organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-1,4-dioxo-1,4-di­hydro­naph­thalen-2-yl)-N-propionylpropionamide

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 4 December 2013; accepted 20 December 2013; online 4 January 2014)

In the title mol­ecule, C16H14ClNO4, the four essentially planar atoms of the imide group [r.m.s. deviation = 0.0286 (11) Å] form a dihedral angle of 77.36 (13)° with the naphtho­quinone group [maximun deviation = 0.111 (2) Å for the carbonyl O atom in the naphthalene 1-position] and the two imide carbonyl groups are oriented anti with respect to each other. In the crystal, mol­ecules are connected by weak C—H⋯O hydrogen bonds, as well as ππ stacking inter­actions [centroid–centroid distance = 3.888 (3) Å], forming a three-dimensional network.

Related literature

For the synthesis and biological evaluation of imido-substituted 1,4-naphtho­quinone derivatives, see: Bakare et al. (2003[Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165-3170.]); Berhe et al. (2008[Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug Des. Discov. 5, 485-488.]); Brandy et al. (2013[Brandy, Y., Brandy, N., Akinboye, E., Lewis, M., Mouamba, C., Mack, S., Butcher, R. J., Anderson, A. J. & Bakare, O. (2013). Molecules, 18, 1973-1984.]). For the anti­cancer and anti­trypanosomal activity of related compounds, see: Bakare et al. (2003[Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165-3170.]); Berhe et al. (2008[Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug Des. Discov. 5, 485-488.]); Khraiwesh et al. (2012[Khraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2012). Arch. Pharm. Res. 35, 27-33.]). For a related structure, see: Butcher et al. (2013[Butcher, R. J., Berhe, S., Anderson, A. J. & Bakare, O. (2013). Acta Cryst. E69, o1230.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14ClNO4

  • Mr = 319.73

  • Triclinic, [P \overline 1]

  • a = 8.1362 (9) Å

  • b = 8.2254 (9) Å

  • c = 12.4471 (11) Å

  • α = 98.105 (8)°

  • β = 92.297 (8)°

  • γ = 116.821 (11)°

  • V = 730.88 (15) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.48 mm−1

  • T = 123 K

  • 0.48 × 0.34 × 0.08 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.396, Tmax = 1.000

  • 4648 measured reflections

  • 2908 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.01

  • 2908 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.95 2.59 3.294 (2) 131
C15—H15A⋯O1ii 0.99 2.55 3.442 (2) 150
C16—H16B⋯O4iii 0.98 2.54 3.425 (3) 150
C16—H16C⋯O3iv 0.98 2.60 3.482 (3) 150
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+2, -z+2; (iv) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Our group are involved in the synthesis and biological evaluation of some imido-substituted 1,4-naphthoquinone derivatives (Bakare et al., 2003; Berhe et al., 2008; Brandy et al., 2013), and have previously reported that 2-chloro-3-dipropionylamino-1,4-naphthoquinone and some of its analogs possess inhibitory activities against certain protein kinases (Bakare et al., 2003). This class of compounds have also been shown to possess anticancer (Bakare et al., 2003; Berhe et al., 2008) and anti-trypanosomal activities (Khraiwesh, et al., 2012). As part of our studies (Butcher et al., 2013) on the synthesis, properties, and structural characterization of this class of compounds, we herein present, the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthoquinone moiety deviates from planarity. The outer ring (C3-C8) is essentially planar (r.m.s. 0.004 (1) Å) while the inner ring (C1/C2/C3/C8/C9/C10) deviates slightly from planarity (r.m.s. 0.029 (1) Å) with a maximum deviation of 0.0437 (13) Å for C9. The imide group (N1/C14/O3/O4) is almost planar (r.m.s. 0.0286 (11) and the dihedral angle between this group and the whole naphthoquinone group (C1-C10/O1/O2) is 77.36 (13)°, with the two imide carbonyls oriented anti with respect to each other. In the crystal, molecules are linked by weak C—H···O hydrogen bonds as well as ππ interactions between the naphthoquinone rings with a centroid to centroid distance of 3.888 (3) Å between C1/C2/C3/C8/C9/C10 and C3/C4/C5/C6/C7/C8 in symmetry related rings (-x, 1 - y, 1 - z) forming a three-dimensional network (Fig. 2).

Related literature top

For the synthesis and biological evaluation of imido-substituted 1,4-naphthoquinone derivatives, see: Bakare et al. (2003); Berhe et al. (2008); Brandy et al. (2013). For the anticancer and antitrypanosomal activity of related compounds, see: Bakare et al. (2003); Berhe et al. (2008); Khraiwesh et al. (2012). For a related structure, see: Butcher et al. (2013).

Experimental top

The title compound was synthesized by refluxing 2-amino-3-chloro-1,4-naphthoquinone in propionyl chloride as previously reported (Bakare et al. (2003)). The crude compound thus obtained was crystallized from ethanol to obtain yellow crystals suitable for X-ray studies.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 and 0.97 Å Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Structure description top

Our group are involved in the synthesis and biological evaluation of some imido-substituted 1,4-naphthoquinone derivatives (Bakare et al., 2003; Berhe et al., 2008; Brandy et al., 2013), and have previously reported that 2-chloro-3-dipropionylamino-1,4-naphthoquinone and some of its analogs possess inhibitory activities against certain protein kinases (Bakare et al., 2003). This class of compounds have also been shown to possess anticancer (Bakare et al., 2003; Berhe et al., 2008) and anti-trypanosomal activities (Khraiwesh, et al., 2012). As part of our studies (Butcher et al., 2013) on the synthesis, properties, and structural characterization of this class of compounds, we herein present, the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthoquinone moiety deviates from planarity. The outer ring (C3-C8) is essentially planar (r.m.s. 0.004 (1) Å) while the inner ring (C1/C2/C3/C8/C9/C10) deviates slightly from planarity (r.m.s. 0.029 (1) Å) with a maximum deviation of 0.0437 (13) Å for C9. The imide group (N1/C14/O3/O4) is almost planar (r.m.s. 0.0286 (11) and the dihedral angle between this group and the whole naphthoquinone group (C1-C10/O1/O2) is 77.36 (13)°, with the two imide carbonyls oriented anti with respect to each other. In the crystal, molecules are linked by weak C—H···O hydrogen bonds as well as ππ interactions between the naphthoquinone rings with a centroid to centroid distance of 3.888 (3) Å between C1/C2/C3/C8/C9/C10 and C3/C4/C5/C6/C7/C8 in symmetry related rings (-x, 1 - y, 1 - z) forming a three-dimensional network (Fig. 2).

For the synthesis and biological evaluation of imido-substituted 1,4-naphthoquinone derivatives, see: Bakare et al. (2003); Berhe et al. (2008); Brandy et al. (2013). For the anticancer and antitrypanosomal activity of related compounds, see: Bakare et al. (2003); Berhe et al. (2008); Khraiwesh et al. (2012). For a related structure, see: Butcher et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement parameters shown at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing viewed along the a axis showing the weak C—H···O hydrogen bonds (as dashed lines) as well as the ππ stacking along the b axis.
N-(3-Chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-N-propionylpropionamide top
Crystal data top
C16H14ClNO4Z = 2
Mr = 319.73F(000) = 332
Triclinic, P1Dx = 1.453 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.1362 (9) ÅCell parameters from 1754 reflections
b = 8.2254 (9) Åθ = 3.6–75.0°
c = 12.4471 (11) ŵ = 2.48 mm1
α = 98.105 (8)°T = 123 K
β = 92.297 (8)°Plate, colorless
γ = 116.821 (11)°0.48 × 0.34 × 0.08 mm
V = 730.88 (15) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
2908 independent reflections
Radiation source: Enhance (Cu) X-ray Source2419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.5081 pixels mm-1θmax = 75.2°, θmin = 3.6°
ω scansh = 107
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 810
Tmin = 0.396, Tmax = 1.000l = 1515
4648 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0653P)2]
where P = (Fo2 + 2Fc2)/3
2908 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H14ClNO4γ = 116.821 (11)°
Mr = 319.73V = 730.88 (15) Å3
Triclinic, P1Z = 2
a = 8.1362 (9) ÅCu Kα radiation
b = 8.2254 (9) ŵ = 2.48 mm1
c = 12.4471 (11) ÅT = 123 K
α = 98.105 (8)°0.48 × 0.34 × 0.08 mm
β = 92.297 (8)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
2908 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2419 reflections with I > 2σ(I)
Tmin = 0.396, Tmax = 1.000Rint = 0.030
4648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
2908 reflectionsΔρmin = 0.30 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34840 (7)0.42387 (7)0.70172 (4)0.02795 (15)
O10.3577 (2)0.2807 (2)0.47615 (11)0.0272 (3)
O20.9546 (2)0.4037 (2)0.73820 (12)0.0297 (3)
O30.6017 (2)0.1818 (2)0.85542 (12)0.0298 (3)
O40.7362 (2)0.7230 (2)0.96429 (12)0.0313 (3)
N10.6911 (2)0.4761 (2)0.83472 (13)0.0217 (3)
C10.5193 (3)0.3762 (3)0.65414 (16)0.0210 (4)
C20.4900 (3)0.2978 (3)0.53419 (15)0.0212 (4)
C30.6266 (3)0.2389 (3)0.49340 (15)0.0208 (4)
C40.5978 (3)0.1483 (3)0.38574 (15)0.0236 (4)
H4A0.49340.12830.33850.028*
C50.7225 (3)0.0869 (3)0.34745 (16)0.0254 (4)
H5A0.70260.02430.27420.031*
C60.8766 (3)0.1177 (3)0.41683 (17)0.0264 (4)
H6A0.96100.07510.39070.032*
C70.9074 (3)0.2096 (3)0.52347 (16)0.0253 (4)
H7A1.01370.23200.56990.030*
C80.7822 (3)0.2692 (3)0.56247 (15)0.0211 (4)
C90.8146 (3)0.3624 (3)0.67823 (15)0.0215 (4)
C100.6669 (3)0.4052 (3)0.72075 (15)0.0205 (4)
C110.6645 (3)0.3405 (3)0.90111 (15)0.0227 (4)
C120.7214 (3)0.4027 (3)1.02245 (15)0.0255 (4)
H12A0.63920.45071.05470.031*
H12B0.84980.50491.03590.031*
C130.7112 (4)0.2455 (3)1.07811 (17)0.0386 (6)
H13A0.75540.29261.15600.058*
H13B0.78920.19491.04460.058*
H13C0.58250.14791.06950.058*
C140.7498 (3)0.6667 (3)0.87202 (15)0.0223 (4)
C150.8322 (3)0.7895 (3)0.78881 (16)0.0268 (4)
H15A0.73560.75540.72700.032*
H15B0.93320.76710.76000.032*
C160.9083 (4)0.9933 (3)0.83514 (19)0.0380 (5)
H16A0.95911.06590.77770.057*
H16B1.00671.02900.89500.057*
H16C0.80861.01700.86270.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0231 (2)0.0398 (3)0.0226 (2)0.0178 (2)0.00071 (17)0.00015 (18)
O10.0246 (7)0.0381 (8)0.0195 (7)0.0158 (7)0.0031 (5)0.0034 (6)
O20.0244 (7)0.0406 (9)0.0231 (7)0.0168 (7)0.0043 (6)0.0023 (6)
O30.0371 (8)0.0241 (7)0.0218 (7)0.0096 (6)0.0017 (6)0.0026 (6)
O40.0405 (9)0.0310 (8)0.0207 (7)0.0158 (7)0.0053 (6)0.0020 (6)
N10.0220 (8)0.0260 (9)0.0156 (7)0.0105 (7)0.0002 (6)0.0018 (6)
C10.0184 (9)0.0242 (9)0.0206 (9)0.0103 (8)0.0026 (7)0.0032 (7)
C20.0210 (9)0.0223 (9)0.0174 (9)0.0072 (8)0.0009 (7)0.0054 (7)
C30.0199 (9)0.0210 (9)0.0182 (9)0.0063 (7)0.0028 (7)0.0049 (7)
C40.0265 (10)0.0235 (10)0.0173 (9)0.0085 (8)0.0001 (7)0.0045 (7)
C50.0317 (11)0.0244 (10)0.0165 (9)0.0101 (9)0.0040 (8)0.0021 (7)
C60.0262 (10)0.0295 (10)0.0249 (10)0.0134 (9)0.0066 (8)0.0054 (8)
C70.0222 (9)0.0289 (10)0.0229 (10)0.0103 (8)0.0011 (7)0.0038 (8)
C80.0207 (9)0.0223 (9)0.0182 (9)0.0080 (8)0.0015 (7)0.0037 (7)
C90.0198 (9)0.0231 (9)0.0197 (9)0.0084 (8)0.0003 (7)0.0042 (7)
C100.0219 (9)0.0203 (9)0.0168 (9)0.0078 (8)0.0016 (7)0.0030 (7)
C110.0206 (9)0.0267 (10)0.0200 (9)0.0099 (8)0.0025 (7)0.0053 (8)
C120.0280 (10)0.0265 (10)0.0180 (9)0.0091 (8)0.0009 (8)0.0045 (7)
C130.0584 (15)0.0346 (12)0.0186 (10)0.0182 (11)0.0043 (10)0.0059 (8)
C140.0199 (9)0.0270 (10)0.0190 (9)0.0104 (8)0.0003 (7)0.0030 (7)
C150.0297 (10)0.0287 (11)0.0206 (9)0.0122 (9)0.0022 (8)0.0048 (8)
C160.0511 (14)0.0274 (12)0.0303 (11)0.0141 (11)0.0047 (10)0.0038 (9)
Geometric parameters (Å, º) top
Cl1—C11.7117 (19)C7—C81.392 (3)
O1—C21.214 (2)C7—H7A0.9500
O2—C91.217 (2)C8—C91.486 (3)
O3—C111.206 (3)C9—C101.492 (3)
O4—C141.205 (2)C11—C121.507 (3)
N1—C141.416 (3)C12—C131.523 (3)
N1—C111.425 (2)C12—H12A0.9900
N1—C101.425 (2)C12—H12B0.9900
C1—C101.339 (3)C13—H13A0.9800
C1—C21.504 (3)C13—H13B0.9800
C2—C31.480 (3)C13—H13C0.9800
C3—C41.394 (3)C14—C151.510 (3)
C3—C81.404 (3)C15—C161.512 (3)
C4—C51.394 (3)C15—H15A0.9900
C4—H4A0.9500C15—H15B0.9900
C5—C61.395 (3)C16—H16A0.9800
C5—H5A0.9500C16—H16B0.9800
C6—C71.384 (3)C16—H16C0.9800
C6—H6A0.9500
C14—N1—C11126.40 (16)N1—C10—C9116.65 (16)
C14—N1—C10120.34 (16)O3—C11—N1117.25 (17)
C11—N1—C10113.08 (16)O3—C11—C12123.88 (18)
C10—C1—C2123.02 (17)N1—C11—C12118.84 (17)
C10—C1—Cl1121.46 (15)C11—C12—C13111.82 (17)
C2—C1—Cl1115.52 (14)C11—C12—H12A109.3
O1—C2—C3122.90 (17)C13—C12—H12A109.3
O1—C2—C1120.67 (17)C11—C12—H12B109.3
C3—C2—C1116.41 (16)C13—C12—H12B109.3
C4—C3—C8119.68 (18)H12A—C12—H12B107.9
C4—C3—C2119.45 (17)C12—C13—H13A109.5
C8—C3—C2120.85 (17)C12—C13—H13B109.5
C3—C4—C5119.94 (18)H13A—C13—H13B109.5
C3—C4—H4A120.0C12—C13—H13C109.5
C5—C4—H4A120.0H13A—C13—H13C109.5
C4—C5—C6119.90 (18)H13B—C13—H13C109.5
C4—C5—H5A120.1O4—C14—N1121.10 (18)
C6—C5—H5A120.1O4—C14—C15123.97 (18)
C7—C6—C5120.52 (18)N1—C14—C15114.92 (16)
C7—C6—H6A119.7C14—C15—C16113.04 (17)
C5—C6—H6A119.7C14—C15—H15A109.0
C6—C7—C8119.80 (18)C16—C15—H15A109.0
C6—C7—H7A120.1C14—C15—H15B109.0
C8—C7—H7A120.1C16—C15—H15B109.0
C7—C8—C3120.15 (18)H15A—C15—H15B107.8
C7—C8—C9118.99 (17)C15—C16—H16A109.5
C3—C8—C9120.86 (17)C15—C16—H16B109.5
O2—C9—C8122.72 (18)H16A—C16—H16B109.5
O2—C9—C10119.76 (18)C15—C16—H16C109.5
C8—C9—C10117.51 (16)H16A—C16—H16C109.5
C1—C10—N1122.45 (17)H16B—C16—H16C109.5
C1—C10—C9120.90 (17)
C10—C1—C2—O1177.09 (19)Cl1—C1—C10—N10.3 (3)
Cl1—C1—C2—O13.8 (3)C2—C1—C10—C90.8 (3)
C10—C1—C2—C34.7 (3)Cl1—C1—C10—C9179.78 (14)
Cl1—C1—C2—C3174.35 (14)C14—N1—C10—C176.6 (2)
O1—C2—C3—C44.5 (3)C11—N1—C10—C1107.9 (2)
C1—C2—C3—C4173.66 (17)C14—N1—C10—C9103.9 (2)
O1—C2—C3—C8177.06 (19)C11—N1—C10—C971.6 (2)
C1—C2—C3—C84.8 (3)O2—C9—C10—C1174.07 (19)
C8—C3—C4—C50.5 (3)C8—C9—C10—C16.1 (3)
C2—C3—C4—C5177.96 (17)O2—C9—C10—N16.5 (3)
C3—C4—C5—C60.5 (3)C8—C9—C10—N1173.41 (16)
C4—C5—C6—C70.3 (3)C14—N1—C11—O3175.03 (18)
C5—C6—C7—C81.1 (3)C10—N1—C11—O39.8 (2)
C6—C7—C8—C31.0 (3)C14—N1—C11—C126.9 (3)
C6—C7—C8—C9178.09 (18)C10—N1—C11—C12168.24 (17)
C4—C3—C8—C70.2 (3)O3—C11—C12—C136.7 (3)
C2—C3—C8—C7178.70 (18)N1—C11—C12—C13171.24 (19)
C4—C3—C8—C9178.88 (17)C11—N1—C14—O419.9 (3)
C2—C3—C8—C90.4 (3)C10—N1—C14—O4165.21 (18)
C7—C8—C9—O26.6 (3)C11—N1—C14—C15158.81 (18)
C3—C8—C9—O2174.25 (19)C10—N1—C14—C1516.0 (2)
C7—C8—C9—C10173.25 (17)O4—C14—C15—C163.9 (3)
C3—C8—C9—C105.9 (3)N1—C14—C15—C16174.85 (18)
C2—C1—C10—N1178.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.952.593.294 (2)131
C15—H15A···O1ii0.992.553.442 (2)150
C16—H16B···O4iii0.982.543.425 (3)150
C16—H16C···O3iv0.982.603.482 (3)150
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.952.593.294 (2)130.8
C15—H15A···O1ii0.992.553.442 (2)150.2
C16—H16B···O4iii0.982.543.425 (3)150.2
C16—H16C···O3iv0.982.603.482 (3)149.7
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+2; (iv) x, y+1, z.
 

Acknowledgements

This work was supported in part by grant No. 5-U54—CA914–31 (Howard University/Johns Hopkins Cancer Center Partnership), in part by grant G12MD007597 from the National Institute On Minority Health and Health Disparities of the National Institutes of Health, and in part by MRI grant No. CHE-1126533 from the NSF for the purchase of a GC-Mass spectrometer. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer as well as the Howard University Nanoscience Facility for access to liquid nitro­gen.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBerhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug Des. Discov. 5, 485–488.  CrossRef CAS Google Scholar
First citationBrandy, Y., Brandy, N., Akinboye, E., Lewis, M., Mouamba, C., Mack, S., Butcher, R. J., Anderson, A. J. & Bakare, O. (2013). Molecules, 18, 1973–1984.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationButcher, R. J., Berhe, S., Anderson, A. J. & Bakare, O. (2013). Acta Cryst. E69, o1230.  CSD CrossRef IUCr Journals Google Scholar
First citationKhraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2012). Arch. Pharm. Res. 35, 27–33.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds