organic compounds
N-(3-Chloro-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-N-propionylpropionamide
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com
In the title molecule, C16H14ClNO4, the four essentially planar atoms of the imide group [r.m.s. deviation = 0.0286 (11) Å] form a dihedral angle of 77.36 (13)° with the naphthoquinone group [maximun deviation = 0.111 (2) Å for the carbonyl O atom in the naphthalene 1-position] and the two imide carbonyl groups are oriented anti with respect to each other. In the crystal, molecules are connected by weak C—H⋯O hydrogen bonds, as well as π–π stacking interactions [centroid–centroid distance = 3.888 (3) Å], forming a three-dimensional network.
CCDC reference: 978208
Related literature
For the synthesis and biological evaluation of imido-substituted 1,4-naphthoquinone derivatives, see: Bakare et al. (2003); Berhe et al. (2008); Brandy et al. (2013). For the anticancer and antitrypanosomal activity of related compounds, see: Bakare et al. (2003); Berhe et al. (2008); Khraiwesh et al. (2012). For a related structure, see: Butcher et al. (2013).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 978208
10.1107/S1600536813034302/lh5677sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536813034302/lh5677Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536813034302/lh5677Isup3.cml
The title compound was synthesized by refluxing 2-amino-3-chloro-1,4-naphthoquinone in propionyl chloride as previously reported (Bakare et al. (2003)). The crude compound thus obtained was crystallized from ethanol to obtain yellow crystals suitable for X-ray studies.
H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 and 0.97 Å Uiso(H) = 1.2Ueq(C) and 0.96 Å for CH3 [Uiso(H) = 1.5Ueq(C)].
Our group are involved in the synthesis and biological evaluation of some imido-substituted 1,4-naphthoquinone derivatives (Bakare et al., 2003; Berhe et al., 2008; Brandy et al., 2013), and have previously reported that 2-chloro-3-dipropionylamino-1,4-naphthoquinone and some of its analogs possess inhibitory activities against certain protein kinases (Bakare et al., 2003). This class of compounds have also been shown to possess anticancer (Bakare et al., 2003; Berhe et al., 2008) and anti-trypanosomal activities (Khraiwesh, et al., 2012). As part of our studies (Butcher et al., 2013) on the synthesis, properties, and structural characterization of this class of compounds, we herein present, the
of the title compound.In the title molecule (Fig. 1), the naphthoquinone moiety deviates from planarity. The outer ring (C3-C8) is essentially planar (r.m.s. 0.004 (1) Å) while the inner ring (C1/C2/C3/C8/C9/C10) deviates slightly from planarity (r.m.s. 0.029 (1) Å) with a maximum deviation of 0.0437 (13) Å for C9. The imide group (N1/C14/O3/O4) is almost planar (r.m.s. 0.0286 (11) and the dihedral angle between this group and the whole naphthoquinone group (C1-C10/O1/O2) is 77.36 (13)°, with the two imide carbonyls oriented anti with respect to each other. In the crystal, molecules are linked by weak C—H···O hydrogen bonds as well as π—π interactions between the naphthoquinone rings with a centroid to centroid distance of 3.888 (3) Å between C1/C2/C3/C8/C9/C10 and C3/C4/C5/C6/C7/C8 in symmetry related rings (-x, 1 - y, 1 - z) forming a three-dimensional network (Fig. 2).
For the synthesis and biological evaluation of imido-substituted 1,4-naphthoquinone derivatives, see: Bakare et al. (2003); Berhe et al. (2008); Brandy et al. (2013). For the anticancer and antitrypanosomal activity of related compounds, see: Bakare et al. (2003); Berhe et al. (2008); Khraiwesh et al. (2012). For a related structure, see: Butcher et al. (2013).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with displacement parameters shown at the 30% probability level. | |
Fig. 2. The crystal packing viewed along the a axis showing the weak C—H···O hydrogen bonds (as dashed lines) as well as the π–π stacking along the b axis. |
C16H14ClNO4 | Z = 2 |
Mr = 319.73 | F(000) = 332 |
Triclinic, P1 | Dx = 1.453 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 8.1362 (9) Å | Cell parameters from 1754 reflections |
b = 8.2254 (9) Å | θ = 3.6–75.0° |
c = 12.4471 (11) Å | µ = 2.48 mm−1 |
α = 98.105 (8)° | T = 123 K |
β = 92.297 (8)° | Plate, colorless |
γ = 116.821 (11)° | 0.48 × 0.34 × 0.08 mm |
V = 730.88 (15) Å3 |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 2908 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2419 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 75.2°, θmin = 3.6° |
ω scans | h = −10→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −8→10 |
Tmin = 0.396, Tmax = 1.000 | l = −15→15 |
4648 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0653P)2] where P = (Fo2 + 2Fc2)/3 |
2908 reflections | (Δ/σ)max < 0.001 |
201 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C16H14ClNO4 | γ = 116.821 (11)° |
Mr = 319.73 | V = 730.88 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1362 (9) Å | Cu Kα radiation |
b = 8.2254 (9) Å | µ = 2.48 mm−1 |
c = 12.4471 (11) Å | T = 123 K |
α = 98.105 (8)° | 0.48 × 0.34 × 0.08 mm |
β = 92.297 (8)° |
Agilent Xcalibur (Ruby, Gemini) diffractometer | 2908 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2419 reflections with I > 2σ(I) |
Tmin = 0.396, Tmax = 1.000 | Rint = 0.030 |
4648 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.34 e Å−3 |
2908 reflections | Δρmin = −0.30 e Å−3 |
201 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.34840 (7) | 0.42387 (7) | 0.70172 (4) | 0.02795 (15) | |
O1 | 0.3577 (2) | 0.2807 (2) | 0.47615 (11) | 0.0272 (3) | |
O2 | 0.9546 (2) | 0.4037 (2) | 0.73820 (12) | 0.0297 (3) | |
O3 | 0.6017 (2) | 0.1818 (2) | 0.85542 (12) | 0.0298 (3) | |
O4 | 0.7362 (2) | 0.7230 (2) | 0.96429 (12) | 0.0313 (3) | |
N1 | 0.6911 (2) | 0.4761 (2) | 0.83472 (13) | 0.0217 (3) | |
C1 | 0.5193 (3) | 0.3762 (3) | 0.65414 (16) | 0.0210 (4) | |
C2 | 0.4900 (3) | 0.2978 (3) | 0.53419 (15) | 0.0212 (4) | |
C3 | 0.6266 (3) | 0.2389 (3) | 0.49340 (15) | 0.0208 (4) | |
C4 | 0.5978 (3) | 0.1483 (3) | 0.38574 (15) | 0.0236 (4) | |
H4A | 0.4934 | 0.1283 | 0.3385 | 0.028* | |
C5 | 0.7225 (3) | 0.0869 (3) | 0.34745 (16) | 0.0254 (4) | |
H5A | 0.7026 | 0.0243 | 0.2742 | 0.031* | |
C6 | 0.8766 (3) | 0.1177 (3) | 0.41683 (17) | 0.0264 (4) | |
H6A | 0.9610 | 0.0751 | 0.3907 | 0.032* | |
C7 | 0.9074 (3) | 0.2096 (3) | 0.52347 (16) | 0.0253 (4) | |
H7A | 1.0137 | 0.2320 | 0.5699 | 0.030* | |
C8 | 0.7822 (3) | 0.2692 (3) | 0.56247 (15) | 0.0211 (4) | |
C9 | 0.8146 (3) | 0.3624 (3) | 0.67823 (15) | 0.0215 (4) | |
C10 | 0.6669 (3) | 0.4052 (3) | 0.72075 (15) | 0.0205 (4) | |
C11 | 0.6645 (3) | 0.3405 (3) | 0.90111 (15) | 0.0227 (4) | |
C12 | 0.7214 (3) | 0.4027 (3) | 1.02245 (15) | 0.0255 (4) | |
H12A | 0.6392 | 0.4507 | 1.0547 | 0.031* | |
H12B | 0.8498 | 0.5049 | 1.0359 | 0.031* | |
C13 | 0.7112 (4) | 0.2455 (3) | 1.07811 (17) | 0.0386 (6) | |
H13A | 0.7554 | 0.2926 | 1.1560 | 0.058* | |
H13B | 0.7892 | 0.1949 | 1.0446 | 0.058* | |
H13C | 0.5825 | 0.1479 | 1.0695 | 0.058* | |
C14 | 0.7498 (3) | 0.6667 (3) | 0.87202 (15) | 0.0223 (4) | |
C15 | 0.8322 (3) | 0.7895 (3) | 0.78881 (16) | 0.0268 (4) | |
H15A | 0.7356 | 0.7554 | 0.7270 | 0.032* | |
H15B | 0.9332 | 0.7671 | 0.7600 | 0.032* | |
C16 | 0.9083 (4) | 0.9933 (3) | 0.83514 (19) | 0.0380 (5) | |
H16A | 0.9591 | 1.0659 | 0.7777 | 0.057* | |
H16B | 1.0067 | 1.0290 | 0.8950 | 0.057* | |
H16C | 0.8086 | 1.0170 | 0.8627 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0231 (2) | 0.0398 (3) | 0.0226 (2) | 0.0178 (2) | 0.00071 (17) | −0.00015 (18) |
O1 | 0.0246 (7) | 0.0381 (8) | 0.0195 (7) | 0.0158 (7) | −0.0031 (5) | 0.0034 (6) |
O2 | 0.0244 (7) | 0.0406 (9) | 0.0231 (7) | 0.0168 (7) | −0.0043 (6) | −0.0023 (6) |
O3 | 0.0371 (8) | 0.0241 (7) | 0.0218 (7) | 0.0096 (6) | −0.0017 (6) | 0.0026 (6) |
O4 | 0.0405 (9) | 0.0310 (8) | 0.0207 (7) | 0.0158 (7) | 0.0053 (6) | 0.0020 (6) |
N1 | 0.0220 (8) | 0.0260 (9) | 0.0156 (7) | 0.0105 (7) | −0.0002 (6) | 0.0018 (6) |
C1 | 0.0184 (9) | 0.0242 (9) | 0.0206 (9) | 0.0103 (8) | 0.0026 (7) | 0.0032 (7) |
C2 | 0.0210 (9) | 0.0223 (9) | 0.0174 (9) | 0.0072 (8) | 0.0009 (7) | 0.0054 (7) |
C3 | 0.0199 (9) | 0.0210 (9) | 0.0182 (9) | 0.0063 (7) | 0.0028 (7) | 0.0049 (7) |
C4 | 0.0265 (10) | 0.0235 (10) | 0.0173 (9) | 0.0085 (8) | 0.0001 (7) | 0.0045 (7) |
C5 | 0.0317 (11) | 0.0244 (10) | 0.0165 (9) | 0.0101 (9) | 0.0040 (8) | 0.0021 (7) |
C6 | 0.0262 (10) | 0.0295 (10) | 0.0249 (10) | 0.0134 (9) | 0.0066 (8) | 0.0054 (8) |
C7 | 0.0222 (9) | 0.0289 (10) | 0.0229 (10) | 0.0103 (8) | 0.0011 (7) | 0.0038 (8) |
C8 | 0.0207 (9) | 0.0223 (9) | 0.0182 (9) | 0.0080 (8) | 0.0015 (7) | 0.0037 (7) |
C9 | 0.0198 (9) | 0.0231 (9) | 0.0197 (9) | 0.0084 (8) | −0.0003 (7) | 0.0042 (7) |
C10 | 0.0219 (9) | 0.0203 (9) | 0.0168 (9) | 0.0078 (8) | 0.0016 (7) | 0.0030 (7) |
C11 | 0.0206 (9) | 0.0267 (10) | 0.0200 (9) | 0.0099 (8) | 0.0025 (7) | 0.0053 (8) |
C12 | 0.0280 (10) | 0.0265 (10) | 0.0180 (9) | 0.0091 (8) | 0.0009 (8) | 0.0045 (7) |
C13 | 0.0584 (15) | 0.0346 (12) | 0.0186 (10) | 0.0182 (11) | −0.0043 (10) | 0.0059 (8) |
C14 | 0.0199 (9) | 0.0270 (10) | 0.0190 (9) | 0.0104 (8) | −0.0003 (7) | 0.0030 (7) |
C15 | 0.0297 (10) | 0.0287 (11) | 0.0206 (9) | 0.0122 (9) | 0.0022 (8) | 0.0048 (8) |
C16 | 0.0511 (14) | 0.0274 (12) | 0.0303 (11) | 0.0141 (11) | 0.0047 (10) | 0.0038 (9) |
Cl1—C1 | 1.7117 (19) | C7—C8 | 1.392 (3) |
O1—C2 | 1.214 (2) | C7—H7A | 0.9500 |
O2—C9 | 1.217 (2) | C8—C9 | 1.486 (3) |
O3—C11 | 1.206 (3) | C9—C10 | 1.492 (3) |
O4—C14 | 1.205 (2) | C11—C12 | 1.507 (3) |
N1—C14 | 1.416 (3) | C12—C13 | 1.523 (3) |
N1—C11 | 1.425 (2) | C12—H12A | 0.9900 |
N1—C10 | 1.425 (2) | C12—H12B | 0.9900 |
C1—C10 | 1.339 (3) | C13—H13A | 0.9800 |
C1—C2 | 1.504 (3) | C13—H13B | 0.9800 |
C2—C3 | 1.480 (3) | C13—H13C | 0.9800 |
C3—C4 | 1.394 (3) | C14—C15 | 1.510 (3) |
C3—C8 | 1.404 (3) | C15—C16 | 1.512 (3) |
C4—C5 | 1.394 (3) | C15—H15A | 0.9900 |
C4—H4A | 0.9500 | C15—H15B | 0.9900 |
C5—C6 | 1.395 (3) | C16—H16A | 0.9800 |
C5—H5A | 0.9500 | C16—H16B | 0.9800 |
C6—C7 | 1.384 (3) | C16—H16C | 0.9800 |
C6—H6A | 0.9500 | ||
C14—N1—C11 | 126.40 (16) | N1—C10—C9 | 116.65 (16) |
C14—N1—C10 | 120.34 (16) | O3—C11—N1 | 117.25 (17) |
C11—N1—C10 | 113.08 (16) | O3—C11—C12 | 123.88 (18) |
C10—C1—C2 | 123.02 (17) | N1—C11—C12 | 118.84 (17) |
C10—C1—Cl1 | 121.46 (15) | C11—C12—C13 | 111.82 (17) |
C2—C1—Cl1 | 115.52 (14) | C11—C12—H12A | 109.3 |
O1—C2—C3 | 122.90 (17) | C13—C12—H12A | 109.3 |
O1—C2—C1 | 120.67 (17) | C11—C12—H12B | 109.3 |
C3—C2—C1 | 116.41 (16) | C13—C12—H12B | 109.3 |
C4—C3—C8 | 119.68 (18) | H12A—C12—H12B | 107.9 |
C4—C3—C2 | 119.45 (17) | C12—C13—H13A | 109.5 |
C8—C3—C2 | 120.85 (17) | C12—C13—H13B | 109.5 |
C3—C4—C5 | 119.94 (18) | H13A—C13—H13B | 109.5 |
C3—C4—H4A | 120.0 | C12—C13—H13C | 109.5 |
C5—C4—H4A | 120.0 | H13A—C13—H13C | 109.5 |
C4—C5—C6 | 119.90 (18) | H13B—C13—H13C | 109.5 |
C4—C5—H5A | 120.1 | O4—C14—N1 | 121.10 (18) |
C6—C5—H5A | 120.1 | O4—C14—C15 | 123.97 (18) |
C7—C6—C5 | 120.52 (18) | N1—C14—C15 | 114.92 (16) |
C7—C6—H6A | 119.7 | C14—C15—C16 | 113.04 (17) |
C5—C6—H6A | 119.7 | C14—C15—H15A | 109.0 |
C6—C7—C8 | 119.80 (18) | C16—C15—H15A | 109.0 |
C6—C7—H7A | 120.1 | C14—C15—H15B | 109.0 |
C8—C7—H7A | 120.1 | C16—C15—H15B | 109.0 |
C7—C8—C3 | 120.15 (18) | H15A—C15—H15B | 107.8 |
C7—C8—C9 | 118.99 (17) | C15—C16—H16A | 109.5 |
C3—C8—C9 | 120.86 (17) | C15—C16—H16B | 109.5 |
O2—C9—C8 | 122.72 (18) | H16A—C16—H16B | 109.5 |
O2—C9—C10 | 119.76 (18) | C15—C16—H16C | 109.5 |
C8—C9—C10 | 117.51 (16) | H16A—C16—H16C | 109.5 |
C1—C10—N1 | 122.45 (17) | H16B—C16—H16C | 109.5 |
C1—C10—C9 | 120.90 (17) | ||
C10—C1—C2—O1 | −177.09 (19) | Cl1—C1—C10—N1 | 0.3 (3) |
Cl1—C1—C2—O1 | 3.8 (3) | C2—C1—C10—C9 | 0.8 (3) |
C10—C1—C2—C3 | 4.7 (3) | Cl1—C1—C10—C9 | 179.78 (14) |
Cl1—C1—C2—C3 | −174.35 (14) | C14—N1—C10—C1 | −76.6 (2) |
O1—C2—C3—C4 | −4.5 (3) | C11—N1—C10—C1 | 107.9 (2) |
C1—C2—C3—C4 | 173.66 (17) | C14—N1—C10—C9 | 103.9 (2) |
O1—C2—C3—C8 | 177.06 (19) | C11—N1—C10—C9 | −71.6 (2) |
C1—C2—C3—C8 | −4.8 (3) | O2—C9—C10—C1 | 174.07 (19) |
C8—C3—C4—C5 | 0.5 (3) | C8—C9—C10—C1 | −6.1 (3) |
C2—C3—C4—C5 | −177.96 (17) | O2—C9—C10—N1 | −6.5 (3) |
C3—C4—C5—C6 | −0.5 (3) | C8—C9—C10—N1 | 173.41 (16) |
C4—C5—C6—C7 | −0.3 (3) | C14—N1—C11—O3 | 175.03 (18) |
C5—C6—C7—C8 | 1.1 (3) | C10—N1—C11—O3 | −9.8 (2) |
C6—C7—C8—C3 | −1.0 (3) | C14—N1—C11—C12 | −6.9 (3) |
C6—C7—C8—C9 | 178.09 (18) | C10—N1—C11—C12 | 168.24 (17) |
C4—C3—C8—C7 | 0.2 (3) | O3—C11—C12—C13 | 6.7 (3) |
C2—C3—C8—C7 | 178.70 (18) | N1—C11—C12—C13 | −171.24 (19) |
C4—C3—C8—C9 | −178.88 (17) | C11—N1—C14—O4 | −19.9 (3) |
C2—C3—C8—C9 | −0.4 (3) | C10—N1—C14—O4 | 165.21 (18) |
C7—C8—C9—O2 | 6.6 (3) | C11—N1—C14—C15 | 158.81 (18) |
C3—C8—C9—O2 | −174.25 (19) | C10—N1—C14—C15 | −16.0 (2) |
C7—C8—C9—C10 | −173.25 (17) | O4—C14—C15—C16 | 3.9 (3) |
C3—C8—C9—C10 | 5.9 (3) | N1—C14—C15—C16 | −174.85 (18) |
C2—C1—C10—N1 | −178.69 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O3i | 0.95 | 2.59 | 3.294 (2) | 131 |
C15—H15A···O1ii | 0.99 | 2.55 | 3.442 (2) | 150 |
C16—H16B···O4iii | 0.98 | 2.54 | 3.425 (3) | 150 |
C16—H16C···O3iv | 0.98 | 2.60 | 3.482 (3) | 150 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+2, −z+2; (iv) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5A···O3i | 0.95 | 2.59 | 3.294 (2) | 130.8 |
C15—H15A···O1ii | 0.99 | 2.55 | 3.442 (2) | 150.2 |
C16—H16B···O4iii | 0.98 | 2.54 | 3.425 (3) | 150.2 |
C16—H16C···O3iv | 0.98 | 2.60 | 3.482 (3) | 149.7 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+2, −z+2; (iv) x, y+1, z. |
Acknowledgements
This work was supported in part by grant No. 5-U54—CA914–31 (Howard University/Johns Hopkins Cancer Center Partnership), in part by grant G12MD007597 from the National Institute On Minority Health and Health Disparities of the National Institutes of Health, and in part by MRI grant No. CHE-1126533 from the NSF for the purchase of a GC-Mass spectrometer. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer as well as the Howard University Nanoscience Facility for access to liquid nitrogen.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Bakare, O., Ashendel, C. L., Peng, H., Zalkow, L. H. & Burgess, E. M. (2003). Bioorg. Med. Chem. 11, 3165–3170. Web of Science CrossRef PubMed CAS Google Scholar
Berhe, S., Kanaan, Y., Copeland, R. L., Wright, D. A., Zalkow, L. H. & Bakare, O. (2008). Lett. Drug Des. Discov. 5, 485–488. CrossRef CAS Google Scholar
Brandy, Y., Brandy, N., Akinboye, E., Lewis, M., Mouamba, C., Mack, S., Butcher, R. J., Anderson, A. J. & Bakare, O. (2013). Molecules, 18, 1973–1984. Web of Science CSD CrossRef CAS PubMed Google Scholar
Butcher, R. J., Berhe, S., Anderson, A. J. & Bakare, O. (2013). Acta Cryst. E69, o1230. CSD CrossRef IUCr Journals Google Scholar
Khraiwesh, H. M., Lee, C. M., Brandy, Y., Akinboye, E. S., Berhe, S., Gittens, G., Abbas, M. M., Ampy, F. R., Ashraf, M. & Bakare, O. (2012). Arch. Pharm. Res. 35, 27–33. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our group are involved in the synthesis and biological evaluation of some imido-substituted 1,4-naphthoquinone derivatives (Bakare et al., 2003; Berhe et al., 2008; Brandy et al., 2013), and have previously reported that 2-chloro-3-dipropionylamino-1,4-naphthoquinone and some of its analogs possess inhibitory activities against certain protein kinases (Bakare et al., 2003). This class of compounds have also been shown to possess anticancer (Bakare et al., 2003; Berhe et al., 2008) and anti-trypanosomal activities (Khraiwesh, et al., 2012). As part of our studies (Butcher et al., 2013) on the synthesis, properties, and structural characterization of this class of compounds, we herein present, the crystal structure of the title compound.
In the title molecule (Fig. 1), the naphthoquinone moiety deviates from planarity. The outer ring (C3-C8) is essentially planar (r.m.s. 0.004 (1) Å) while the inner ring (C1/C2/C3/C8/C9/C10) deviates slightly from planarity (r.m.s. 0.029 (1) Å) with a maximum deviation of 0.0437 (13) Å for C9. The imide group (N1/C14/O3/O4) is almost planar (r.m.s. 0.0286 (11) and the dihedral angle between this group and the whole naphthoquinone group (C1-C10/O1/O2) is 77.36 (13)°, with the two imide carbonyls oriented anti with respect to each other. In the crystal, molecules are linked by weak C—H···O hydrogen bonds as well as π—π interactions between the naphthoquinone rings with a centroid to centroid distance of 3.888 (3) Å between C1/C2/C3/C8/C9/C10 and C3/C4/C5/C6/C7/C8 in symmetry related rings (-x, 1 - y, 1 - z) forming a three-dimensional network (Fig. 2).