organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o230-o231

2-(4-Chloro-2-nitro­phen­yl)-4-meth­­oxy-9-phenyl­sulfonyl-9H-carbazole-3-carbaldehyde

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 3 January 2014; accepted 25 January 2014; online 31 January 2014)

In the sterically hindered title compound, C26H17ClN2O6S, the carbazole ring has a maximum deviation from planarity of 0.067 (4) Å for the C atom connected to the aldehyde group. The carbazole moiety forms a dihedral angle of 72.8 (1)° with the nitro-substituted benzene ring. The O atom of the meth­oxy group deviates by 0.186 (1) Å from the adjacent carbazole moiety. The phenyl­sulfonyl group forms intra­molecular C—H⋯O bonds between sulfone O atoms and the carbazole moiety, resulting in two S(6) rings. In the crystal, the nitrated benzene rings are linked via C—H⋯O inter­actions forming infinite C(7) chains along [100]. The crystal packing is also characterized by C—H⋯π inter­actions, which result in inversion dimers.

Related literature

For the biological activities and uses of carbazole derivatives, see: Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Ramsewak et al.(1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). For their electronic properties and applications, see: Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-127.]); Zhang et al. (2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). For related structures, see: Gopinath et al.(2013[Gopinath, S., Sethusankar, K., Ramalingam, B. M. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o1420-o1421.]). For the Thorpe–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For bond-length distortions, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H17ClN2O6S

  • Mr = 520.94

  • Triclinic, [P \overline 1]

  • a = 8.1937 (5) Å

  • b = 11.6112 (8) Å

  • c = 12.4346 (9) Å

  • α = 93.886 (2)°

  • β = 93.952 (3)°

  • γ = 97.772 (2)°

  • V = 1165.80 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.942

  • 20355 measured reflections

  • 4582 independent reflections

  • 3911 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.152

  • S = 1.04

  • 4582 reflections

  • 326 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C19–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.37 2.955 (3) 121
C11—H11⋯O2 0.93 2.31 2.902 (3) 121
C15—H15⋯O3i 0.93 2.55 3.444 (4) 161
C4—H4⋯Cg1ii 0.93 2.94 3.715 (3) 142
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole and its derivative have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exhibit various biological activities such as antitumor (Itoigawa, et al. 2000), anti-inflammatory and antimutagenic (Ramsewak, et al. 1999). Carbazole derivatives also exhibit electroactivity and luminenscence and are considered to be potential candidates for electronic applications such as colour displays, organic, semiconductors, laser and solar cells (Friend, et al. 1999; Zhang et al. 2004).

The title compound, C26H17ClN2O6S, comprises a carbazole ring system which is attached to a phenylsulfonyl ring, a chlorine substituted nitrophenyl ring, a methoxy group and a carbaldehyde group. The carbazole ring system is essentially planar with maximum deviation of 0.067 (4) Å for the carbon atom (C9), which is connected to the aldehyde group. The methoxy group oxygen atom(O5) and carbaldehyde group carbon atom (C26) are deviate from the carbazole ring system by 0.1860 (9) Å and 0.1767 (3) Å, respectively. The carbazole ring system make dihedral angles of 72.81 (11)° and 78.74 (11)° with the nitrophenyl ring(C13–C18) and sulfonyl sustituted phenylring(C19–C24), respectively.

The atom S1 has a distorted tetrahedral configuration. The widening of angle O2—S1—O1 [120.52 (12) °] and narrowing of angle N1—S1—C19 [104.80 (11)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, 1984). As a result of electron-withdrawing character of the phenylsulfonyl group, the bond lengths N1–C1 = 1.429 (3) Å and N1–C12 = 1.418 (3) Å in the molecule are longer than the mean value of 1.355 (14) Å (Allen, et al. 1987). The sum of the bond angles around N1 [350.5°] indicate the sp2 hybridization. The chlorine atom Cl1 deviated by -0.0246 (9) Å from the phenyl ring (C13–C18).

The molecular structure is stabilized by C2—H2···O1, C11—H11···O2 intramolecular interactions formed by the sulfone oxygen atoms, which generate two S(6) ring motifs (Fig-1). In the crystal packing, molecules are linked via C15—H15···O3i intermolecular hydrogen bonding, which generate C(7) infinite one dimensional chain running parallel to base vector [1 0 0]. The crystal packing is further stabilized by C4—H4···Cg1ii intermolecular interaction, which results in centrosymmetric dimers (Bernstein, et al. 1995). The packing view of the title compound is shown in Fig-2 and Fig-3. Symmetry code: (i). 1 + x, y, z. (ii). 1 - x, 2 - y, 1 - z.

Related literature top

For the biological activities and uses of carbazole derivatives, see: Itoigawa et al. (2000); Ramsewak et al.(1999). For their electronic properties and applications, see: Friend et al. (1999); Zhang et al. (2004). For related structures, see: Gopinath et al.(2013). For the Thorpe–Ingold effect, see: Bassindale (1984). For bond-length distortions, see: Allen et al. (1987). For graph-set notation: Bernstein et al. (1995).

Experimental top

A solution of 3-(bromomethyl)-2-(4-chloro-2-nitrophenyl)- 4-methoxy-9-(phenylsulfonyl)-9H-carbazole (1.50 g, 2.5 mmol) and bis(tetrabutylammonium) dichromate (2.63 g, 3.75 mmol) in dry CHCl3 (50 ml) was refluxed for 10 h. The susequent removal of solvent in vacuo followed by column chromatographic (silica gel; hexane-ethyl acetate, 4:1) purification afforded 9-(phenylsulfonyl)-2-(4-chloro- 2-nitrophenyl)-4-methoxy-9H-carbazole-3-carbaldehyde (1.08 g, 81%) as a colourless solid. Single crystal suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform (CHCl3) at room temperature. m.p. 499–501 K.

Refinement top

The positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometrically constrained. The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C—H)=0.93 and Uiso(H) = 1.2Ueq(C) for aromatic and aldehyde group, d(C—H)=0.96 and Uiso(H) =1.5Ueq(C) for methyl group. The rotation angles for methyl group were optimized by least squares.

Structure description top

Carbazole and its derivative have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exhibit various biological activities such as antitumor (Itoigawa, et al. 2000), anti-inflammatory and antimutagenic (Ramsewak, et al. 1999). Carbazole derivatives also exhibit electroactivity and luminenscence and are considered to be potential candidates for electronic applications such as colour displays, organic, semiconductors, laser and solar cells (Friend, et al. 1999; Zhang et al. 2004).

The title compound, C26H17ClN2O6S, comprises a carbazole ring system which is attached to a phenylsulfonyl ring, a chlorine substituted nitrophenyl ring, a methoxy group and a carbaldehyde group. The carbazole ring system is essentially planar with maximum deviation of 0.067 (4) Å for the carbon atom (C9), which is connected to the aldehyde group. The methoxy group oxygen atom(O5) and carbaldehyde group carbon atom (C26) are deviate from the carbazole ring system by 0.1860 (9) Å and 0.1767 (3) Å, respectively. The carbazole ring system make dihedral angles of 72.81 (11)° and 78.74 (11)° with the nitrophenyl ring(C13–C18) and sulfonyl sustituted phenylring(C19–C24), respectively.

The atom S1 has a distorted tetrahedral configuration. The widening of angle O2—S1—O1 [120.52 (12) °] and narrowing of angle N1—S1—C19 [104.80 (11)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, 1984). As a result of electron-withdrawing character of the phenylsulfonyl group, the bond lengths N1–C1 = 1.429 (3) Å and N1–C12 = 1.418 (3) Å in the molecule are longer than the mean value of 1.355 (14) Å (Allen, et al. 1987). The sum of the bond angles around N1 [350.5°] indicate the sp2 hybridization. The chlorine atom Cl1 deviated by -0.0246 (9) Å from the phenyl ring (C13–C18).

The molecular structure is stabilized by C2—H2···O1, C11—H11···O2 intramolecular interactions formed by the sulfone oxygen atoms, which generate two S(6) ring motifs (Fig-1). In the crystal packing, molecules are linked via C15—H15···O3i intermolecular hydrogen bonding, which generate C(7) infinite one dimensional chain running parallel to base vector [1 0 0]. The crystal packing is further stabilized by C4—H4···Cg1ii intermolecular interaction, which results in centrosymmetric dimers (Bernstein, et al. 1995). The packing view of the title compound is shown in Fig-2 and Fig-3. Symmetry code: (i). 1 + x, y, z. (ii). 1 - x, 2 - y, 1 - z.

For the biological activities and uses of carbazole derivatives, see: Itoigawa et al. (2000); Ramsewak et al.(1999). For their electronic properties and applications, see: Friend et al. (1999); Zhang et al. (2004). For related structures, see: Gopinath et al.(2013). For the Thorpe–Ingold effect, see: Bassindale (1984). For bond-length distortions, see: Allen et al. (1987). For graph-set notation: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius. The intramolecular C—H···O hydrogen bonds, which are generate S(6) ring motifs, shown as a dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. Part of the crystal packing of the title compound viewed down b axis. The dashed lines indicate C15—H15···O3i intermolecular hydrogen bonding, which generate C(7) infinite one dimensional chain running parallel to base vector [1 0 0]. Symmetry code: (i). 1 + x, y, z.
[Figure 3] Fig. 3. Part of the crystal packing of the title compound viewed down c axis. The dashed lines indicate C4—H4···Cg1ii interactions, where cg1 is the centre gravity of (C19–C24). Symmetry code: (ii). 1 - x, 2 - y, 1 - z.
2-(4-Chloro-2-nitrophenyl)-4-methoxy-9-phenylsulfonyl-9H-carbazole-3-carbaldehyde top
Crystal data top
C26H17ClN2O6SZ = 2
Mr = 520.94F(000) = 536
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1937 (5) ÅCell parameters from 3911 reflections
b = 11.6112 (8) Åθ = 1.7–26.0°
c = 12.4346 (9) ŵ = 0.30 mm1
α = 93.886 (2)°T = 296 K
β = 93.952 (3)°Block, colourless
γ = 97.772 (2)°0.25 × 0.25 × 0.20 mm
V = 1165.80 (14) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4582 independent reflections
Radiation source: fine-focus sealed tube3911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω & φ scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.928, Tmax = 0.942k = 1414
20355 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.066P)2 + 1.5141P]
where P = (Fo2 + 2Fc2)/3
4582 reflections(Δ/σ)max = 0.004
326 parametersΔρmax = 1.00 e Å3
1 restraintΔρmin = 0.55 e Å3
Crystal data top
C26H17ClN2O6Sγ = 97.772 (2)°
Mr = 520.94V = 1165.80 (14) Å3
Triclinic, P1Z = 2
a = 8.1937 (5) ÅMo Kα radiation
b = 11.6112 (8) ŵ = 0.30 mm1
c = 12.4346 (9) ÅT = 296 K
α = 93.886 (2)°0.25 × 0.25 × 0.20 mm
β = 93.952 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3911 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.942Rint = 0.026
20355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.152H-atom parameters constrained
S = 1.04Δρmax = 1.00 e Å3
4582 reflectionsΔρmin = 0.55 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7875 (3)1.0463 (2)0.4054 (2)0.0331 (5)
C20.7602 (4)1.1615 (2)0.4210 (2)0.0434 (6)
H20.78251.21390.36890.052*
C30.6986 (4)1.1949 (3)0.5170 (3)0.0484 (7)
H30.67891.27150.52950.058*
C40.6655 (4)1.1179 (3)0.5950 (2)0.0519 (7)
H40.62441.14340.65890.062*
C50.6926 (4)1.0039 (3)0.5794 (2)0.0502 (7)
H50.66960.95210.63210.060*
C60.7551 (3)0.9672 (2)0.4836 (2)0.0372 (6)
C70.7947 (3)0.8559 (2)0.4413 (2)0.0378 (6)
C80.7786 (5)0.7452 (3)0.4785 (3)0.0550 (8)
C90.8216 (5)0.6511 (3)0.4157 (3)0.0541 (8)
C100.8860 (3)0.6700 (2)0.3155 (2)0.0384 (6)
C110.9044 (3)0.7800 (2)0.2777 (2)0.0344 (5)
H110.94940.79280.21210.041*
C120.8542 (3)0.8706 (2)0.3397 (2)0.0313 (5)
C130.9424 (3)0.5760 (2)0.2451 (2)0.0379 (6)
C141.1098 (4)0.5799 (2)0.2345 (3)0.0457 (7)
H141.18220.63990.27250.055*
C151.1740 (4)0.4983 (3)0.1700 (3)0.0500 (7)
H151.28740.50350.16460.060*
C161.0675 (4)0.4088 (2)0.1134 (2)0.0424 (6)
C170.9005 (4)0.4010 (2)0.1208 (2)0.0451 (7)
H170.82860.34030.08350.054*
C180.8413 (3)0.4851 (2)0.1845 (3)0.0434 (6)
C190.6070 (3)0.9713 (2)0.15423 (19)0.0343 (5)
C200.4916 (4)1.0486 (3)0.1531 (2)0.0440 (6)
H200.52341.12770.17220.053*
C210.3274 (4)1.0045 (3)0.1228 (3)0.0544 (8)
H210.24821.05480.12150.065*
C220.2810 (4)0.8885 (3)0.0951 (2)0.0535 (8)
H220.17080.86050.07440.064*
C230.3965 (4)0.8121 (3)0.0974 (3)0.0516 (7)
H230.36360.73290.07930.062*
C240.5606 (4)0.8532 (2)0.1265 (2)0.0419 (6)
H240.63910.80230.12750.050*
C250.8105 (7)0.7460 (5)0.6582 (5)0.1012 (16)
H25A0.88530.68930.65520.152*
H25B0.75460.74100.72340.152*
H25C0.87120.82270.65720.152*
C260.7960 (8)0.5343 (3)0.4572 (4)0.1036 (19)
H260.75340.52950.52450.124*
N10.8522 (3)0.98826 (17)0.31621 (17)0.0342 (5)
N20.6608 (4)0.4752 (3)0.1854 (3)0.0768 (10)
O10.8401 (3)1.14723 (16)0.19275 (16)0.0466 (5)
O20.9140 (2)0.95808 (17)0.12450 (15)0.0428 (5)
O30.5979 (3)0.5591 (3)0.2093 (3)0.1015 (12)
O40.5802 (4)0.3792 (3)0.1634 (5)0.154 (2)
O50.6999 (4)0.7255 (2)0.5730 (2)0.0744 (8)
O60.8242 (7)0.4466 (2)0.4137 (3)0.141 (2)
S10.81663 (8)1.02362 (5)0.18874 (5)0.03341 (18)
Cl11.14424 (12)0.30394 (8)0.03361 (7)0.0654 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (13)0.0314 (12)0.0331 (12)0.0020 (10)0.0000 (10)0.0008 (10)
C20.0545 (17)0.0313 (13)0.0444 (15)0.0062 (12)0.0046 (13)0.0021 (11)
C30.0570 (18)0.0357 (14)0.0514 (17)0.0095 (13)0.0009 (14)0.0090 (12)
C40.065 (2)0.0505 (17)0.0398 (15)0.0098 (15)0.0102 (14)0.0083 (13)
C50.070 (2)0.0471 (16)0.0356 (14)0.0105 (14)0.0122 (14)0.0028 (12)
C60.0422 (15)0.0345 (13)0.0344 (13)0.0054 (11)0.0000 (11)0.0011 (10)
C70.0462 (15)0.0342 (13)0.0338 (13)0.0078 (11)0.0039 (11)0.0030 (10)
C80.083 (2)0.0384 (15)0.0467 (15)0.0128 (15)0.0127 (14)0.0115 (12)
C90.083 (2)0.0346 (15)0.0483 (17)0.0134 (15)0.0137 (16)0.0107 (12)
C100.0424 (15)0.0315 (13)0.0416 (14)0.0068 (11)0.0011 (11)0.0029 (11)
C110.0380 (14)0.0317 (12)0.0340 (13)0.0063 (10)0.0037 (10)0.0029 (10)
C120.0321 (12)0.0287 (12)0.0330 (12)0.0039 (9)0.0002 (10)0.0051 (9)
C130.0414 (15)0.0288 (12)0.0437 (14)0.0078 (10)0.0013 (11)0.0041 (10)
C140.0398 (15)0.0381 (14)0.0562 (17)0.0025 (12)0.0049 (13)0.0029 (12)
C150.0375 (15)0.0467 (16)0.067 (2)0.0091 (12)0.0048 (14)0.0014 (14)
C160.0503 (17)0.0363 (14)0.0434 (15)0.0147 (12)0.0053 (12)0.0043 (11)
C170.0487 (17)0.0332 (14)0.0514 (17)0.0059 (12)0.0034 (13)0.0032 (12)
C180.0374 (15)0.0356 (14)0.0565 (17)0.0063 (11)0.0004 (12)0.0007 (12)
C190.0346 (13)0.0411 (14)0.0287 (12)0.0080 (10)0.0058 (10)0.0048 (10)
C200.0466 (16)0.0479 (16)0.0408 (15)0.0157 (13)0.0076 (12)0.0052 (12)
C210.0412 (17)0.081 (2)0.0471 (17)0.0253 (16)0.0075 (13)0.0091 (16)
C220.0366 (16)0.080 (2)0.0419 (16)0.0023 (15)0.0028 (12)0.0049 (15)
C230.0493 (18)0.0541 (18)0.0470 (17)0.0043 (14)0.0021 (13)0.0020 (13)
C240.0422 (15)0.0421 (15)0.0416 (15)0.0069 (12)0.0037 (12)0.0021 (11)
C250.092 (4)0.086 (3)0.125 (5)0.022 (3)0.014 (3)0.007 (3)
C260.204 (6)0.043 (2)0.076 (3)0.030 (3)0.057 (3)0.0231 (19)
N10.0417 (12)0.0282 (10)0.0333 (11)0.0057 (9)0.0041 (9)0.0042 (8)
N20.0408 (16)0.0591 (18)0.124 (3)0.0025 (14)0.0016 (17)0.0289 (19)
O10.0576 (13)0.0341 (10)0.0481 (11)0.0005 (9)0.0046 (9)0.0139 (8)
O20.0412 (10)0.0512 (11)0.0402 (10)0.0128 (9)0.0144 (8)0.0102 (8)
O30.0417 (14)0.081 (2)0.174 (3)0.0164 (13)0.0013 (17)0.047 (2)
O40.0548 (19)0.092 (3)0.296 (6)0.0152 (17)0.022 (3)0.077 (3)
O50.116 (2)0.0623 (15)0.0496 (13)0.0163 (15)0.0204 (14)0.0153 (11)
O60.301 (6)0.0359 (15)0.105 (3)0.040 (2)0.090 (3)0.0241 (15)
S10.0359 (3)0.0318 (3)0.0338 (3)0.0044 (2)0.0069 (2)0.0082 (2)
Cl10.0788 (6)0.0592 (5)0.0625 (5)0.0269 (4)0.0160 (4)0.0087 (4)
Geometric parameters (Å, º) top
C1—C21.388 (4)C16—C171.369 (4)
C1—C61.396 (4)C16—Cl11.730 (3)
C1—N11.429 (3)C17—C181.375 (4)
C2—C31.380 (4)C17—H170.9300
C2—H20.9300C18—N21.469 (4)
C3—C41.379 (4)C19—C241.386 (4)
C3—H30.9300C19—C201.389 (4)
C4—C51.375 (4)C19—S11.756 (3)
C4—H40.9300C20—C211.390 (4)
C5—C61.391 (4)C20—H200.9300
C5—H50.9300C21—C221.364 (5)
C6—C71.449 (4)C21—H210.9300
C7—C81.389 (4)C22—C231.382 (5)
C7—C121.398 (4)C22—H220.9300
C8—O51.396 (4)C23—C241.380 (4)
C8—C91.398 (4)C23—H230.9300
C9—C101.406 (4)C24—H240.9300
C9—C261.477 (5)C25—O51.332 (6)
C10—C111.384 (4)C25—H25A0.9600
C10—C131.494 (4)C25—H25B0.9600
C11—C121.387 (3)C25—H25C0.9600
C11—H110.9300C26—O61.178 (5)
C12—N11.418 (3)C26—H260.9300
C13—C141.382 (4)N1—S11.680 (2)
C13—C181.392 (4)N2—O31.193 (4)
C14—C151.382 (4)N2—O41.220 (4)
C14—H140.9300O1—S11.4191 (19)
C15—C161.380 (4)O2—S11.4226 (19)
C15—H150.9300
C2—C1—C6121.7 (2)C15—C16—Cl1120.2 (2)
C2—C1—N1129.6 (2)C16—C17—C18118.5 (3)
C6—C1—N1108.7 (2)C16—C17—H17120.8
C3—C2—C1117.3 (3)C18—C17—H17120.8
C3—C2—H2121.4C17—C18—C13123.6 (3)
C1—C2—H2121.4C17—C18—N2116.1 (3)
C4—C3—C2121.8 (3)C13—C18—N2120.3 (3)
C4—C3—H3119.1C24—C19—C20121.3 (3)
C2—C3—H3119.1C24—C19—S1118.9 (2)
C5—C4—C3120.8 (3)C20—C19—S1119.8 (2)
C5—C4—H4119.6C19—C20—C21118.2 (3)
C3—C4—H4119.6C19—C20—H20120.9
C4—C5—C6118.9 (3)C21—C20—H20120.9
C4—C5—H5120.5C22—C21—C20120.8 (3)
C6—C5—H5120.5C22—C21—H21119.6
C5—C6—C1119.5 (3)C20—C21—H21119.6
C5—C6—C7133.1 (3)C21—C22—C23120.6 (3)
C1—C6—C7107.4 (2)C21—C22—H22119.7
C8—C7—C12118.4 (2)C23—C22—H22119.7
C8—C7—C6133.6 (3)C24—C23—C22120.0 (3)
C12—C7—C6107.9 (2)C24—C23—H23120.0
C7—C8—O5119.2 (3)C22—C23—H23120.0
C7—C8—C9120.5 (3)C23—C24—C19119.1 (3)
O5—C8—C9119.8 (3)C23—C24—H24120.5
C8—C9—C10119.4 (3)C19—C24—H24120.5
C8—C9—C26118.3 (3)O5—C25—H25A109.5
C10—C9—C26122.2 (3)O5—C25—H25B109.5
C11—C10—C9120.8 (3)H25A—C25—H25B109.5
C11—C10—C13116.0 (2)O5—C25—H25C109.5
C9—C10—C13123.2 (2)H25A—C25—H25C109.5
C10—C11—C12118.5 (2)H25B—C25—H25C109.5
C10—C11—H11120.8O6—C26—C9126.5 (4)
C12—C11—H11120.8O6—C26—H26116.7
C11—C12—C7122.3 (2)C9—C26—H26116.7
C11—C12—N1129.1 (2)C12—N1—C1107.4 (2)
C7—C12—N1108.6 (2)C12—N1—S1121.09 (17)
C14—C13—C18115.5 (3)C1—N1—S1121.81 (17)
C14—C13—C10118.3 (2)O3—N2—O4122.1 (3)
C18—C13—C10126.2 (3)O3—N2—C18119.9 (3)
C13—C14—C15122.7 (3)O4—N2—C18118.0 (3)
C13—C14—H14118.7C25—O5—C8109.6 (4)
C15—C14—H14118.7O1—S1—O2120.52 (12)
C16—C15—C14119.1 (3)O1—S1—N1106.44 (11)
C16—C15—H15120.5O2—S1—N1105.99 (11)
C14—C15—H15120.5O1—S1—C19109.19 (13)
C17—C16—C15120.6 (3)O2—S1—C19108.75 (12)
C17—C16—Cl1119.2 (2)N1—S1—C19104.80 (11)
C6—C1—C2—C30.4 (4)C15—C16—C17—C180.8 (4)
N1—C1—C2—C3178.8 (3)Cl1—C16—C17—C18180.0 (2)
C1—C2—C3—C40.2 (5)C16—C17—C18—C132.2 (5)
C2—C3—C4—C50.2 (5)C16—C17—C18—N2177.4 (3)
C3—C4—C5—C60.4 (5)C14—C13—C18—C172.3 (4)
C4—C5—C6—C10.5 (5)C10—C13—C18—C17179.8 (3)
C4—C5—C6—C7178.8 (3)C14—C13—C18—N2177.2 (3)
C2—C1—C6—C50.6 (4)C10—C13—C18—N20.2 (5)
N1—C1—C6—C5179.3 (3)C24—C19—C20—C210.3 (4)
C2—C1—C6—C7179.2 (2)S1—C19—C20—C21178.4 (2)
N1—C1—C6—C72.1 (3)C19—C20—C21—C220.1 (4)
C5—C6—C7—C83.1 (6)C20—C21—C22—C230.5 (5)
C1—C6—C7—C8175.4 (3)C21—C22—C23—C240.9 (5)
C5—C6—C7—C12180.0 (3)C22—C23—C24—C190.6 (4)
C1—C6—C7—C121.6 (3)C20—C19—C24—C230.0 (4)
C12—C7—C8—O5171.8 (3)S1—C19—C24—C23178.8 (2)
C6—C7—C8—O54.8 (6)C8—C9—C26—O6179.1 (6)
C12—C7—C8—C90.2 (5)C10—C9—C26—O60.3 (9)
C6—C7—C8—C9176.9 (3)C11—C12—N1—C1179.2 (2)
C7—C8—C9—C101.8 (5)C7—C12—N1—C10.8 (3)
O5—C8—C9—C10173.8 (3)C11—C12—N1—S132.7 (4)
C7—C8—C9—C26177.6 (4)C7—C12—N1—S1147.29 (19)
O5—C8—C9—C265.6 (6)C2—C1—N1—C12179.6 (3)
C8—C9—C10—C111.2 (5)C6—C1—N1—C121.8 (3)
C26—C9—C10—C11178.3 (4)C2—C1—N1—S133.4 (4)
C8—C9—C10—C13177.2 (3)C6—C1—N1—S1147.99 (19)
C26—C9—C10—C133.4 (6)C17—C18—N2—O3157.0 (4)
C9—C10—C11—C121.5 (4)C13—C18—N2—O322.6 (6)
C13—C10—C11—C12180.0 (2)C17—C18—N2—O424.4 (6)
C10—C11—C12—C73.6 (4)C13—C18—N2—O4155.9 (5)
C10—C11—C12—N1176.4 (2)C7—C8—O5—C2589.5 (4)
C8—C7—C12—C113.0 (4)C9—C8—O5—C2598.3 (4)
C6—C7—C12—C11179.5 (2)C12—N1—S1—O1174.10 (19)
C8—C7—C12—N1177.0 (3)C1—N1—S1—O144.2 (2)
C6—C7—C12—N10.4 (3)C12—N1—S1—O244.7 (2)
C11—C10—C13—C1469.0 (3)C1—N1—S1—O2173.67 (19)
C9—C10—C13—C14109.5 (3)C12—N1—S1—C1970.3 (2)
C11—C10—C13—C18108.5 (3)C1—N1—S1—C1971.4 (2)
C9—C10—C13—C1873.1 (4)C24—C19—S1—O1168.4 (2)
C18—C13—C14—C151.2 (4)C20—C19—S1—O110.4 (2)
C10—C13—C14—C15178.9 (3)C24—C19—S1—O235.1 (2)
C13—C14—C15—C160.1 (5)C20—C19—S1—O2143.7 (2)
C14—C15—C16—C170.2 (5)C24—C19—S1—N177.9 (2)
C14—C15—C16—Cl1179.0 (2)C20—C19—S1—N1103.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.372.955 (3)121
C11—H11···O20.932.312.902 (3)121
C15—H15···O3i0.932.553.444 (4)161
C4—H4···Cg1ii0.932.943.715 (3)142
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.372.955 (3)121.0
C11—H11···O20.932.312.902 (3)121.0
C15—H15···O3i0.932.553.444 (4)160.8
C4—H4···Cg1ii0.932.943.715 (3)142.0
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior scientific Officer, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.  Web of Science CrossRef CAS Google Scholar
First citationGopinath, S., Sethusankar, K., Ramalingam, B. M. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o1420–o1421.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o230-o231
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds