organic compounds
2,2′-(1,4-Phenylene)bis(propane-2,2-diyl) bis(benzodithioate)
aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bPrograma de Ingenieria Agroindustrial, Universidad San Buenaventura, AA 7154, Santiago de Cali, Colombia, cCase Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, USA, and dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
The title compound, C26H26S4, shows a dihedral angle of 76.64 (15)° between the central and peripheral benzene rings. An inversion center is located at the centroid of the thiobenzoyl ring. In the crystal, weak C—H⋯S interactions form C(5) chains along [001]. There are no classical hydrogen bonds.
CCDC reference: 978819
Related literature
For control of the behavior of polymerization reactions, see: Patton et al. (2005); You et al. (2007); Pafiti et al. (2010). For with RAFT reactions, see: Le et al. (1998). For telechelic polymers, see: Tasdelen et al. (2011); Goethals (1989). For hydrogen bonding, see: Nardelli (1995). For graph-set motifs, see: Etter (1990). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 2004); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 978819
10.1107/S160053681303465X/kj2235sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681303465X/kj2235Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681303465X/kj2235Isup3.cml
The synthesis of the mentioned compound was accomplished following a procedure already reported (Le et al., 1998; Patton et al., 2005). A mixture of dithiobenzoic acid (5.00 g, 32.4 mmol) and 1,4-diisopropenylbenzene (2.44 g, 15.4 mmol) in carbon tetrachloride (40 ml) was heated at 348 K for 20 h. The volatiles were removed under reduced pressure and the oily product was mixed with 1:2 diethyl ether/hexane to isolate the product as a pink solid (40%).
All H-atoms were placed in calculated positions [C—H= 0.95 Å for aromatic and C—H= 0.96 Å for methyl group] and refined with Uiso(H) 1.2 and 1.5 times Ueq of the parent atom, respectively.
The title compound belongs to a series of difunctional compounds that can be used to control the behavior of polymerization reactions to produce straight forward functional telechelic polymers in one pot (Patton et al., 2005; You et al., 2007; Pafiti et al., 2010). They are also used in
with RAFT (reversible addition fragmentation chain transfer) reactions (Le et al., 1998). Telechelic polymers, defined as macromolecules with two reactive end groups, have been used for multiple purposes (Tasdelen et al., 2011) including synthesis (Goethals, 1989). A perspective view of the molecule of the title compund, showing the atomic numbering scheme, is given in Fig. 1. Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The molecular system has an inversion center and it is located at the center of the thiobenzoyl ring. The benzene rings bridged by the thio (C6—C7—S1—C8—C11) moiety are tilted to each other by a dihedral angle of 76.64 (15)°. The crystal packing shows no classical hydrogen bonds and it is stabilized by weak C—H···S intermolecular interactions, forming C(5) chains (Etter, 1990) along [001] (see Fig. 2; Etter, 1990). The C5 atom of the benzene ring at (x,y,z) acts as hydrogen-bond donors to S2 atom at (x, -y + 1/2, z - 1/2) (see Table 1; Nardelli, 1995).For control of the behavior of polymerization reactions, see: Patton et al. (2005); You et al. (2007); Pafiti et al. (2010). For
with RAFT reactions, see: Le et al. (1998). For telechelic polymers, see: Tasdelen et al. (2011); Goethals (1989). For hydrogen bonding, see: Nardelli (1995). For graph-set motifs, see: Etter (1990). For standard bond lengths, see: Allen et al. (1987).Data collection: COLLECT (Hooft, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).C26H26S4 | Z = 2 |
Mr = 466.75 | F(000) = 492 |
Monoclinic, P21/c | Dx = 1.272 Mg m−3 |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6981 (6) Å | Cell parameters from 4051 reflections |
b = 11.7074 (7) Å | µ = 0.40 mm−1 |
c = 12.5612 (6) Å | T = 295 K |
β = 107.626 (4)° | Block, pink |
V = 1219.08 (13) Å3 | 0.41 × 0.29 × 0.16 mm |
Bruker–Nonius KappaCCD diffractometer | 2160 independent reflections |
Radiation source: fine-focus sealed tube | 1775 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
CCD rotation images, thick slices scans | θmax = 25.1°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −10→10 |
Tmin = 0.874, Tmax = 0.939 | k = −12→13 |
4051 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3633P] where P = (Fo2 + 2Fc2)/3 |
2160 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C26H26S4 | V = 1219.08 (13) Å3 |
Mr = 466.75 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.6981 (6) Å | µ = 0.40 mm−1 |
b = 11.7074 (7) Å | T = 295 K |
c = 12.5612 (6) Å | 0.41 × 0.29 × 0.16 mm |
β = 107.626 (4)° |
Bruker–Nonius KappaCCD diffractometer | 2160 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 1775 reflections with I > 2σ(I) |
Tmin = 0.874, Tmax = 0.939 | Rint = 0.021 |
4051 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.19 e Å−3 |
2160 reflections | Δρmin = −0.22 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.50091 (6) | 0.16376 (4) | 0.06933 (4) | 0.04958 (17) | |
S2 | 0.75578 (8) | 0.23202 (6) | −0.03441 (5) | 0.0685 (2) | |
C1 | 0.9423 (3) | 0.0464 (2) | 0.13247 (19) | 0.0610 (6) | |
H1 | 0.9617 | 0.0565 | 0.0642 | 0.073* | |
C2 | 1.0454 (3) | −0.0191 (2) | 0.2131 (2) | 0.0754 (7) | |
H2 | 1.1332 | −0.0541 | 0.1990 | 0.090* | |
C3 | 1.0198 (3) | −0.0335 (2) | 0.3155 (2) | 0.0754 (7) | |
H3 | 1.0904 | −0.0778 | 0.3704 | 0.091* | |
C4 | 0.8906 (3) | 0.0175 (2) | 0.33591 (18) | 0.0644 (6) | |
H4 | 0.8736 | 0.0081 | 0.4050 | 0.077* | |
C5 | 0.7852 (3) | 0.08278 (17) | 0.25504 (16) | 0.0526 (5) | |
H5 | 0.6975 | 0.1171 | 0.2699 | 0.063* | |
C6 | 0.8086 (2) | 0.09805 (15) | 0.15112 (16) | 0.0456 (4) | |
C7 | 0.6960 (2) | 0.16592 (15) | 0.06088 (16) | 0.0462 (5) | |
C8 | 0.3740 (2) | 0.26543 (15) | −0.03377 (16) | 0.0462 (4) | |
C9 | 0.3421 (3) | 0.21941 (19) | −0.15129 (18) | 0.0668 (6) | |
H9A | 0.2986 | 0.1436 | −0.1554 | 0.100* | |
H9B | 0.4413 | 0.2174 | −0.1699 | 0.100* | |
H9C | 0.2663 | 0.2681 | −0.2030 | 0.100* | |
C10 | 0.2164 (3) | 0.26165 (19) | −0.0017 (2) | 0.0628 (6) | |
H10A | 0.2361 | 0.2906 | 0.0727 | 0.094* | |
H10B | 0.1789 | 0.1842 | −0.0050 | 0.094* | |
H10C | 0.1360 | 0.3078 | −0.0529 | 0.094* | |
C11 | 0.4441 (2) | 0.38607 (15) | −0.01603 (14) | 0.0388 (4) | |
C12 | 0.4914 (2) | 0.43533 (16) | 0.08868 (15) | 0.0446 (4) | |
H12 | 0.4861 | 0.3926 | 0.1499 | 0.054* | |
C13 | 0.4535 (2) | 0.45299 (16) | −0.10490 (15) | 0.0439 (4) | |
H13 | 0.4222 | 0.4225 | −0.1766 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0527 (3) | 0.0368 (3) | 0.0662 (3) | 0.0003 (2) | 0.0284 (2) | 0.0081 (2) |
S2 | 0.0734 (4) | 0.0679 (4) | 0.0797 (4) | 0.0051 (3) | 0.0461 (3) | 0.0187 (3) |
C1 | 0.0580 (13) | 0.0617 (13) | 0.0683 (13) | 0.0053 (11) | 0.0264 (11) | −0.0067 (11) |
C2 | 0.0560 (14) | 0.0766 (17) | 0.0882 (18) | 0.0152 (12) | 0.0138 (13) | −0.0131 (14) |
C3 | 0.0697 (16) | 0.0678 (16) | 0.0714 (16) | 0.0058 (13) | −0.0046 (13) | −0.0023 (13) |
C4 | 0.0687 (15) | 0.0667 (14) | 0.0507 (12) | −0.0063 (12) | 0.0077 (11) | −0.0045 (11) |
C5 | 0.0566 (12) | 0.0493 (11) | 0.0532 (11) | −0.0037 (9) | 0.0186 (10) | −0.0082 (9) |
C6 | 0.0502 (10) | 0.0342 (9) | 0.0551 (11) | −0.0045 (8) | 0.0200 (9) | −0.0074 (8) |
C7 | 0.0551 (11) | 0.0340 (9) | 0.0564 (11) | −0.0011 (8) | 0.0270 (9) | −0.0042 (8) |
C8 | 0.0493 (11) | 0.0349 (9) | 0.0540 (11) | −0.0059 (8) | 0.0150 (9) | −0.0007 (8) |
C9 | 0.0871 (17) | 0.0466 (12) | 0.0601 (13) | −0.0201 (12) | 0.0124 (12) | −0.0129 (10) |
C10 | 0.0485 (12) | 0.0508 (12) | 0.0889 (16) | −0.0078 (9) | 0.0207 (12) | 0.0033 (11) |
C11 | 0.0379 (9) | 0.0333 (9) | 0.0461 (10) | −0.0006 (7) | 0.0140 (8) | −0.0014 (8) |
C12 | 0.0551 (11) | 0.0391 (10) | 0.0414 (10) | −0.0035 (9) | 0.0171 (8) | 0.0040 (8) |
C13 | 0.0524 (11) | 0.0396 (10) | 0.0391 (9) | −0.0037 (8) | 0.0129 (8) | −0.0040 (8) |
S1—C7 | 1.7325 (19) | C8—C9 | 1.516 (3) |
S1—C8 | 1.857 (2) | C8—C11 | 1.528 (2) |
S2—C7 | 1.6366 (19) | C8—C10 | 1.541 (3) |
C1—C2 | 1.367 (3) | C9—H9A | 0.9600 |
C1—C6 | 1.393 (3) | C9—H9B | 0.9600 |
C1—H1 | 0.9300 | C9—H9C | 0.9600 |
C2—C3 | 1.380 (4) | C10—H10A | 0.9600 |
C2—H2 | 0.9300 | C10—H10B | 0.9600 |
C3—C4 | 1.364 (3) | C10—H10C | 0.9600 |
C3—H3 | 0.9300 | C11—C12 | 1.380 (2) |
C4—C5 | 1.376 (3) | C11—C13 | 1.386 (2) |
C4—H4 | 0.9300 | C12—C13i | 1.386 (3) |
C5—C6 | 1.392 (3) | C12—H12 | 0.9300 |
C5—H5 | 0.9300 | C13—C12i | 1.386 (3) |
C6—C7 | 1.484 (3) | C13—H13 | 0.9300 |
C7—S1—C8 | 109.55 (9) | C9—C8—S1 | 110.25 (14) |
C2—C1—C6 | 120.9 (2) | C11—C8—S1 | 111.34 (13) |
C2—C1—H1 | 119.6 | C10—C8—S1 | 100.81 (13) |
C6—C1—H1 | 119.6 | C8—C9—H9A | 109.5 |
C1—C2—C3 | 120.3 (2) | C8—C9—H9B | 109.5 |
C1—C2—H2 | 119.9 | H9A—C9—H9B | 109.5 |
C3—C2—H2 | 119.9 | C8—C9—H9C | 109.5 |
C4—C3—C2 | 119.8 (2) | H9A—C9—H9C | 109.5 |
C4—C3—H3 | 120.1 | H9B—C9—H9C | 109.5 |
C2—C3—H3 | 120.1 | C8—C10—H10A | 109.5 |
C3—C4—C5 | 120.5 (2) | C8—C10—H10B | 109.5 |
C3—C4—H4 | 119.8 | H10A—C10—H10B | 109.5 |
C5—C4—H4 | 119.8 | C8—C10—H10C | 109.5 |
C4—C5—C6 | 120.7 (2) | H10A—C10—H10C | 109.5 |
C4—C5—H5 | 119.7 | H10B—C10—H10C | 109.5 |
C6—C5—H5 | 119.7 | C12—C11—C13 | 117.27 (16) |
C5—C6—C1 | 117.94 (19) | C12—C11—C8 | 121.06 (16) |
C5—C6—C7 | 122.36 (17) | C13—C11—C8 | 121.55 (16) |
C1—C6—C7 | 119.70 (18) | C11—C12—C13i | 121.62 (16) |
C6—C7—S2 | 121.99 (14) | C11—C12—H12 | 119.2 |
C6—C7—S1 | 112.15 (13) | C13i—C12—H12 | 119.2 |
S2—C7—S1 | 125.85 (13) | C11—C13—C12i | 121.12 (17) |
C9—C8—C11 | 114.68 (16) | C11—C13—H13 | 119.4 |
C9—C8—C10 | 109.22 (18) | C12i—C13—H13 | 119.4 |
C11—C8—C10 | 109.63 (16) | ||
C6—C1—C2—C3 | −1.1 (4) | C7—S1—C8—C9 | 71.76 (16) |
C1—C2—C3—C4 | 0.3 (4) | C7—S1—C8—C11 | −56.71 (15) |
C2—C3—C4—C5 | 0.3 (4) | C7—S1—C8—C10 | −172.92 (13) |
C3—C4—C5—C6 | −0.1 (3) | C9—C8—C11—C12 | −174.69 (18) |
C4—C5—C6—C1 | −0.7 (3) | C10—C8—C11—C12 | 62.0 (2) |
C4—C5—C6—C7 | 178.79 (18) | S1—C8—C11—C12 | −48.6 (2) |
C2—C1—C6—C5 | 1.2 (3) | C9—C8—C11—C13 | 9.4 (3) |
C2—C1—C6—C7 | −178.2 (2) | C10—C8—C11—C13 | −113.8 (2) |
C5—C6—C7—S2 | 151.88 (16) | S1—C8—C11—C13 | 135.50 (16) |
C1—C6—C7—S2 | −28.7 (3) | C13—C11—C12—C13i | −0.2 (3) |
C5—C6—C7—S1 | −28.9 (2) | C8—C11—C12—C13i | −176.23 (17) |
C1—C6—C7—S1 | 150.59 (16) | C12—C11—C13—C12i | 0.2 (3) |
C8—S1—C7—C6 | 172.46 (12) | C8—C11—C13—C12i | 176.21 (17) |
C8—S1—C7—S2 | −8.33 (16) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···S2ii | 0.93 | 2.94 | 3.489 (2) | 119 |
Symmetry code: (ii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···S2i | 0.93 | 2.94 | 3.489 (2) | 119 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
RMF thanks the Universidad del Valle, Colombia, and CG thanks the Universidad de San Buenaventura, Cali, Colombia, for partial financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goethals, E. J. (1989). Telechelic Polymers: Synthesis and Applications. Boca Raton: CRC Press. Google Scholar
Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Le, T. P., Moad, G., Rizzardo, E. & Thang, S. H. (1998). PCT Int. Appl. WO 9801478, A1, 980115. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pafiti, K. S., Loizou, E., Patrickios, C. S. & Porcar, L. (2010). Macromolecules, 43, 5195–5204. Web of Science CrossRef CAS Google Scholar
Patton, D. L., Mullings, M., Fulghum, T. & Advincula, R. C. (2005). Macromolecules, 38, 8597–8602. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tasdelen, M. A., Kahveci, M. U. & Yagci, Y. (2011). Prog. Polym. Sci. 36, 455–567. Web of Science CrossRef CAS Google Scholar
You, Y. Z., Zhou, Q. H., Manickam, D. S., Wan, L., Mao, G. Z. & Oupicky, D. (2007). Macromolecules, 40, 8617–8624. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound belongs to a series of difunctional compounds that can be used to control the behavior of polymerization reactions to produce straight forward functional telechelic polymers in one pot (Patton et al., 2005; You et al., 2007; Pafiti et al., 2010). They are also used in radical polymerization with RAFT (reversible addition fragmentation chain transfer) reactions (Le et al., 1998). Telechelic polymers, defined as macromolecules with two reactive end groups, have been used for multiple purposes (Tasdelen et al., 2011) including block copolymer synthesis (Goethals, 1989). A perspective view of the molecule of the title compund, showing the atomic numbering scheme, is given in Fig. 1. Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The molecular system has an inversion center and it is located at the center of the thiobenzoyl ring. The benzene rings bridged by the thio (C6—C7—S1—C8—C11) moiety are tilted to each other by a dihedral angle of 76.64 (15)°. The crystal packing shows no classical hydrogen bonds and it is stabilized by weak C—H···S intermolecular interactions, forming C(5) chains (Etter, 1990) along [001] (see Fig. 2; Etter, 1990). The C5 atom of the benzene ring at (x,y,z) acts as hydrogen-bond donors to S2 atom at (x, -y + 1/2, z - 1/2) (see Table 1; Nardelli, 1995).