organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(1,4-Phenyl­ene)bis­­(propane-2,2-di­yl) bis­­(benzodi­thio­ate)

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, bPrograma de Ingenieria Agroindustrial, Universidad San Buenaventura, AA 7154, Santiago de Cali, Colombia, cCase Western Reserve University, Department of Macromolecular Science and Engineering, 2100 Adelbert Road, Kent Hale Smith Bldg, Cleveland, Ohio 44106, USA, and dInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 28 October 2013; accepted 26 December 2013; online 8 January 2014)

The title compound, C26H26S4, shows a dihedral angle of 76.64 (15)° between the central and peripheral benzene rings. An inversion center is located at the centroid of the thio­benzoyl ring. In the crystal, weak C—H⋯S inter­actions form C(5) chains along [001]. There are no classical hydrogen bonds.

Related literature

For control of the behavior of polymerization reactions, see: Patton et al. (2005[Patton, D. L., Mullings, M., Fulghum, T. & Advincula, R. C. (2005). Macromolecules, 38, 8597-8602.]); You et al. (2007[You, Y. Z., Zhou, Q. H., Manickam, D. S., Wan, L., Mao, G. Z. & Oupicky, D. (2007). Macromolecules, 40, 8617-8624.]); Pafiti et al. (2010[Pafiti, K. S., Loizou, E., Patrickios, C. S. & Porcar, L. (2010). Macromolecules, 43, 5195-5204.]). For radical polymerization with RAFT reactions, see: Le et al. (1998[Le, T. P., Moad, G., Rizzardo, E. & Thang, S. H. (1998). PCT Int. Appl. WO 9801478, A1, 980115.]). For telechelic polymers, see: Tasdelen et al. (2011[Tasdelen, M. A., Kahveci, M. U. & Yagci, Y. (2011). Prog. Polym. Sci. 36, 455-567.]); Goethals (1989[Goethals, E. J. (1989). Telechelic Polymers: Synthesis and Applications. Boca Raton: CRC Press.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26S4

  • Mr = 466.75

  • Monoclinic, P 21 /c

  • a = 8.6981 (6) Å

  • b = 11.7074 (7) Å

  • c = 12.5612 (6) Å

  • β = 107.626 (4)°

  • V = 1219.08 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 295 K

  • 0.41 × 0.29 × 0.16 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.874, Tmax = 0.939

  • 4051 measured reflections

  • 2160 independent reflections

  • 1775 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.091

  • S = 1.03

  • 2160 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S2i 0.93 2.94 3.489 (2) 119
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound belongs to a series of difunctional compounds that can be used to control the behavior of polymerization reactions to produce straight forward functional telechelic polymers in one pot (Patton et al., 2005; You et al., 2007; Pafiti et al., 2010). They are also used in radical polymerization with RAFT (reversible addition fragmentation chain transfer) reactions (Le et al., 1998). Telechelic polymers, defined as macromolecules with two reactive end groups, have been used for multiple purposes (Tasdelen et al., 2011) including block copolymer synthesis (Goethals, 1989). A perspective view of the molecule of the title compund, showing the atomic numbering scheme, is given in Fig. 1. Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The molecular system has an inversion center and it is located at the center of the thiobenzoyl ring. The benzene rings bridged by the thio (C6—C7—S1—C8—C11) moiety are tilted to each other by a dihedral angle of 76.64 (15)°. The crystal packing shows no classical hydrogen bonds and it is stabilized by weak C—H···S intermolecular interactions, forming C(5) chains (Etter, 1990) along [001] (see Fig. 2; Etter, 1990). The C5 atom of the benzene ring at (x,y,z) acts as hydrogen-bond donors to S2 atom at (x, -y + 1/2, z - 1/2) (see Table 1; Nardelli, 1995).

Related literature top

For control of the behavior of polymerization reactions, see: Patton et al. (2005); You et al. (2007); Pafiti et al. (2010). For radical polymerization with RAFT reactions, see: Le et al. (1998). For telechelic polymers, see: Tasdelen et al. (2011); Goethals (1989). For hydrogen bonding, see: Nardelli (1995). For graph-set motifs, see: Etter (1990). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The synthesis of the mentioned compound was accomplished following a procedure already reported (Le et al., 1998; Patton et al., 2005). A mixture of dithiobenzoic acid (5.00 g, 32.4 mmol) and 1,4-diisopropenylbenzene (2.44 g, 15.4 mmol) in carbon tetrachloride (40 ml) was heated at 348 K for 20 h. The volatiles were removed under reduced pressure and the oily product was mixed with 1:2 diethyl ether/hexane to isolate the product as a pink solid (40%).

Refinement top

All H-atoms were placed in calculated positions [C—H= 0.95 Å for aromatic and C—H= 0.96 Å for methyl group] and refined with Uiso(H) 1.2 and 1.5 times Ueq of the parent atom, respectively.

Structure description top

The title compound belongs to a series of difunctional compounds that can be used to control the behavior of polymerization reactions to produce straight forward functional telechelic polymers in one pot (Patton et al., 2005; You et al., 2007; Pafiti et al., 2010). They are also used in radical polymerization with RAFT (reversible addition fragmentation chain transfer) reactions (Le et al., 1998). Telechelic polymers, defined as macromolecules with two reactive end groups, have been used for multiple purposes (Tasdelen et al., 2011) including block copolymer synthesis (Goethals, 1989). A perspective view of the molecule of the title compund, showing the atomic numbering scheme, is given in Fig. 1. Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The molecular system has an inversion center and it is located at the center of the thiobenzoyl ring. The benzene rings bridged by the thio (C6—C7—S1—C8—C11) moiety are tilted to each other by a dihedral angle of 76.64 (15)°. The crystal packing shows no classical hydrogen bonds and it is stabilized by weak C—H···S intermolecular interactions, forming C(5) chains (Etter, 1990) along [001] (see Fig. 2; Etter, 1990). The C5 atom of the benzene ring at (x,y,z) acts as hydrogen-bond donors to S2 atom at (x, -y + 1/2, z - 1/2) (see Table 1; Nardelli, 1995).

For control of the behavior of polymerization reactions, see: Patton et al. (2005); You et al. (2007); Pafiti et al. (2010). For radical polymerization with RAFT reactions, see: Le et al. (1998). For telechelic polymers, see: Tasdelen et al. (2011); Goethals (1989). For hydrogen bonding, see: Nardelli (1995). For graph-set motifs, see: Etter (1990). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 2012) plot of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Atoms labelled with suffix "a" are generated by an inversion center via operation (1-x, 1-y, -z).
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of chains of molecules running along [001]. Symmetry code: (i) x,-y + 1/2,z + 1/2. (ii) x,-y + 1/2,z - 1/2.
2,2'-(1,4-Phenylene)bis(propane-2,2-diyl) bis(benzodithioate) top
Crystal data top
C26H26S4Z = 2
Mr = 466.75F(000) = 492
Monoclinic, P21/cDx = 1.272 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.6981 (6) ÅCell parameters from 4051 reflections
b = 11.7074 (7) ŵ = 0.40 mm1
c = 12.5612 (6) ÅT = 295 K
β = 107.626 (4)°Block, pink
V = 1219.08 (13) Å30.41 × 0.29 × 0.16 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2160 independent reflections
Radiation source: fine-focus sealed tube1775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
CCD rotation images, thick slices scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1010
Tmin = 0.874, Tmax = 0.939k = 1213
4051 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.3633P]
where P = (Fo2 + 2Fc2)/3
2160 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H26S4V = 1219.08 (13) Å3
Mr = 466.75Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.6981 (6) ŵ = 0.40 mm1
b = 11.7074 (7) ÅT = 295 K
c = 12.5612 (6) Å0.41 × 0.29 × 0.16 mm
β = 107.626 (4)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2160 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1775 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.939Rint = 0.021
4051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
2160 reflectionsΔρmin = 0.22 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50091 (6)0.16376 (4)0.06933 (4)0.04958 (17)
S20.75578 (8)0.23202 (6)0.03441 (5)0.0685 (2)
C10.9423 (3)0.0464 (2)0.13247 (19)0.0610 (6)
H10.96170.05650.06420.073*
C21.0454 (3)0.0191 (2)0.2131 (2)0.0754 (7)
H21.13320.05410.19900.090*
C31.0198 (3)0.0335 (2)0.3155 (2)0.0754 (7)
H31.09040.07780.37040.091*
C40.8906 (3)0.0175 (2)0.33591 (18)0.0644 (6)
H40.87360.00810.40500.077*
C50.7852 (3)0.08278 (17)0.25504 (16)0.0526 (5)
H50.69750.11710.26990.063*
C60.8086 (2)0.09805 (15)0.15112 (16)0.0456 (4)
C70.6960 (2)0.16592 (15)0.06088 (16)0.0462 (5)
C80.3740 (2)0.26543 (15)0.03377 (16)0.0462 (4)
C90.3421 (3)0.21941 (19)0.15129 (18)0.0668 (6)
H9A0.29860.14360.15540.100*
H9B0.44130.21740.16990.100*
H9C0.26630.26810.20300.100*
C100.2164 (3)0.26165 (19)0.0017 (2)0.0628 (6)
H10A0.23610.29060.07270.094*
H10B0.17890.18420.00500.094*
H10C0.13600.30780.05290.094*
C110.4441 (2)0.38607 (15)0.01603 (14)0.0388 (4)
C120.4914 (2)0.43533 (16)0.08868 (15)0.0446 (4)
H120.48610.39260.14990.054*
C130.4535 (2)0.45299 (16)0.10490 (15)0.0439 (4)
H130.42220.42250.17660.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0527 (3)0.0368 (3)0.0662 (3)0.0003 (2)0.0284 (2)0.0081 (2)
S20.0734 (4)0.0679 (4)0.0797 (4)0.0051 (3)0.0461 (3)0.0187 (3)
C10.0580 (13)0.0617 (13)0.0683 (13)0.0053 (11)0.0264 (11)0.0067 (11)
C20.0560 (14)0.0766 (17)0.0882 (18)0.0152 (12)0.0138 (13)0.0131 (14)
C30.0697 (16)0.0678 (16)0.0714 (16)0.0058 (13)0.0046 (13)0.0023 (13)
C40.0687 (15)0.0667 (14)0.0507 (12)0.0063 (12)0.0077 (11)0.0045 (11)
C50.0566 (12)0.0493 (11)0.0532 (11)0.0037 (9)0.0186 (10)0.0082 (9)
C60.0502 (10)0.0342 (9)0.0551 (11)0.0045 (8)0.0200 (9)0.0074 (8)
C70.0551 (11)0.0340 (9)0.0564 (11)0.0011 (8)0.0270 (9)0.0042 (8)
C80.0493 (11)0.0349 (9)0.0540 (11)0.0059 (8)0.0150 (9)0.0007 (8)
C90.0871 (17)0.0466 (12)0.0601 (13)0.0201 (12)0.0124 (12)0.0129 (10)
C100.0485 (12)0.0508 (12)0.0889 (16)0.0078 (9)0.0207 (12)0.0033 (11)
C110.0379 (9)0.0333 (9)0.0461 (10)0.0006 (7)0.0140 (8)0.0014 (8)
C120.0551 (11)0.0391 (10)0.0414 (10)0.0035 (9)0.0171 (8)0.0040 (8)
C130.0524 (11)0.0396 (10)0.0391 (9)0.0037 (8)0.0129 (8)0.0040 (8)
Geometric parameters (Å, º) top
S1—C71.7325 (19)C8—C91.516 (3)
S1—C81.857 (2)C8—C111.528 (2)
S2—C71.6366 (19)C8—C101.541 (3)
C1—C21.367 (3)C9—H9A0.9600
C1—C61.393 (3)C9—H9B0.9600
C1—H10.9300C9—H9C0.9600
C2—C31.380 (4)C10—H10A0.9600
C2—H20.9300C10—H10B0.9600
C3—C41.364 (3)C10—H10C0.9600
C3—H30.9300C11—C121.380 (2)
C4—C51.376 (3)C11—C131.386 (2)
C4—H40.9300C12—C13i1.386 (3)
C5—C61.392 (3)C12—H120.9300
C5—H50.9300C13—C12i1.386 (3)
C6—C71.484 (3)C13—H130.9300
C7—S1—C8109.55 (9)C9—C8—S1110.25 (14)
C2—C1—C6120.9 (2)C11—C8—S1111.34 (13)
C2—C1—H1119.6C10—C8—S1100.81 (13)
C6—C1—H1119.6C8—C9—H9A109.5
C1—C2—C3120.3 (2)C8—C9—H9B109.5
C1—C2—H2119.9H9A—C9—H9B109.5
C3—C2—H2119.9C8—C9—H9C109.5
C4—C3—C2119.8 (2)H9A—C9—H9C109.5
C4—C3—H3120.1H9B—C9—H9C109.5
C2—C3—H3120.1C8—C10—H10A109.5
C3—C4—C5120.5 (2)C8—C10—H10B109.5
C3—C4—H4119.8H10A—C10—H10B109.5
C5—C4—H4119.8C8—C10—H10C109.5
C4—C5—C6120.7 (2)H10A—C10—H10C109.5
C4—C5—H5119.7H10B—C10—H10C109.5
C6—C5—H5119.7C12—C11—C13117.27 (16)
C5—C6—C1117.94 (19)C12—C11—C8121.06 (16)
C5—C6—C7122.36 (17)C13—C11—C8121.55 (16)
C1—C6—C7119.70 (18)C11—C12—C13i121.62 (16)
C6—C7—S2121.99 (14)C11—C12—H12119.2
C6—C7—S1112.15 (13)C13i—C12—H12119.2
S2—C7—S1125.85 (13)C11—C13—C12i121.12 (17)
C9—C8—C11114.68 (16)C11—C13—H13119.4
C9—C8—C10109.22 (18)C12i—C13—H13119.4
C11—C8—C10109.63 (16)
C6—C1—C2—C31.1 (4)C7—S1—C8—C971.76 (16)
C1—C2—C3—C40.3 (4)C7—S1—C8—C1156.71 (15)
C2—C3—C4—C50.3 (4)C7—S1—C8—C10172.92 (13)
C3—C4—C5—C60.1 (3)C9—C8—C11—C12174.69 (18)
C4—C5—C6—C10.7 (3)C10—C8—C11—C1262.0 (2)
C4—C5—C6—C7178.79 (18)S1—C8—C11—C1248.6 (2)
C2—C1—C6—C51.2 (3)C9—C8—C11—C139.4 (3)
C2—C1—C6—C7178.2 (2)C10—C8—C11—C13113.8 (2)
C5—C6—C7—S2151.88 (16)S1—C8—C11—C13135.50 (16)
C1—C6—C7—S228.7 (3)C13—C11—C12—C13i0.2 (3)
C5—C6—C7—S128.9 (2)C8—C11—C12—C13i176.23 (17)
C1—C6—C7—S1150.59 (16)C12—C11—C13—C12i0.2 (3)
C8—S1—C7—C6172.46 (12)C8—C11—C13—C12i176.21 (17)
C8—S1—C7—S28.33 (16)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S2ii0.932.943.489 (2)119
Symmetry code: (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S2i0.932.943.489 (2)119
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, and CG thanks the Universidad de San Buenaventura, Cali, Colombia, for partial financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoethals, E. J. (1989). Telechelic Polymers: Synthesis and Applications. Boca Raton: CRC Press.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLe, T. P., Moad, G., Rizzardo, E. & Thang, S. H. (1998). PCT Int. Appl. WO 9801478, A1, 980115.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPafiti, K. S., Loizou, E., Patrickios, C. S. & Porcar, L. (2010). Macromolecules, 43, 5195–5204.  Web of Science CrossRef CAS Google Scholar
First citationPatton, D. L., Mullings, M., Fulghum, T. & Advincula, R. C. (2005). Macromolecules, 38, 8597–8602.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTasdelen, M. A., Kahveci, M. U. & Yagci, Y. (2011). Prog. Polym. Sci. 36, 455–567.  Web of Science CrossRef CAS Google Scholar
First citationYou, Y. Z., Zhou, Q. H., Manickam, D. S., Wan, L., Mao, G. Z. & Oupicky, D. (2007). Macromolecules, 40, 8617–8624.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds