl groups) times higher than their linked carbon atoms.

Structure description top

The hydroformylation reaction is one of the most important catalytic reactions at an industrial level that can be employed for the conversion of alkenes, carbon monoxide and hydrogen into aldehydes and alcohols. Most of the hydroformylation catalysts so far were based on rhodium and phosphine ligands (e.g., the Wilkinson-catalyst [RhCl(PPh3)3] (Evans et al., 1968). However, phosphine ligands have some common disadvantages as they are easily oxidized by molecular oxygen in solution. Furthermore, phosphines and CO show similar binding constants to rhodium. Due to the fact that CO-pressures applied during hydroformylation are quite high, an excess of phosphine is required to generate a sterically demanding environment around the active rhodium-center, a prerequisite for high n/iso-ratios. N-heterocyclic carbenes (NHCs), owing to their strong σ donation and the excellent stability, have been widely applied as an ideal replacement for phosphines in the area of organometallic catalysis (Díez-González et al., 2009). Within that context, homobimetallic rhodium(I) NHC complexes have been reported to represent versatile catalysts for the hydrosilylation of e.g. aldehydes, ketones, alkenes, nitriles, isocyanates and tertiary amides. (Huckaba et al., 2013). The title compound was prepared by the reaction of 3,3'- (propane-1,3-diyl)bis(1-isopropyl-3,4,5,6-tetrahydropyrimidin-1-ium) bromide and [{Rh(cod)Cl}2] in anhydrous THF. It crystallizes in the space group Pbca (No.61). The structure exhibits a typical pesudo-square planar ligand environment for the Rh(I) centers which are coordinated by a bidentate cycloocta-1,5-diene (cod) ligand, one carbon atom of the bridging bis-N-heterocyclic carbene ligand and one bromide atom. The molecular structure is closely similar to that of the recently reported compounds bromo(η4-1,5-cyclooctadiene){1,3-bis(2-propyl)-3,4,5,6- tetrahydropyrimidin- 2-ylidene}rhodium and bromo(η4-1,5-cyclooctadiene){1,3-dimesityl-3,4,5,6- tetrahydropyrimidin- 2-ylidene}rhodium (Mayr et al., 2004).

For general background on the development of N-heterocyclic carbenes (NHC) as replacements for phosphines in the area of organometallic catalysis and Rh–NHC-based complexes, see: Herrmann et al. (1996, 1997); Mayr et al. (2004); Díez-González et al. (2009). For examples of the application of RhI complexes as catalysts in hydroformylation reactions, see: Evans et al. (1968); Reindl et al. (2013). For the synthesis of homobimetallic rhodium(I) NHC complexes and their application as catalysts in hydrosilylations, see: Huckaba et al. (2013).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule with displacement ellipsoids drawn at the 30% probability level.
[µ-3,3'-Diisopropyl-1,1'-(propane-1,3-diyl)bis(1,3-diazinan-2-ylidene)]bis[bromido(η4-cycloocta-1,5-diene)rhodium(I)] top
Crystal data top
[Rh2Br2(C8H12)2(C17H32N4)]F(000) = 3536
Mr = 874.46Dx = 1.653 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 54150 reflections
a = 16.4075 (2) Åθ = 1.0–25.0°
b = 15.7975 (3) ŵ = 3.24 mm1
c = 27.1065 (4) ÅT = 233 K
V = 7025.94 (19) Å3Prism, yellow
Z = 80.2 × 0.1 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
6186 independent reflections
Radiation source: fine-focus sealed tube5045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 9.1 pixels mm-1θmax = 25.0°, θmin = 1.9°
phi and ω scansh = 1919
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1818
Tmin = 0.432, Tmax = 0.755l = 3232
57878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0254P)2 + 11.9446P]
where P = (Fo2 + 2Fc2)/3
6186 reflections(Δ/σ)max = 0.002
402 parametersΔρmax = 0.95 e Å3
8 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Rh2Br2(C8H12)2(C17H32N4)]V = 7025.94 (19) Å3
Mr = 874.46Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.4075 (2) ŵ = 3.24 mm1
b = 15.7975 (3) ÅT = 233 K
c = 27.1065 (4) Å0.2 × 0.1 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
6186 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
5045 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 0.755Rint = 0.083
57878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0338 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0254P)2 + 11.9446P]
where P = (Fo2 + 2Fc2)/3
6186 reflectionsΔρmax = 0.95 e Å3
402 parametersΔρmin = 0.51 e Å3
Special details top

Experimental. Absorption correction: multi-scan from symmetry-related measurements

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Hydrogen atoms at C=C bonds of COD were refined with bond restraints (d=0.93 angs.) for C1, C2, C5, C6, C9, C10, C13 and C14

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.311925 (16)0.057582 (18)0.871181 (10)0.02707 (9)
Rh20.322674 (16)0.166937 (18)0.624003 (10)0.02634 (9)
Br10.21591 (3)0.18233 (3)0.873742 (16)0.04127 (12)
Br20.23333 (3)0.03852 (3)0.613041 (18)0.04847 (13)
N10.17169 (18)0.06234 (19)0.87524 (11)0.0312 (7)
N40.17595 (18)0.2779 (2)0.61382 (11)0.0316 (7)
N20.20658 (19)0.0214 (2)0.79627 (11)0.0340 (8)
N30.20629 (18)0.2398 (2)0.69400 (11)0.0319 (7)
C10.3988 (3)0.0285 (3)0.84394 (18)0.0462 (11)
H10.376 (2)0.064 (2)0.8205 (12)0.050 (13)*
C20.3797 (3)0.0498 (3)0.89246 (18)0.0455 (11)
H20.3421 (19)0.090 (2)0.9001 (15)0.041 (12)*
C30.4344 (4)0.0301 (4)0.9360 (2)0.0796 (18)
H3A0.42010.06900.96280.096*
H3B0.49070.04260.92640.096*
C40.4320 (4)0.0559 (4)0.9555 (2)0.0792 (18)
H4A0.48760.07290.96410.095*
H4B0.40000.05560.98610.095*
C50.3968 (3)0.1214 (3)0.92170 (19)0.0485 (12)
H50.361 (2)0.158 (2)0.9372 (15)0.059 (15)*
C60.4213 (3)0.1385 (3)0.8752 (2)0.0508 (12)
H60.401 (2)0.1895 (15)0.8629 (12)0.025 (9)*
C70.4924 (3)0.0970 (4)0.8492 (3)0.0798 (18)
H7A0.51150.13530.82310.096*
H7B0.53700.09050.87290.096*
C80.4758 (3)0.0144 (4)0.8270 (2)0.0811 (18)
H8A0.52180.02320.83420.097*
H8B0.47300.02140.79110.097*
C90.3832 (3)0.2798 (3)0.60524 (17)0.0420 (10)
H90.3462 (19)0.3251 (18)0.6024 (14)0.034 (11)*
C100.4035 (2)0.2582 (3)0.65399 (18)0.0454 (11)
H100.376 (2)0.283 (2)0.6803 (11)0.049 (13)*
C110.4850 (3)0.2212 (4)0.66950 (19)0.0618 (14)
H11A0.52750.24350.64770.074*
H11B0.49730.24010.70310.074*
C120.4878 (3)0.1255 (4)0.66804 (18)0.0569 (13)
H12A0.54380.10760.66080.068*
H12B0.47340.10350.70070.068*
C130.4314 (2)0.0870 (3)0.63017 (16)0.0395 (10)
H130.409 (2)0.0370 (18)0.6407 (15)0.053 (13)*
C140.4256 (2)0.1116 (3)0.58242 (16)0.0385 (10)
H140.399 (2)0.076 (2)0.5604 (11)0.035 (11)*
C150.4765 (3)0.1803 (3)0.55893 (17)0.0521 (12)
H15A0.48770.16500.52460.063*
H15B0.52890.18400.57620.063*
C160.4352 (3)0.2658 (3)0.56028 (19)0.0592 (13)
H16A0.47700.31000.55890.071*
H16B0.40100.27160.53080.071*
C170.2195 (2)0.0158 (2)0.84536 (13)0.0268 (8)
C180.1040 (3)0.1135 (3)0.85686 (16)0.0452 (11)
H18A0.05460.07870.85500.054*
H18B0.09360.16040.87960.054*
C190.1239 (3)0.1476 (3)0.80667 (17)0.0488 (11)
H19A0.17020.18670.80890.059*
H19B0.07700.17880.79350.059*
C200.1447 (3)0.0753 (3)0.77315 (16)0.0486 (11)
H20A0.16540.09720.74170.058*
H20B0.09560.04190.76640.058*
C210.2480 (2)0.0378 (3)0.76332 (14)0.0395 (10)
H21A0.27050.00630.73530.047*
H21B0.29370.06370.78100.047*
C220.1927 (2)0.1073 (3)0.74396 (14)0.0373 (9)
H22A0.15450.12510.76970.045*
H22B0.16130.08660.71570.045*
C230.2462 (2)0.1819 (3)0.72838 (13)0.0355 (9)
H23A0.26230.21360.75790.043*
H23B0.29590.16000.71300.043*
C240.1405 (3)0.2910 (3)0.71502 (15)0.0438 (10)
H24A0.15730.31330.74720.053*
H24B0.09190.25600.71980.053*
C250.1214 (3)0.3630 (3)0.68061 (17)0.0451 (11)
H25A0.07300.39350.69230.054*
H25B0.16720.40280.67970.054*
C260.1061 (3)0.3280 (3)0.63002 (16)0.0447 (11)
H26A0.05720.29240.63050.054*
H26B0.09680.37460.60680.054*
C270.2226 (2)0.2346 (2)0.64542 (13)0.0264 (8)
C280.1766 (2)0.0514 (2)0.92925 (13)0.0331 (9)
H280.22340.01360.93600.040*
C290.1865 (2)0.2654 (3)0.55998 (14)0.0368 (9)
H290.23680.23170.55540.044*
C2810.1927 (3)0.1345 (3)0.95619 (17)0.0528 (12)
H28A0.24190.16030.94330.079*
H28B0.14700.17250.95120.079*
H28C0.19930.12350.99120.079*
C2820.1006 (3)0.0072 (3)0.94842 (16)0.0490 (11)
H28D0.09250.04520.93050.073*
H28E0.10720.00510.98330.073*
H28F0.05370.04370.94380.073*
C2910.1980 (3)0.3475 (3)0.53222 (18)0.0625 (14)
H29A0.24370.37830.54620.094*
H29B0.14900.38140.53490.094*
H29C0.20880.33530.49780.094*
C2920.1166 (3)0.2136 (3)0.53902 (17)0.0563 (13)
H29D0.11120.16140.55760.084*
H29E0.12760.20060.50470.084*
H29F0.06640.24580.54140.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.02475 (15)0.02505 (17)0.03142 (17)0.00038 (12)0.00464 (12)0.00325 (12)
Rh20.02445 (15)0.02526 (17)0.02930 (16)0.00086 (12)0.00006 (11)0.00182 (12)
Br10.0385 (2)0.0333 (2)0.0520 (3)0.00655 (18)0.00447 (18)0.00114 (19)
Br20.0444 (3)0.0330 (2)0.0680 (3)0.00669 (19)0.0033 (2)0.0044 (2)
N10.0352 (17)0.0279 (17)0.0307 (17)0.0085 (14)0.0037 (13)0.0025 (14)
N40.0290 (16)0.0339 (18)0.0320 (18)0.0062 (14)0.0016 (13)0.0006 (14)
N20.0377 (18)0.0363 (19)0.0280 (18)0.0069 (15)0.0054 (13)0.0036 (14)
N30.0322 (17)0.0363 (19)0.0272 (18)0.0076 (14)0.0031 (13)0.0045 (14)
C10.036 (2)0.041 (3)0.062 (3)0.011 (2)0.001 (2)0.009 (2)
C20.040 (2)0.031 (2)0.065 (3)0.007 (2)0.017 (2)0.008 (2)
C30.095 (4)0.066 (4)0.077 (4)0.015 (3)0.051 (3)0.008 (3)
C40.104 (5)0.061 (4)0.073 (4)0.003 (3)0.051 (3)0.003 (3)
C50.047 (3)0.038 (3)0.061 (3)0.004 (2)0.025 (2)0.005 (2)
C60.035 (2)0.037 (3)0.081 (4)0.009 (2)0.007 (2)0.008 (2)
C70.047 (3)0.075 (4)0.118 (5)0.017 (3)0.024 (3)0.000 (4)
C80.048 (3)0.090 (5)0.105 (5)0.000 (3)0.026 (3)0.009 (4)
C90.037 (2)0.028 (2)0.061 (3)0.0046 (19)0.007 (2)0.001 (2)
C100.031 (2)0.051 (3)0.054 (3)0.008 (2)0.001 (2)0.017 (2)
C110.035 (2)0.085 (4)0.066 (3)0.003 (3)0.013 (2)0.016 (3)
C120.034 (2)0.084 (4)0.052 (3)0.012 (2)0.005 (2)0.014 (3)
C130.027 (2)0.042 (3)0.049 (3)0.0093 (18)0.0050 (18)0.011 (2)
C140.034 (2)0.038 (2)0.043 (3)0.0072 (19)0.0063 (18)0.004 (2)
C150.048 (3)0.063 (3)0.046 (3)0.002 (2)0.016 (2)0.009 (2)
C160.057 (3)0.052 (3)0.069 (3)0.011 (3)0.022 (2)0.017 (3)
C170.0278 (19)0.0232 (19)0.029 (2)0.0052 (16)0.0032 (15)0.0003 (15)
C180.044 (2)0.042 (3)0.049 (3)0.017 (2)0.002 (2)0.002 (2)
C190.059 (3)0.038 (3)0.050 (3)0.011 (2)0.008 (2)0.008 (2)
C200.060 (3)0.048 (3)0.038 (2)0.010 (2)0.016 (2)0.003 (2)
C210.039 (2)0.051 (3)0.029 (2)0.002 (2)0.0016 (17)0.0095 (19)
C220.034 (2)0.047 (3)0.031 (2)0.0024 (18)0.0012 (16)0.0110 (19)
C230.034 (2)0.045 (2)0.027 (2)0.0012 (18)0.0025 (16)0.0057 (18)
C240.046 (2)0.046 (3)0.040 (2)0.010 (2)0.0085 (19)0.003 (2)
C250.045 (2)0.035 (2)0.054 (3)0.013 (2)0.009 (2)0.003 (2)
C260.039 (2)0.043 (3)0.052 (3)0.017 (2)0.0019 (19)0.002 (2)
C270.0277 (18)0.0199 (18)0.032 (2)0.0014 (15)0.0031 (15)0.0058 (15)
C280.040 (2)0.031 (2)0.028 (2)0.0028 (17)0.0012 (16)0.0057 (17)
C290.040 (2)0.042 (2)0.029 (2)0.0047 (19)0.0057 (17)0.0047 (18)
C2810.070 (3)0.044 (3)0.045 (3)0.008 (2)0.005 (2)0.015 (2)
C2820.051 (3)0.048 (3)0.048 (3)0.008 (2)0.008 (2)0.003 (2)
C2910.095 (4)0.051 (3)0.041 (3)0.004 (3)0.004 (2)0.014 (2)
C2920.054 (3)0.064 (3)0.050 (3)0.006 (2)0.017 (2)0.002 (2)
Geometric parameters (Å, º) top
Rh1—C172.033 (4)C12—H12A0.9800
Rh1—C12.104 (4)C12—H12B0.9800
Rh1—C22.108 (4)C13—C141.355 (6)
Rh1—C52.198 (4)C13—H130.918 (19)
Rh1—C62.207 (4)C14—C151.510 (6)
Rh1—Br12.5239 (5)C14—H140.935 (18)
Rh2—C272.043 (3)C15—C161.512 (7)
Rh2—C92.103 (4)C15—H15A0.9800
Rh2—C102.121 (4)C15—H15B0.9800
Rh2—C132.191 (4)C16—H16A0.9800
Rh2—C142.210 (4)C16—H16B0.9800
Rh2—Br22.5205 (5)C18—C191.499 (6)
N1—C171.346 (5)C18—H18A0.9800
N1—C181.461 (5)C18—H18B0.9800
N1—C281.476 (5)C19—C201.499 (6)
N4—C271.338 (5)C19—H19A0.9800
N4—C261.460 (5)C19—H19B0.9800
N4—C291.483 (5)C20—H20A0.9800
N2—C171.350 (5)C20—H20B0.9800
N2—C211.461 (5)C21—C221.518 (5)
N2—C201.466 (5)C21—H21A0.9800
N3—C271.346 (5)C21—H21B0.9800
N3—C231.460 (5)C22—C231.529 (6)
N3—C241.465 (5)C22—H22A0.9800
C1—C21.393 (7)C22—H22B0.9800
C1—C81.505 (7)C23—H23A0.9800
C1—H10.927 (19)C23—H23B0.9800
C2—C31.515 (6)C24—C251.504 (6)
C2—H20.910 (19)C24—H24A0.9800
C3—C41.459 (8)C24—H24B0.9800
C3—H3A0.9800C25—C261.500 (6)
C3—H3B0.9800C25—H25A0.9800
C4—C51.498 (7)C25—H25B0.9800
C4—H4A0.9800C26—H26A0.9800
C4—H4B0.9800C26—H26B0.9800
C5—C61.351 (7)C28—C2821.520 (6)
C5—H50.928 (19)C28—C2811.525 (6)
C6—C71.513 (7)C28—H280.9900
C6—H60.930 (18)C29—C2911.511 (6)
C7—C81.463 (8)C29—C2921.519 (6)
C7—H7A0.9800C29—H290.9900
C7—H7B0.9800C281—H28A0.9700
C8—H8A0.9800C281—H28B0.9700
C8—H8B0.9800C281—H28C0.9700
C9—C101.405 (6)C282—H28D0.9700
C9—C161.504 (6)C282—H28E0.9700
C9—H90.941 (18)C282—H28F0.9700
C10—C111.519 (6)C291—H29A0.9700
C10—H100.932 (19)C291—H29B0.9700
C11—C121.513 (8)C291—H29C0.9700
C11—H11A0.9800C292—H29D0.9700
C11—H11B0.9800C292—H29E0.9700
C12—C131.510 (7)C292—H29F0.9700
C17—Rh1—C190.89 (16)C14—C13—H13121 (3)
C17—Rh1—C291.66 (15)C12—C13—H13112 (3)
C1—Rh1—C238.61 (18)Rh2—C13—H13101 (3)
C17—Rh1—C5161.56 (17)C13—C14—C15124.7 (4)
C1—Rh1—C594.95 (19)C13—C14—Rh271.3 (2)
C2—Rh1—C582.20 (17)C15—C14—Rh2110.7 (3)
C17—Rh1—C6162.59 (17)C13—C14—H14118 (2)
C1—Rh1—C680.86 (18)C15—C14—H14115 (2)
C2—Rh1—C691.34 (18)Rh2—C14—H14102 (2)
C5—Rh1—C635.71 (18)C14—C15—C16112.5 (3)
C17—Rh1—Br189.38 (10)C14—C15—H15A109.1
C1—Rh1—Br1159.60 (13)C16—C15—H15A109.1
C2—Rh1—Br1161.76 (14)C14—C15—H15B109.1
C5—Rh1—Br191.15 (12)C16—C15—H15B109.1
C6—Rh1—Br193.08 (13)H15A—C15—H15B107.8
C27—Rh2—C990.25 (15)C9—C16—C15114.0 (4)
C27—Rh2—C1092.15 (16)C9—C16—H16A108.8
C9—Rh2—C1038.84 (18)C15—C16—H16A108.8
C27—Rh2—C13158.99 (15)C9—C16—H16B108.8
C9—Rh2—C1397.05 (16)C15—C16—H16B108.8
C10—Rh2—C1381.59 (17)H16A—C16—H16B107.7
C27—Rh2—C14164.93 (15)N1—C17—N2117.8 (3)
C9—Rh2—C1481.46 (16)N1—C17—Rh1122.6 (3)
C10—Rh2—C1489.25 (17)N2—C17—Rh1119.6 (3)
C13—Rh2—C1435.85 (15)N1—C18—C19110.0 (3)
C27—Rh2—Br289.27 (10)N1—C18—H18A109.7
C9—Rh2—Br2158.18 (13)C19—C18—H18A109.7
C10—Rh2—Br2162.95 (14)N1—C18—H18B109.7
C13—Rh2—Br291.07 (12)C19—C18—H18B109.7
C14—Rh2—Br293.78 (11)H18A—C18—H18B108.2
C17—N1—C18122.7 (3)C20—C19—C18109.0 (4)
C17—N1—C28120.1 (3)C20—C19—H19A109.9
C18—N1—C28116.4 (3)C18—C19—H19A109.9
C27—N4—C26122.3 (3)C20—C19—H19B109.9
C27—N4—C29119.7 (3)C18—C19—H19B109.9
C26—N4—C29117.4 (3)H19A—C19—H19B108.3
C17—N2—C21119.2 (3)N2—C20—C19109.9 (3)
C17—N2—C20124.6 (3)N2—C20—H20A109.7
C21—N2—C20115.6 (3)C19—C20—H20A109.7
C27—N3—C23119.8 (3)N2—C20—H20B109.7
C27—N3—C24124.1 (3)C19—C20—H20B109.7
C23—N3—C24115.3 (3)H20A—C20—H20B108.2
C2—C1—C8125.8 (5)N2—C21—C22113.4 (3)
C2—C1—Rh170.9 (2)N2—C21—H21A108.9
C8—C1—Rh1112.6 (3)C22—C21—H21A108.9
C2—C1—H1114 (3)N2—C21—H21B108.9
C8—C1—H1114 (3)C22—C21—H21B108.9
Rh1—C1—H1110 (3)H21A—C21—H21B107.7
C1—C2—C3123.7 (5)C21—C22—C23108.1 (3)
C1—C2—Rh170.5 (2)C21—C22—H22A110.1
C3—C2—Rh1111.2 (3)C23—C22—H22A110.1
C1—C2—H2122 (3)C21—C22—H22B110.1
C3—C2—H2112 (3)C23—C22—H22B110.1
Rh1—C2—H2105 (3)H22A—C22—H22B108.4
C4—C3—C2117.2 (4)N3—C23—C22113.7 (3)
C4—C3—H3A108.0N3—C23—H23A108.8
C2—C3—H3A108.0C22—C23—H23A108.8
C4—C3—H3B108.0N3—C23—H23B108.8
C2—C3—H3B108.0C22—C23—H23B108.8
H3A—C3—H3B107.2H23A—C23—H23B107.7
C3—C4—C5115.6 (4)N3—C24—C25109.3 (3)
C3—C4—H4A108.4N3—C24—H24A109.8
C5—C4—H4A108.4C25—C24—H24A109.8
C3—C4—H4B108.4N3—C24—H24B109.8
C5—C4—H4B108.4C25—C24—H24B109.8
H4A—C4—H4B107.4H24A—C24—H24B108.3
C6—C5—C4126.5 (5)C26—C25—C24108.9 (3)
C6—C5—Rh172.5 (3)C26—C25—H25A109.9
C4—C5—Rh1107.9 (3)C24—C25—H25A109.9
C6—C5—H5119 (3)C26—C25—H25B109.9
C4—C5—H5113 (3)C24—C25—H25B109.9
Rh1—C5—H599 (3)H25A—C25—H25B108.3
C5—C6—C7125.3 (5)N4—C26—C25110.1 (3)
C5—C6—Rh171.8 (3)N4—C26—H26A109.6
C7—C6—Rh1110.7 (3)C25—C26—H26A109.6
C5—C6—H6114 (2)N4—C26—H26B109.6
C7—C6—H6119 (2)C25—C26—H26B109.6
Rh1—C6—H6101 (2)H26A—C26—H26B108.2
C8—C7—C6115.8 (4)N4—C27—N3118.8 (3)
C8—C7—H7A108.3N4—C27—Rh2123.1 (3)
C6—C7—H7A108.3N3—C27—Rh2118.0 (2)
C8—C7—H7B108.3N1—C28—C282110.4 (3)
C6—C7—H7B108.3N1—C28—C281112.6 (3)
H7A—C7—H7B107.4C282—C28—C281111.9 (3)
C7—C8—C1115.7 (5)N1—C28—H28107.2
C7—C8—H8A108.4C282—C28—H28107.2
C1—C8—H8A108.4C281—C28—H28107.2
C7—C8—H8B108.4N4—C29—C291113.0 (4)
C1—C8—H8B108.4N4—C29—C292110.6 (3)
H8A—C8—H8B107.4C291—C29—C292111.8 (4)
C10—C9—C16126.3 (4)N4—C29—H29107.0
C10—C9—Rh271.3 (2)C291—C29—H29107.0
C16—C9—Rh2109.8 (3)C292—C29—H29107.0
C10—C9—H9114 (2)C28—C281—H28A109.5
C16—C9—H9114 (2)C28—C281—H28B109.5
Rh2—C9—H9111 (2)H28A—C281—H28B109.5
C9—C10—C11124.2 (4)C28—C281—H28C109.5
C9—C10—Rh269.9 (2)H28A—C281—H28C109.5
C11—C10—Rh2113.2 (3)H28B—C281—H28C109.5
C9—C10—H10120 (3)C28—C282—H28D109.5
C11—C10—H10112 (3)C28—C282—H28E109.5
Rh2—C10—H10106 (3)H28D—C282—H28E109.5
C12—C11—C10113.9 (4)C28—C282—H28F109.5
C12—C11—H11A108.8H28D—C282—H28F109.5
C10—C11—H11A108.8H28E—C282—H28F109.5
C12—C11—H11B108.8C29—C291—H29A109.5
C10—C11—H11B108.8C29—C291—H29B109.5
H11A—C11—H11B107.7H29A—C291—H29B109.5
C13—C12—C11113.6 (4)C29—C291—H29C109.5
C13—C12—H12A108.8H29A—C291—H29C109.5
C11—C12—H12A108.8H29B—C291—H29C109.5
C13—C12—H12B108.8C29—C292—H29D109.5
C11—C12—H12B108.8C29—C292—H29E109.5
H12A—C12—H12B107.7H29D—C292—H29E109.5
C14—C13—C12125.3 (4)C29—C292—H29F109.5
C14—C13—Rh272.8 (2)H29D—C292—H29F109.5
C12—C13—Rh2108.6 (3)H29E—C292—H29F109.5

Experimental details

Crystal data
Chemical formula[Rh2Br2(C8H12)2(C17H32N4)]
Mr874.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)233
a, b, c (Å)16.4075 (2), 15.7975 (3), 27.1065 (4)
V3)7025.94 (19)
Z8
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.2 × 0.1 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.432, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
57878, 6186, 5045
Rint0.083
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.06
No. of reflections6186
No. of parameters402
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0254P)2 + 11.9446P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.95, 0.51

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

Financial support provided by the DFG (BU 2174/8–1) is greatfully acknowledged.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationEvans, D., Osborn, J. A. & Wilkinson, G. J. (1968). J. Chem. Soc. A, pp. 3133–3142.  CrossRef Web of Science Google Scholar
First citationHerrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1996). Chem. Eur. J. 2, 772–780.  CSD CrossRef CAS Web of Science Google Scholar
First citationHerrmann, W. A., Fischer, J., Köcher, C. & Artus, G. R. J. (1997). J. Organomet. Chem. 530, 259–262.  CSD CrossRef CAS Web of Science Google Scholar
First citationHuckaba, A. J., Hollis, T. K. & Reilly, S. W. (2013). Organometallics, 32, 6248–6256.  Web of Science CrossRef CAS Google Scholar
First citationMayr, M., Wurst, K., Ongania, K. & Buchmeiser, M. R. (2004). Chem. Eur. J. 10, 1256–1266.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReindl, S. A., Pöthig, A., Drees, M., Bechlars, B., Herdtweck, E., Herrmann, W. A. & Kühn, F. E. (2013). Organometallics, 32, 4082–4091.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m71-m72
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds