organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-4,6-di­phenyl­nicotino­nitrile

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, and cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
*Correspondence e-mail: joelt@tulane.edu

(Received 11 January 2014; accepted 23 January 2014; online 31 January 2014)

In the title compound, C19H14N2O, the phenyl rings form dihedral angles of 10.90 (10) and 42.14 (6)° with pyridine ring and an angle of 35.7 (2)° with each other. The orientation of the meth­oxy group is defined by the C—O—C—N torsion angle of 4.9 (2)°.

Related literature

For synthesis and drug-discovery studies of pyridine derivatives, see: Abdel-Aziz (2007[Abdel-Aziz, A. A.-M. (2007). Tetrahedron Lett. 48, 2861-2865.]); Abdel-Aziz et al. (2005[Abdel-Aziz, A. A.-M., El-Subbagh, H. I. & Kunieda, T. (2005). Bioorg. Med. Chem. 13, 4929-4935.]); Cook et al. (2004[Cook, C. E., Sloan, C. D., Thomas, B. F. & Navarro, H. A. (2004). Chem. Abstr. 141, 157039 861.]); Upton et al. (2000[Upton, C., Osborne, R. H. & Jaffar, M. (2000). Bioorg. Med. Chem. Lett. 10, 1277-1279.]); Al-Arab (1989[Al-Arab, M. M. (1989). J. Heterocycl. Chem. 26, 1665-1673.]); Perez-Medina et al. (1947[Perez-Medina, L. A., Merriella, R. P. & McElvain, S. M. (1947). J. Am. Chem. Soc. 69, 2574-2579.]). For related structures, see: Alvarez-Larena et al. (1994[Alvarez-Larena, A., Piniella, J. F., Victory, P., Borrell, J. I. & Vidal-Ferran, A. (1994). Z. Kristallogr. 209, 773-774.]); Cao et al. (2009[Cao, Q., Xie, Y., Jia, J. & Hong, X.-W. (2009). Acta Cryst. E65, o3182.]); Lv & Huang (2008[Lv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186.]); Mohamed et al. (2012[Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & El-Remaily, M. A. A. (2012). Acta Cryst. E68, o2495-o2496.]); Patel et al. (2002[Patel, U. H., Dave, C. G., Jotani, M. M. & Shah, H. C. (2002). Acta Cryst. C58, o697-o699.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N2O

  • Mr = 286.32

  • Orthorhombic, P 21 21 2

  • a = 15.0686 (16) Å

  • b = 24.327 (3) Å

  • c = 3.8986 (4) Å

  • V = 1429.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.22 × 0.11 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2009[Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.995

  • 12356 measured reflections

  • 3344 independent reflections

  • 2983 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.093

  • S = 1.04

  • 3344 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT, Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Compounds containing the pyridine nucleus are known to exhibit a large number of important biological properties (Perez-Medina et al., 1947; Upton et al., 2000; Cook et al., 2004). As part of our ongoing program of drug discovery and design we report the structure of the title compound. The molecular structure of the title compound is shown in Fig. 1. The pendant phenyl rings (C8-C13) and (C14-C19) form dihedral angles of 10.90 (10) and 42.14 (6)°, respectively, with the central pyridine ring and a dihedral angle of 35.7 (2)° with each other. There are no significant intermolecular interactions which contrasts with the structure of the ethoxy analog where C—H···π and ππ stacking interactions are proposed (Patel et al., 2002). The methoxy group is almost coplanar with the pyridine ring as indicated by the C6—O1—C5—N1 torsion angle of 4.9 (2)°. The conformations of related 2,4-diphenylpyridine derivatives differ from that of the title compound in the orientations of the pendant phenyl groups relative to the pyridine ring (Alvarez-Larena, et al., 1994; Cao et al., 2009; Lv & Huang, 2008; Mohamed et al., 2012; Patel et al., 2002).

Related literature top

For synthesis and drug-discovery studies of pyridine derivatives, see: Abdel-Aziz (2007); Abdel-Aziz et al. (2005); Cook et al. (2004); Upton et al. (2000); Al-Arab (1989); Perez-Medina et al. (1947). For related structures, see: Alvarez-Larena et al. (1994); Cao et al. (2009); Lv & Huang (2008); Mohamed et al. (2012); Patel et al. (2002).

Experimental top

The title compound was prepared by the literature method (Al-Arab, 1989) and crystallized from acetone as slender, colourless plates.

Refinement top

H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached carbon atoms.

Structure description top

Compounds containing the pyridine nucleus are known to exhibit a large number of important biological properties (Perez-Medina et al., 1947; Upton et al., 2000; Cook et al., 2004). As part of our ongoing program of drug discovery and design we report the structure of the title compound. The molecular structure of the title compound is shown in Fig. 1. The pendant phenyl rings (C8-C13) and (C14-C19) form dihedral angles of 10.90 (10) and 42.14 (6)°, respectively, with the central pyridine ring and a dihedral angle of 35.7 (2)° with each other. There are no significant intermolecular interactions which contrasts with the structure of the ethoxy analog where C—H···π and ππ stacking interactions are proposed (Patel et al., 2002). The methoxy group is almost coplanar with the pyridine ring as indicated by the C6—O1—C5—N1 torsion angle of 4.9 (2)°. The conformations of related 2,4-diphenylpyridine derivatives differ from that of the title compound in the orientations of the pendant phenyl groups relative to the pyridine ring (Alvarez-Larena, et al., 1994; Cao et al., 2009; Lv & Huang, 2008; Mohamed et al., 2012; Patel et al., 2002).

For synthesis and drug-discovery studies of pyridine derivatives, see: Abdel-Aziz (2007); Abdel-Aziz et al. (2005); Cook et al. (2004); Upton et al. (2000); Al-Arab (1989); Perez-Medina et al. (1947). For related structures, see: Alvarez-Larena et al. (1994); Cao et al. (2009); Lv & Huang (2008); Mohamed et al. (2012); Patel et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
2-Methoxy-4,6-diphenylnicotinonitrile top
Crystal data top
C19H14N2OF(000) = 600
Mr = 286.32Dx = 1.331 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 7963 reflections
a = 15.0686 (16) Åθ = 2.7–28.4°
b = 24.327 (3) ŵ = 0.08 mm1
c = 3.8986 (4) ÅT = 100 K
V = 1429.1 (3) Å3Plate, colourless
Z = 40.22 × 0.11 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3344 independent reflections
Radiation source: fine-focus sealed tube2983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 28.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
h = 1920
Tmin = 0.982, Tmax = 0.995k = 3131
12356 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.477P]
where P = (Fo2 + 2Fc2)/3
3344 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H14N2OV = 1429.1 (3) Å3
Mr = 286.32Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 15.0686 (16) ŵ = 0.08 mm1
b = 24.327 (3) ÅT = 100 K
c = 3.8986 (4) Å0.22 × 0.11 × 0.06 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3344 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
2983 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.995Rint = 0.047
12356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
3344 reflectionsΔρmin = 0.21 e Å3
200 parameters
Special details top

Experimental. The diffraction data were collected in three sets of 606 frames (0.3° width in ω) at φ = 0, 120 and 240°. A scan time of 40 sec/frame was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms. 1280 Friedel pairs were left unmerged but the absolute structure could not be reliably determined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43017 (8)0.12053 (5)0.0589 (4)0.0260 (3)
N10.57518 (9)0.11317 (5)0.2415 (4)0.0213 (3)
N20.38885 (10)0.24495 (6)0.3038 (4)0.0283 (3)
C10.65658 (10)0.13660 (6)0.2753 (4)0.0189 (3)
C20.67269 (11)0.19050 (6)0.1762 (4)0.0194 (3)
H20.73020.20580.20470.023*
C30.60488 (11)0.22245 (7)0.0350 (4)0.0189 (3)
C40.52180 (11)0.19767 (7)0.0084 (5)0.0198 (4)
C50.51198 (11)0.14286 (7)0.1036 (5)0.0208 (4)
C60.41763 (12)0.06623 (7)0.1956 (6)0.0310 (4)
H6A0.45570.04030.07200.046*
H6B0.35540.05540.16830.046*
H6C0.43320.06600.43960.046*
C70.44794 (11)0.22442 (7)0.1697 (5)0.0215 (3)
C80.72680 (11)0.10115 (7)0.4250 (4)0.0194 (3)
C90.70457 (11)0.05036 (7)0.5689 (5)0.0226 (4)
H90.64420.03920.57620.027*
C100.76945 (11)0.01607 (7)0.7011 (5)0.0250 (4)
H100.75340.01840.79760.030*
C110.85806 (12)0.03196 (7)0.6928 (5)0.0256 (4)
H110.90280.00850.78210.031*
C120.88043 (12)0.08248 (7)0.5528 (5)0.0263 (4)
H120.94090.09360.54730.032*
C130.81601 (11)0.11685 (7)0.4214 (5)0.0234 (4)
H130.83240.15140.32770.028*
C140.62283 (11)0.28047 (7)0.0627 (4)0.0190 (3)
C150.56225 (11)0.32239 (7)0.0117 (4)0.0218 (4)
H150.50770.31400.12230.026*
C160.58217 (11)0.37627 (7)0.0770 (5)0.0237 (4)
H160.54130.40480.02450.028*
C170.66093 (12)0.38876 (7)0.2411 (5)0.0257 (4)
H170.67370.42570.30290.031*
C180.72141 (11)0.34755 (7)0.3158 (5)0.0241 (4)
H180.77530.35610.43050.029*
C190.70285 (11)0.29378 (7)0.2222 (4)0.0213 (3)
H190.74510.26570.26720.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0191 (6)0.0201 (6)0.0388 (7)0.0036 (5)0.0033 (6)0.0000 (5)
N10.0203 (7)0.0194 (6)0.0241 (8)0.0007 (5)0.0008 (6)0.0018 (6)
N20.0236 (7)0.0269 (7)0.0345 (8)0.0006 (6)0.0047 (7)0.0002 (7)
C10.0193 (7)0.0201 (7)0.0172 (8)0.0011 (6)0.0013 (6)0.0032 (6)
C20.0183 (7)0.0201 (8)0.0197 (8)0.0004 (6)0.0003 (7)0.0032 (6)
C30.0208 (8)0.0199 (7)0.0160 (8)0.0012 (6)0.0020 (7)0.0024 (6)
C40.0184 (8)0.0199 (8)0.0210 (9)0.0019 (6)0.0003 (7)0.0024 (7)
C50.0172 (8)0.0213 (8)0.0237 (9)0.0016 (6)0.0018 (7)0.0037 (7)
C60.0254 (9)0.0224 (9)0.0451 (12)0.0059 (7)0.0031 (9)0.0021 (8)
C70.0206 (8)0.0198 (8)0.0241 (9)0.0017 (6)0.0017 (7)0.0013 (7)
C80.0207 (8)0.0194 (8)0.0182 (8)0.0007 (6)0.0002 (7)0.0030 (6)
C90.0225 (8)0.0214 (8)0.0241 (9)0.0007 (7)0.0020 (8)0.0010 (7)
C100.0296 (9)0.0201 (8)0.0254 (9)0.0019 (7)0.0021 (8)0.0017 (7)
C110.0268 (9)0.0252 (8)0.0249 (9)0.0056 (7)0.0005 (8)0.0019 (7)
C120.0226 (8)0.0286 (9)0.0277 (9)0.0005 (7)0.0037 (8)0.0010 (7)
C130.0249 (8)0.0194 (8)0.0259 (9)0.0015 (7)0.0012 (7)0.0003 (7)
C140.0207 (8)0.0191 (7)0.0172 (7)0.0004 (6)0.0031 (7)0.0009 (6)
C150.0209 (8)0.0224 (8)0.0222 (9)0.0006 (7)0.0005 (7)0.0016 (7)
C160.0264 (9)0.0201 (8)0.0245 (9)0.0024 (7)0.0033 (7)0.0013 (7)
C170.0331 (9)0.0202 (8)0.0238 (9)0.0042 (7)0.0055 (8)0.0020 (7)
C180.0233 (8)0.0268 (9)0.0222 (8)0.0045 (7)0.0009 (7)0.0008 (7)
C190.0211 (8)0.0225 (8)0.0203 (8)0.0009 (6)0.0013 (7)0.0032 (7)
Geometric parameters (Å, º) top
O1—C51.3583 (19)C9—H90.9500
O1—C61.437 (2)C10—C111.390 (2)
N1—C51.311 (2)C10—H100.9500
N1—C11.359 (2)C11—C121.386 (2)
N2—C71.147 (2)C11—H110.9500
C1—C21.388 (2)C12—C131.380 (2)
C1—C81.485 (2)C12—H120.9500
C2—C31.397 (2)C13—H130.9500
C2—H20.9500C14—C191.395 (2)
C3—C41.400 (2)C14—C151.399 (2)
C3—C141.487 (2)C15—C161.388 (2)
C4—C51.411 (2)C15—H150.9500
C4—C71.435 (2)C16—C171.382 (2)
C6—H6A0.9800C16—H160.9500
C6—H6B0.9800C17—C181.386 (2)
C6—H6C0.9800C17—H170.9500
C8—C131.397 (2)C18—C191.386 (2)
C8—C91.398 (2)C18—H180.9500
C9—C101.385 (2)C19—H190.9500
C5—O1—C6116.07 (13)C9—C10—C11120.12 (16)
C5—N1—C1117.68 (14)C9—C10—H10119.9
N1—C1—C2121.80 (15)C11—C10—H10119.9
N1—C1—C8115.97 (14)C12—C11—C10119.29 (16)
C2—C1—C8122.23 (14)C12—C11—H11120.4
C1—C2—C3120.49 (15)C10—C11—H11120.4
C1—C2—H2119.8C13—C12—C11120.81 (17)
C3—C2—H2119.8C13—C12—H12119.6
C2—C3—C4117.52 (15)C11—C12—H12119.6
C2—C3—C14119.74 (15)C12—C13—C8120.49 (16)
C4—C3—C14122.74 (15)C12—C13—H13119.8
C3—C4—C5117.62 (15)C8—C13—H13119.8
C3—C4—C7123.46 (15)C19—C14—C15119.15 (15)
C5—C4—C7118.89 (15)C19—C14—C3119.47 (14)
N1—C5—O1119.45 (15)C15—C14—C3121.35 (15)
N1—C5—C4124.86 (15)C16—C15—C14119.70 (16)
O1—C5—C4115.69 (14)C16—C15—H15120.1
O1—C6—H6A109.5C14—C15—H15120.1
O1—C6—H6B109.5C17—C16—C15120.56 (16)
H6A—C6—H6B109.5C17—C16—H16119.7
O1—C6—H6C109.5C15—C16—H16119.7
H6A—C6—H6C109.5C16—C17—C18120.19 (15)
H6B—C6—H6C109.5C16—C17—H17119.9
N2—C7—C4178.56 (19)C18—C17—H17119.9
C13—C8—C9118.44 (15)C17—C18—C19119.64 (16)
C13—C8—C1121.52 (15)C17—C18—H18120.2
C9—C8—C1120.03 (14)C19—C18—H18120.2
C10—C9—C8120.84 (16)C18—C19—C14120.72 (15)
C10—C9—H9119.6C18—C19—H19119.6
C8—C9—H9119.6C14—C19—H19119.6
C5—N1—C1—C21.6 (2)C2—C1—C8—C9170.16 (16)
C5—N1—C1—C8178.59 (15)C13—C8—C9—C100.8 (3)
N1—C1—C2—C30.4 (2)C1—C8—C9—C10178.17 (16)
C8—C1—C2—C3179.74 (15)C8—C9—C10—C110.2 (3)
C1—C2—C3—C41.4 (2)C9—C10—C11—C120.3 (3)
C1—C2—C3—C14178.68 (15)C10—C11—C12—C130.2 (3)
C2—C3—C4—C51.9 (2)C11—C12—C13—C80.4 (3)
C14—C3—C4—C5178.09 (15)C9—C8—C13—C120.9 (3)
C2—C3—C4—C7175.93 (16)C1—C8—C13—C12178.03 (16)
C14—C3—C4—C74.0 (3)C2—C3—C14—C1940.9 (2)
C1—N1—C5—O1178.65 (15)C4—C3—C14—C19139.07 (17)
C1—N1—C5—C40.9 (3)C2—C3—C14—C15137.09 (17)
C6—O1—C5—N14.9 (2)C4—C3—C14—C1542.9 (2)
C6—O1—C5—C4175.45 (16)C19—C14—C15—C160.6 (2)
C3—C4—C5—N10.9 (3)C3—C14—C15—C16178.63 (15)
C7—C4—C5—N1177.11 (17)C14—C15—C16—C170.6 (3)
C3—C4—C5—O1179.55 (15)C15—C16—C17—C180.7 (3)
C7—C4—C5—O12.5 (2)C16—C17—C18—C190.6 (3)
N1—C1—C8—C13169.24 (16)C17—C18—C19—C141.9 (3)
C2—C1—C8—C1310.9 (2)C15—C14—C19—C181.9 (2)
N1—C1—C8—C99.7 (2)C3—C14—C19—C18179.94 (16)

Experimental details

Crystal data
Chemical formulaC19H14N2O
Mr286.32
Crystal system, space groupOrthorhombic, P21212
Temperature (K)100
a, b, c (Å)15.0686 (16), 24.327 (3), 3.8986 (4)
V3)1429.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.22 × 0.11 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2009)
Tmin, Tmax0.982, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
12356, 3344, 2983
Rint0.047
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.04
No. of reflections3344
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Footnotes

Additional correspondence author, e-mail: alaa_moenes@yahoo.com.

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, for support. JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbdel-Aziz, A. A.-M. (2007). Tetrahedron Lett. 48, 2861–2865.  Web of Science CrossRef CAS Google Scholar
First citationAbdel-Aziz, A. A.-M., El-Subbagh, H. I. & Kunieda, T. (2005). Bioorg. Med. Chem. 13, 4929–4935.  Web of Science PubMed CAS Google Scholar
First citationAl-Arab, M. M. (1989). J. Heterocycl. Chem. 26, 1665–1673.  CAS Google Scholar
First citationAlvarez-Larena, A., Piniella, J. F., Victory, P., Borrell, J. I. & Vidal-Ferran, A. (1994). Z. Kristallogr. 209, 773–774.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SAINT, Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationBruker (2010). APEX2, Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationCao, Q., Xie, Y., Jia, J. & Hong, X.-W. (2009). Acta Cryst. E65, o3182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCook, C. E., Sloan, C. D., Thomas, B. F. & Navarro, H. A. (2004). Chem. Abstr. 141, 157039 861.  Google Scholar
First citationLv, L. L. & Huang, X.-Q. (2008). Acta Cryst. E64, o186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Abdelhamid, A. A., Singh, K. & El-Remaily, M. A. A. (2012). Acta Cryst. E68, o2495–o2496.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatel, U. H., Dave, C. G., Jotani, M. M. & Shah, H. C. (2002). Acta Cryst. C58, o697–o699.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPerez-Medina, L. A., Merriella, R. P. & McElvain, S. M. (1947). J. Am. Chem. Soc. 69, 2574–2579.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.  Google Scholar
First citationUpton, C., Osborne, R. H. & Jaffar, M. (2000). Bioorg. Med. Chem. Lett. 10, 1277–1279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds