organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Di­aza­bi­cyclo­[2.2.2]octane-1,4-diium bis­­(3-chloro­benzoate)

aInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga-koen, Fukuoka, 816-8580, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp

(Received 12 December 2013; accepted 10 January 2014; online 18 January 2014)

In the title salt C6H14N22+·2C7H4ClO2, two 3-chloro­benzoate (3CBA) anions are bridged by one diprotonated 1,4-di­aza­bicyclo­[2.2.2]octane-1,4-diium (H2DABCO2+) dication through N—H⋯O hydrogen bonds. In this way, a trimeric unit is generated, in which the mean planes of the two 3CBA anions are twisted with respect to each other by a dihedral angle of 59.87 (9)°. The trimeric units are linked into a three-dimensional network via weak C—H⋯O inter­actions.

Related literature

For related studies on co-crystals of DABCO and carb­oxy­lic acids, see: Arman et al. (2011[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2933.]); Skovsgaard & Bond (2009[Skovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444-453.]); Meehan et al. (1997[Meehan, P. R., Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1997). Acta Cryst. C53, 628-631.]); Rosli et al. (2006[Rosli, M. M., Fun, H.-K., Lee, B. S. & Chantrapromma, S. (2006). Acta Cryst. E62, o4575-o4577.]); Burchell et al. (2001[Burchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201-212.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N22+·2C7H4ClO2

  • Mr = 425.29

  • Triclinic, [P \overline 1]

  • a = 7.332 (4) Å

  • b = 10.512 (6) Å

  • c = 13.517 (7) Å

  • α = 79.74 (3)°

  • β = 76.68 (2)°

  • γ = 85.47 (2)°

  • V = 996.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 123 K

  • 0.08 × 0.07 × 0.06 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.874, Tmax = 1.000

  • 6989 measured reflections

  • 3671 independent reflections

  • 2777 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 0.91

  • 3671 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.90 1.64 2.536 (2) 178
N2—H2N⋯O2 0.90 1.63 2.528 (3) 175
C3—H3⋯O3i 0.95 2.59 3.523 (3) 169
C18—H18B⋯O4ii 0.99 2.43 3.311 (3) 147
C19—H19B⋯O1iii 0.99 2.56 3.552 (3) 178
Symmetry codes: (i) x+1, y+1, z; (ii) -x, -y, -z; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Molecular based compounds constructed via hydrogen bond interaction can give rise to intriguing properties. Here we report an organic co-crystal of a salt of 1,4-Diazabicyclo[2.2.2]octane (DABCO) and 3-chlorobenzoic acid. The asymmetric unit contains two 3-chlorobenzoate anions and one H2DABCO2+ cation, where the 3-chlorobenzoate anions are connected by the H2DABCO2+ cations by strong intermolecular O–H···N hydrogen bond interactions. The short N···O bond lengths (2.528 (3) and 2.536 (2) Å respectively) suggest possible single-well potential curves of the protons in the trimer unit.

Related literature top

For related studies on co-crystals of DABCO and carboxylic acids, see: Arman et al. (2011); Skovsgaard & Bond (2009); Meehan et al. (1997); Rosli et al. (2006); Burchell et al. (2001).

Experimental top

Colourless crystals of (1) were isolated from slow evaporation of the acetone solution containing DABCO and 3-chlorobenzoic acid in a mole ratio of 1:2 at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95 and 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The N bound H-atoms were located in a difference Fourier map, and were refined with a distance restraints of N–H 0.90±0.01 Å; with Uiso(H) set to 1.2Ueq(N).

Structure description top

Molecular based compounds constructed via hydrogen bond interaction can give rise to intriguing properties. Here we report an organic co-crystal of a salt of 1,4-Diazabicyclo[2.2.2]octane (DABCO) and 3-chlorobenzoic acid. The asymmetric unit contains two 3-chlorobenzoate anions and one H2DABCO2+ cation, where the 3-chlorobenzoate anions are connected by the H2DABCO2+ cations by strong intermolecular O–H···N hydrogen bond interactions. The short N···O bond lengths (2.528 (3) and 2.536 (2) Å respectively) suggest possible single-well potential curves of the protons in the trimer unit.

For related studies on co-crystals of DABCO and carboxylic acids, see: Arman et al. (2011); Skovsgaard & Bond (2009); Meehan et al. (1997); Rosli et al. (2006); Burchell et al. (2001).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (50% probability level) of the trimer unit. The dashed lines indicate intermolecular N–H···O hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. The dashed lines indicate intermolecular N–H···O hydrogen bonds forming trimer units. H atoms not involved hydrogen bonding have been omitted for clarity.
1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(3-chlorobenzoate) top
Crystal data top
C6H14N22+·2C7H4ClO2Z = 2
Mr = 425.29F(000) = 444
Triclinic, P1Dx = 1.417 Mg m3
a = 7.332 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 10.512 (6) ÅCell parameters from 3510 reflections
c = 13.517 (7) Åθ = 3.1–27.5°
α = 79.74 (3)°µ = 0.36 mm1
β = 76.68 (2)°T = 123 K
γ = 85.47 (2)°Block, colourless
V = 996.8 (9) Å30.08 × 0.07 × 0.06 mm
Data collection top
Rigaku Saturn70
diffractometer
3671 independent reflections
Radiation source: Rotating Anode2777 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.034
ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
h = 88
Tmin = 0.874, Tmax = 1.000k = 1212
6989 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0526P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
3671 reflectionsΔρmax = 0.40 e Å3
253 parametersΔρmin = 0.33 e Å3
Crystal data top
C6H14N22+·2C7H4ClO2γ = 85.47 (2)°
Mr = 425.29V = 996.8 (9) Å3
Triclinic, P1Z = 2
a = 7.332 (4) ÅMo Kα radiation
b = 10.512 (6) ŵ = 0.36 mm1
c = 13.517 (7) ÅT = 123 K
α = 79.74 (3)°0.08 × 0.07 × 0.06 mm
β = 76.68 (2)°
Data collection top
Rigaku Saturn70
diffractometer
3671 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
2777 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 1.000Rint = 0.034
6989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.91Δρmax = 0.40 e Å3
3671 reflectionsΔρmin = 0.33 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85741 (7)0.29946 (5)0.56505 (4)0.02963 (16)
Cl20.96963 (7)0.46471 (5)0.18722 (4)0.03041 (16)
O10.33887 (19)0.09113 (13)0.42587 (10)0.0247 (3)
O20.26536 (19)0.24510 (13)0.30319 (11)0.0277 (3)
O30.40110 (18)0.19373 (13)0.18759 (10)0.0209 (3)
O40.22174 (19)0.15730 (15)0.02822 (10)0.0320 (4)
N10.1723 (2)0.05291 (14)0.22871 (11)0.0163 (4)
H1N0.25240.10420.21470.020*
N20.0517 (2)0.08989 (15)0.26718 (11)0.0170 (4)
H2N0.13170.14130.28120.020*
C10.4754 (2)0.29730 (18)0.39639 (13)0.0152 (4)
C20.4815 (3)0.42300 (18)0.34315 (14)0.0183 (4)
H20.39960.45060.29770.022*
C30.6052 (3)0.50894 (19)0.35524 (14)0.0204 (4)
H30.60920.59440.31750.024*
C40.7235 (3)0.46978 (19)0.42271 (14)0.0193 (4)
H40.81050.52730.43090.023*
C50.7124 (2)0.34535 (19)0.47776 (14)0.0178 (4)
C60.5904 (2)0.25831 (18)0.46641 (14)0.0168 (4)
H60.58480.17350.50540.020*
C70.3501 (2)0.20080 (18)0.37673 (14)0.0166 (4)
C80.4958 (3)0.27845 (17)0.05760 (14)0.0165 (4)
C90.6506 (2)0.33291 (17)0.12918 (14)0.0163 (4)
H90.66950.32490.19980.020*
C100.7755 (3)0.39815 (18)0.09679 (15)0.0183 (4)
C110.7508 (3)0.41311 (19)0.00502 (15)0.0212 (4)
H110.83810.45870.02620.025*
C120.5961 (3)0.36021 (18)0.07544 (15)0.0213 (4)
H120.57690.36980.14570.026*
C130.4691 (3)0.29346 (18)0.04470 (14)0.0193 (4)
H130.36330.25790.09380.023*
C140.3593 (3)0.20410 (18)0.09103 (14)0.0191 (4)
C150.1980 (3)0.08017 (18)0.17522 (15)0.0211 (4)
H15A0.33080.11020.19500.025*
H15B0.16530.08220.09970.025*
C160.0712 (3)0.16953 (18)0.20515 (15)0.0210 (4)
H16A0.00620.21890.14230.025*
H16B0.14880.23190.24570.025*
C170.0218 (2)0.10165 (19)0.19240 (15)0.0200 (4)
H17A0.04420.10820.11840.024*
H17B0.04140.18900.23120.024*
C180.1599 (3)0.00838 (18)0.20868 (14)0.0188 (4)
H18A0.24990.05690.24740.023*
H18B0.23150.03440.14120.023*
C190.2115 (3)0.05460 (19)0.34127 (14)0.0190 (4)
H19A0.20630.14480.37770.023*
H19B0.33850.01650.36490.023*
C200.0641 (3)0.02409 (18)0.36553 (14)0.0187 (4)
H20A0.12700.08920.40810.022*
H20B0.01690.03400.40480.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0312 (3)0.0291 (3)0.0341 (3)0.0036 (2)0.0212 (2)0.0007 (2)
Cl20.0256 (3)0.0346 (3)0.0307 (3)0.0156 (2)0.0003 (2)0.0061 (2)
O10.0320 (8)0.0181 (8)0.0259 (8)0.0076 (6)0.0121 (6)0.0020 (6)
O20.0377 (9)0.0250 (8)0.0254 (8)0.0111 (6)0.0205 (7)0.0046 (6)
O30.0248 (8)0.0236 (8)0.0153 (7)0.0077 (6)0.0037 (6)0.0042 (6)
O40.0295 (9)0.0475 (10)0.0191 (8)0.0213 (7)0.0021 (6)0.0013 (7)
N10.0186 (9)0.0145 (8)0.0179 (8)0.0035 (6)0.0077 (7)0.0025 (7)
N20.0176 (9)0.0171 (9)0.0181 (8)0.0045 (7)0.0074 (7)0.0014 (7)
C10.0157 (10)0.0172 (10)0.0124 (9)0.0011 (7)0.0011 (7)0.0040 (8)
C20.0199 (11)0.0226 (11)0.0123 (9)0.0002 (8)0.0043 (8)0.0017 (8)
C30.0258 (11)0.0171 (10)0.0165 (10)0.0039 (8)0.0021 (8)0.0000 (8)
C40.0186 (10)0.0217 (11)0.0181 (10)0.0062 (8)0.0018 (8)0.0047 (8)
C50.0159 (10)0.0228 (11)0.0160 (10)0.0003 (8)0.0058 (8)0.0040 (8)
C60.0172 (10)0.0169 (10)0.0153 (9)0.0014 (8)0.0020 (7)0.0018 (8)
C70.0156 (10)0.0203 (11)0.0139 (10)0.0024 (8)0.0022 (7)0.0037 (8)
C80.0186 (10)0.0126 (10)0.0183 (10)0.0009 (7)0.0055 (8)0.0014 (8)
C90.0177 (10)0.0162 (10)0.0153 (10)0.0009 (8)0.0030 (8)0.0046 (8)
C100.0169 (10)0.0165 (10)0.0213 (10)0.0013 (8)0.0037 (8)0.0028 (8)
C110.0228 (11)0.0194 (11)0.0262 (11)0.0000 (8)0.0119 (9)0.0080 (9)
C120.0272 (12)0.0227 (11)0.0158 (10)0.0016 (8)0.0085 (8)0.0042 (8)
C130.0221 (11)0.0194 (10)0.0151 (10)0.0003 (8)0.0042 (8)0.0008 (8)
C140.0199 (11)0.0170 (10)0.0206 (11)0.0031 (8)0.0064 (8)0.0003 (8)
C150.0228 (11)0.0183 (10)0.0232 (11)0.0010 (8)0.0108 (8)0.0016 (9)
C160.0253 (11)0.0171 (10)0.0218 (11)0.0016 (8)0.0103 (8)0.0009 (8)
C170.0153 (11)0.0236 (11)0.0217 (10)0.0019 (8)0.0037 (8)0.0068 (9)
C180.0165 (10)0.0212 (11)0.0184 (10)0.0007 (8)0.0029 (8)0.0034 (8)
C190.0203 (11)0.0216 (11)0.0145 (10)0.0040 (8)0.0022 (8)0.0017 (8)
C200.0225 (11)0.0203 (10)0.0135 (10)0.0023 (8)0.0040 (8)0.0020 (8)
Geometric parameters (Å, º) top
Cl1—C51.747 (2)C8—C91.397 (3)
Cl2—C101.749 (2)C8—C141.508 (3)
O1—C71.222 (2)C9—C101.375 (2)
O2—C71.290 (2)C9—H90.9500
O3—C141.292 (2)C10—C111.382 (3)
O4—C141.231 (2)C11—C121.384 (3)
N1—C151.475 (2)C11—H110.9500
N1—C191.479 (2)C12—C131.385 (2)
N1—C171.478 (2)C12—H120.9500
N1—H1N0.9000C13—H130.9500
N2—C181.481 (2)C15—C161.536 (3)
N2—C161.481 (2)C15—H15A0.9900
N2—C201.487 (2)C15—H15B0.9900
N2—H2N0.9000C16—H16A0.9900
C1—C21.386 (3)C16—H16B0.9900
C1—C61.396 (3)C17—C181.540 (2)
C1—C71.516 (2)C17—H17A0.9900
C2—C31.384 (3)C17—H17B0.9900
C2—H20.9500C18—H18A0.9900
C3—C41.388 (3)C18—H18B0.9900
C3—H30.9500C19—C201.537 (2)
C4—C51.383 (3)C19—H19A0.9900
C4—H40.9500C19—H19B0.9900
C5—C61.379 (3)C20—H20A0.9900
C6—H60.9500C20—H20B0.9900
C8—C131.387 (3)
C15—N1—C19109.80 (15)C13—C12—C11120.80 (18)
C15—N1—C17109.77 (15)C13—C12—H12119.6
C19—N1—C17109.86 (14)C11—C12—H12119.6
C15—N1—H1N109.2C12—C13—C8120.19 (18)
C19—N1—H1N109.2C12—C13—H13119.9
C17—N1—H1N109.1C8—C13—H13119.9
C18—N2—C16109.80 (14)O4—C14—O3124.69 (17)
C18—N2—C20109.46 (15)O4—C14—C8120.50 (17)
C16—N2—C20109.79 (15)O3—C14—C8114.81 (16)
C18—N2—H2N109.3N1—C15—C16109.14 (15)
C16—N2—H2N109.3N1—C15—H15A109.9
C20—N2—H2N109.2C16—C15—H15A109.9
C2—C1—C6119.49 (17)N1—C15—H15B109.9
C2—C1—C7120.69 (17)C16—C15—H15B109.9
C6—C1—C7119.79 (17)H15A—C15—H15B108.3
C3—C2—C1121.01 (18)N2—C16—C15108.98 (15)
C3—C2—H2119.5N2—C16—H16A109.9
C1—C2—H2119.5C15—C16—H16A109.9
C2—C3—C4119.77 (18)N2—C16—H16B109.9
C2—C3—H3120.1C15—C16—H16B109.9
C4—C3—H3120.1H16A—C16—H16B108.3
C5—C4—C3118.74 (18)N1—C17—C18109.31 (15)
C5—C4—H4120.6N1—C17—H17A109.8
C3—C4—H4120.6C18—C17—H17A109.8
C6—C5—C4122.26 (18)N1—C17—H17B109.8
C6—C5—Cl1119.69 (15)C18—C17—H17B109.8
C4—C5—Cl1118.05 (14)H17A—C17—H17B108.3
C5—C6—C1118.67 (18)N2—C18—C17108.61 (14)
C5—C6—H6120.7N2—C18—H18A110.0
C1—C6—H6120.7C17—C18—H18A110.0
O1—C7—O2125.20 (17)N2—C18—H18B110.0
O1—C7—C1121.13 (17)C17—C18—H18B110.0
O2—C7—C1113.64 (17)H18A—C18—H18B108.3
C13—C8—C9119.23 (17)N1—C19—C20108.85 (14)
C13—C8—C14120.32 (17)N1—C19—H19A109.9
C9—C8—C14120.45 (16)C20—C19—H19A109.9
C10—C9—C8119.57 (17)N1—C19—H19B109.9
C10—C9—H9120.2C20—C19—H19B109.9
C8—C9—H9120.2H19A—C19—H19B108.3
C9—C10—C11121.69 (18)N2—C20—C19109.05 (14)
C9—C10—Cl2119.01 (15)N2—C20—H20A109.9
C11—C10—Cl2119.29 (14)C19—C20—H20A109.9
C10—C11—C12118.52 (17)N2—C20—H20B109.9
C10—C11—H11120.7C19—C20—H20B109.9
C12—C11—H11120.7H20A—C20—H20B108.3
C6—C1—C2—C32.6 (3)C9—C8—C13—C120.9 (3)
C7—C1—C2—C3175.35 (16)C14—C8—C13—C12179.08 (17)
C1—C2—C3—C40.9 (3)C13—C8—C14—O40.8 (3)
C2—C3—C4—C51.0 (3)C9—C8—C14—O4179.18 (18)
C3—C4—C5—C61.3 (3)C13—C8—C14—O3178.35 (17)
C3—C4—C5—Cl1178.13 (14)C9—C8—C14—O31.6 (3)
C4—C5—C6—C10.4 (3)C19—N1—C15—C1656.50 (19)
Cl1—C5—C6—C1179.80 (13)C17—N1—C15—C1664.36 (19)
C2—C1—C6—C52.3 (3)C18—N2—C16—C1556.32 (19)
C7—C1—C6—C5175.65 (15)C20—N2—C16—C1564.07 (18)
C2—C1—C7—O1177.41 (18)N1—C15—C16—N27.0 (2)
C6—C1—C7—O14.6 (3)C15—N1—C17—C1856.14 (19)
C2—C1—C7—O24.5 (2)C19—N1—C17—C1864.69 (19)
C6—C1—C7—O2173.43 (16)C16—N2—C18—C1764.37 (19)
C13—C8—C9—C101.3 (3)C20—N2—C18—C1756.22 (19)
C14—C8—C9—C10178.71 (17)N1—C17—C18—N27.0 (2)
C8—C9—C10—C110.9 (3)C15—N1—C19—C2065.01 (18)
C8—C9—C10—Cl2179.50 (14)C17—N1—C19—C2055.80 (19)
C9—C10—C11—C120.2 (3)C18—N2—C20—C1965.10 (19)
Cl2—C10—C11—C12179.78 (15)C16—N2—C20—C1955.49 (19)
C10—C11—C12—C130.2 (3)N1—C19—C20—N27.6 (2)
C11—C12—C13—C80.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.901.642.536 (2)178
N2—H2N···O20.901.632.528 (3)175
C3—H3···O3i0.952.593.523 (3)169
C18—H18B···O4ii0.992.433.311 (3)147
C19—H19B···O1iii0.992.563.552 (3)178
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.901.642.536 (2)178
N2—H2N···O20.901.632.528 (3)175
C3—H3···O3i0.952.593.523 (3)169
C18—H18B···O4ii0.992.433.311 (3)147
C19—H19B···O1iii0.992.563.552 (3)177.6
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x1, y, z.
 

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001). Acta Cryst. B57, 201–212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeehan, P. R., Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1997). Acta Cryst. C53, 628–631.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRosli, M. M., Fun, H.-K., Lee, B. S. & Chantrapromma, S. (2006). Acta Cryst. E62, o4575–o4577.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds