organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butane-1,4-di­ammonium hexa­fluoro­silicate

aDépartement de Physique-Chimie, Laboratoire de Chimie, Centre Régional des Métiers de l'Education et de la Formation, Souissi Rabat, Morocco, bEquipe de Physico-Chimie des Matériaux Inorganiques, Université Ibn Tofail, Faculté des Sciences, BP 133, 14000 Kénitra, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: a_ouasri@yahoo.fr

(Received 24 December 2013; accepted 15 January 2014; online 18 January 2014)

The title compound, [NH3(CH2)4NH3]2+·SiF62−, is a hybrid built from an organic butane-1,4-di­ammonium dication linked to a hexa­fluoro­silicate mineral anion. Both ions posses inversion symmetry. In the anion the Si atom is located on an inversion center, while in the cation the center of inversion is situated at the mid-point of the central —CH2—CH2— bond. The Si atom is surrounded by six F atoms, forming a slightly distorted SiF62− octa­hedron. These octa­hedra are linked to the organic cations through N—H⋯F hydrogen bonds, forming a three-dimensional network.

Related literature

For background to potential physical properties, see: Ouasri et al. (2003[Ouasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Taibi, M. (2003). Phase Transitions, 76, 701-709.]); Elyoubi et al. (2004[Elyoubi, M., Ouasri, A., Jeghnou, H., Rhandour, A., Dhamelincourt, M.-C., Dhamelincourt, P. & Mazzah, A. (2004). J. Raman Spectrosc. 35, 1056-1062.]). For similar compounds, see: Jeghnou et al. (2005[Jeghnou, H., Ouasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Roussel, P. (2005). J. Raman Spectrosc. 36, 1023-1028.]); Rhandour et al. (2011[Rhandour, A., Ouasri, A., Roussel, P. & Mazzah, A. (2011). J. Mol. Struct. 990, 95-101.]); Ouasri et al. (2012[Ouasri, A., Jeghnou, H., Rhandour, A., Mazzah, A. & Roussel, P. (2012). J. Mol. Struct. 1028, 79-87.], 2013a[Ouasri, A., Jeghnou, H., Rhandour, A. & Roussel, P. (2013a). J. Solid State Chem. 200, 22-29.],b[Ouasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2013b). Acta Cryst. E69, m437.], 2014[Ouasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o92-o93.]).

[Scheme 1]

Experimental

Crystal data
  • C4H14N22+·SiF62−

  • Mr = 232.26

  • Triclinic, [p \overline 1]

  • a = 5.796 (1) Å

  • b = 5.889 (1) Å

  • c = 7.774 (2) Å

  • α = 87.02 (1)°

  • β = 82.15 (1)°

  • γ = 61.87 (1)°

  • V = 231.79 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 296 K

  • 0.36 × 0.32 × 0.27 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.512, Tmax = 0.640

  • 5351 measured reflections

  • 1285 independent reflections

  • 1185 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.05

  • 1285 reflections

  • 61 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯F2 0.89 2.31 3.017 (2) 137
N1—H1NA⋯F3 0.89 2.39 3.134 (2) 142
N1—H1NB⋯F3i 0.89 2.02 2.890 (2) 167
N1—H1NC⋯F1ii 0.89 2.04 2.864 (2) 154
Symmetry codes: (i) -x, -y+1, -z; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The alkanediammonium halogenometallate salts family with the general formula (NH3(CH2)nNH3)MX6 where M: Sn, Si, Te and X: Cl, Br, I and F, have recently attracted the interest of many investigators due to their potential physical properties (Ouasri et al., 2003; Elyoubi et al., 2004). X-ray, thermal and vibrational studies of phase transitions have also been performed for highly related compounds belonging to the alkanediammonium halogenobismuthate salts family as the pentachlorobismuthate one (NH3(CH2)nNH3)BiCl5 (Jeghnou et al., 2005; Ouasri et al., 2012; Rhandour et al., 2011; Ouasri et al., 2013a; Ouasri et al., 2013b; Ouasri et al., 2014). The aim of the present paper was to study the recently synthesized butanediammonium hexafluorosilicate (NH3(CH2)4NH3)SiF6 crystal, by X-ray diffraction at room temperature.

The structure of the title compound is built up from inorganic anions linked to the organic cations trough hydrogen bonds. In this structure, all atoms are in general positions, except the silicon atom (Si1 (1/2, 0, 0) which is located at a crystallographic centre of inversion of the P1 space group. In addition, the centre of the bond C2—C2i is also situated on another crystallographic centre of inversion. The asymmetric unit therefore contains only one half of the organic cation and one SiF3 moiety. The remaining atoms of the unit cell are generated by symmetry operations.

The silicon atom is surrounded by six fluorine atoms building a slightly distorted SiF62- octahedron. SiF62- octahedra are linked to the organic cations through N–H···F hydrogen bonds producing an infinite two-dimensional layer parallel to (0 1 1) (Fig.2 and Table 1).

Related literature top

For background to potential physical properties, see: Ouasri et al. (2003); Elyoubi et al. (2004). For similar compounds, see: Jeghnou et al. (2005); Ouasri et al. (2012); Rhandour et al. (2011); Ouasri et al. (2013a,b, 2014).

Experimental top

(NH3(CH2)4NH3)SiF6 single crystals were obtained by slow evaporation, at room temperature, of an aqueous solution containing stoichiometric amounts of butane-1,4-diamine, NH2(CH2)4NH2, and H2SiF6 acid.

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.97 Å, and 0.893 Å for CH2 and N–H, respectively. Thermal parameters of all hydrogen atoms were refeined with Uiso(H) = 1.2 Ueq(methylene) and Uiso(H) = 1.5 Ueq(N) for the ammonium groups.

Structure description top

The alkanediammonium halogenometallate salts family with the general formula (NH3(CH2)nNH3)MX6 where M: Sn, Si, Te and X: Cl, Br, I and F, have recently attracted the interest of many investigators due to their potential physical properties (Ouasri et al., 2003; Elyoubi et al., 2004). X-ray, thermal and vibrational studies of phase transitions have also been performed for highly related compounds belonging to the alkanediammonium halogenobismuthate salts family as the pentachlorobismuthate one (NH3(CH2)nNH3)BiCl5 (Jeghnou et al., 2005; Ouasri et al., 2012; Rhandour et al., 2011; Ouasri et al., 2013a; Ouasri et al., 2013b; Ouasri et al., 2014). The aim of the present paper was to study the recently synthesized butanediammonium hexafluorosilicate (NH3(CH2)4NH3)SiF6 crystal, by X-ray diffraction at room temperature.

The structure of the title compound is built up from inorganic anions linked to the organic cations trough hydrogen bonds. In this structure, all atoms are in general positions, except the silicon atom (Si1 (1/2, 0, 0) which is located at a crystallographic centre of inversion of the P1 space group. In addition, the centre of the bond C2—C2i is also situated on another crystallographic centre of inversion. The asymmetric unit therefore contains only one half of the organic cation and one SiF3 moiety. The remaining atoms of the unit cell are generated by symmetry operations.

The silicon atom is surrounded by six fluorine atoms building a slightly distorted SiF62- octahedron. SiF62- octahedra are linked to the organic cations through N–H···F hydrogen bonds producing an infinite two-dimensional layer parallel to (0 1 1) (Fig.2 and Table 1).

For background to potential physical properties, see: Ouasri et al. (2003); Elyoubi et al. (2004). For similar compounds, see: Jeghnou et al. (2005); Ouasri et al. (2012); Rhandour et al. (2011); Ouasri et al. (2013a,b, 2014).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Three dimensional plot of the title compound, showing inorganic sheets linked through N–H···F hydrogen bonds to the organic layers (dashed lines).
Butane-1,4-diammonium hexafluorosilicate top
Crystal data top
C4H14N22+·SiF62Z = 1
Mr = 232.26F(000) = 120
Triclinic, p1Dx = 1.664 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 5.796 (1) ÅCell parameters from 1285 reflections
b = 5.889 (1) Åθ = 3.9–29.6°
c = 7.774 (2) ŵ = 0.31 mm1
α = 87.02 (1)°T = 296 K
β = 82.15 (1)°Block, colourless
γ = 61.87 (1)°0.36 × 0.32 × 0.27 mm
V = 231.79 (8) Å3
Data collection top
Bruker X8 APEX
diffractometer
1285 independent reflections
Radiation source: fine-focus sealed tube1185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 29.6°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 78
Tmin = 0.512, Tmax = 0.640k = 88
5351 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.127P]
where P = (Fo2 + 2Fc2)/3
1285 reflections(Δ/σ)max < 0.001
61 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C4H14N22+·SiF62γ = 61.87 (1)°
Mr = 232.26V = 231.79 (8) Å3
Triclinic, p1Z = 1
a = 5.796 (1) ÅMo Kα radiation
b = 5.889 (1) ŵ = 0.31 mm1
c = 7.774 (2) ÅT = 296 K
α = 87.02 (1)°0.36 × 0.32 × 0.27 mm
β = 82.15 (1)°
Data collection top
Bruker X8 APEX
diffractometer
1285 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1185 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.640Rint = 0.025
5351 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.74 e Å3
1285 reflectionsΔρmin = 0.33 e Å3
61 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1629 (3)0.2744 (4)0.3650 (2)0.0394 (4)
H1A0.01380.24070.38010.047*
H1B0.17390.11600.38760.047*
C20.3593 (4)0.4783 (4)0.4953 (2)0.0435 (4)
H2A0.35730.63960.46630.052*
H2B0.30240.42970.60940.052*
N10.2086 (2)0.3508 (2)0.18267 (15)0.0269 (3)
H1NA0.08910.22520.11100.040*
H1NB0.19460.49390.16030.040*
H1NC0.36950.37920.16750.040*
Si10.50000.00000.00000.02400 (16)
F10.35813 (19)0.26912 (18)0.12542 (14)0.0381 (3)
F20.3234 (2)0.1206 (2)0.12259 (14)0.0426 (3)
F30.2526 (2)0.1424 (2)0.12459 (15)0.0445 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0304 (7)0.0470 (9)0.0266 (7)0.0069 (7)0.0029 (5)0.0022 (6)
C20.0368 (9)0.0649 (12)0.0278 (7)0.0233 (8)0.0014 (6)0.0109 (7)
N10.0262 (6)0.0287 (6)0.0236 (5)0.0117 (5)0.0007 (4)0.0032 (4)
Si10.0193 (3)0.0203 (3)0.0312 (3)0.00873 (19)0.00039 (18)0.00429 (18)
F10.0318 (5)0.0310 (5)0.0487 (6)0.0135 (4)0.0061 (4)0.0182 (4)
F20.0412 (6)0.0386 (5)0.0505 (6)0.0251 (5)0.0122 (4)0.0037 (4)
F30.0405 (6)0.0350 (5)0.0593 (7)0.0143 (4)0.0245 (5)0.0034 (5)
Geometric parameters (Å, º) top
C1—N11.4853 (19)N1—H1NB0.8900
C1—C21.512 (2)N1—H1NC0.8900
C1—H1A0.9700Si1—F2ii1.6757 (10)
C1—H1B0.9700Si1—F21.6757 (10)
C2—C2i1.519 (4)Si1—F11.6886 (9)
C2—H2A0.9700Si1—F1ii1.6886 (9)
C2—H2B0.9700Si1—F31.6908 (10)
N1—H1NA0.8900Si1—F3ii1.6908 (10)
N1—C1—C2112.70 (13)H1NB—N1—H1NC109.5
N1—C1—H1A109.1F2ii—Si1—F2180.0
C2—C1—H1A109.1F2ii—Si1—F189.09 (5)
N1—C1—H1B109.1F2—Si1—F190.91 (5)
C2—C1—H1B109.1F2ii—Si1—F1ii90.91 (5)
H1A—C1—H1B107.8F2—Si1—F1ii89.09 (5)
C1—C2—C2i114.65 (19)F1—Si1—F1ii180.0
C1—C2—H2A108.6F2ii—Si1—F391.03 (6)
C2i—C2—H2A108.6F2—Si1—F388.98 (6)
C1—C2—H2B108.6F1—Si1—F389.04 (6)
C2i—C2—H2B108.6F1ii—Si1—F390.96 (6)
H2A—C2—H2B107.6F2ii—Si1—F3ii88.97 (6)
C1—N1—H1NA109.5F2—Si1—F3ii91.02 (6)
C1—N1—H1NB109.5F1—Si1—F3ii90.96 (6)
H1NA—N1—H1NB109.5F1ii—Si1—F3ii89.04 (6)
C1—N1—H1NC109.5F3—Si1—F3ii180.0
H1NA—N1—H1NC109.5
Symmetry codes: (i) x1, y+1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···F20.892.313.017 (2)137
N1—H1NA···F30.892.393.134 (2)142
N1—H1NB···F3iii0.892.022.890 (2)167
N1—H1NC···F1iv0.892.042.864 (2)154
Symmetry codes: (iii) x, y+1, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···F20.892.313.017 (2)136.7
N1—H1NA···F30.892.393.134 (2)141.5
N1—H1NB···F3i0.892.022.890 (2)167.0
N1—H1NC···F1ii0.892.042.864 (2)154.1
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElyoubi, M., Ouasri, A., Jeghnou, H., Rhandour, A., Dhamelincourt, M.-C., Dhamelincourt, P. & Mazzah, A. (2004). J. Raman Spectrosc. 35, 1056–1062.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJeghnou, H., Ouasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Roussel, P. (2005). J. Raman Spectrosc. 36, 1023–1028.  Web of Science CrossRef CAS Google Scholar
First citationOuasri, A., Jeghnou, H., Rhandour, A., Mazzah, A. & Roussel, P. (2012). J. Mol. Struct. 1028, 79–87.  Web of Science CrossRef CAS Google Scholar
First citationOuasri, A., Jeghnou, H., Rhandour, A. & Roussel, P. (2013a). J. Solid State Chem. 200, 22–29.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuasri, A., Rhandour, A., Dhamelincourt, M. C., Dhamelincourt, P., Mazzah, A. & Taibi, M. (2003). Phase Transitions, 76, 701–709.  Web of Science CrossRef CAS Google Scholar
First citationOuasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2013b). Acta Cryst. E69, m437.  CSD CrossRef IUCr Journals Google Scholar
First citationOuasri, A., Rhandour, A., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o92–o93.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRhandour, A., Ouasri, A., Roussel, P. & Mazzah, A. (2011). J. Mol. Struct. 990, 95–101.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds