organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o103-o104

8-{1-[(4′-Fluoro-[1,1′-biphen­yl]-4-yl)meth­yl]piperidin-4-yl}-3,4-di­hydro­quinolin-2(1H)-one chloro­form 0.25-solvate

aDepartment of Chemistry, King Fahad University of Petroleum & Minerals, 31261 Dahran, Saudi Arabia, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: nullah@kfupm.edu.sa

(Received 15 December 2013; accepted 23 December 2013; online 4 January 2014)

In the asymmetric unit of the title compound, C27H27FN2O·0.25CHCl3, there are two independent mol­ecules (A and B) together with a partially disordered chloro­form mol­ecule situated about an inversion center. The conformation of the two mol­ecules is very similar. The bridging piperidine rings each have a chair conformation while the piperidin-2-one rings of the quinoline moiety have screw-boat conformations. The benzene rings of the biphenyl moiety are inclined to one another by 26.37 (4) and 23.75 (15)° in mol­ecules A and B, respectively. The mean plane of the central piperidine ring [r.m.s. deviation = 0.241 (2) Å in both mol­ecules A and B] is inclined to the benzene ring of the quinoline moiety by 80.06 (4) in A and 83.75 (15)° in B, while it is inclined to the adjacent benzene ring of the biphenyl group by 73.623 (15) in A and 75.65 (14)° in B. In the crystal, individual mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming AA and BB inversion dimers with R22(8) ring motifs. The dimers are stabilized by C—H⋯O hydrogen bonds and linked via C—H⋯F and C—H⋯N hydrogen bonds into a three-dimensional network. Several C—H⋯π inter­actions are also present.

Related literature

For the synthesis and dual D2 and 5-HT1A receptor binding affinities of 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imid­azol-2(3H)-ones, see: Ullah (2013[Ullah, N. (2013). J. Enzym. Inhib. Med. Chem. doi:10.3109/14756366.2013.776556.]). For the synthesis of new 4-aryl-1-(bi­aryl­methyl­ene)piperidines, structural analogs of Adoprazine (SLV313), see: Ullah & Al-Shaheri (2012[Ullah, N. & Al-Shaheri, A. A. Q. (2012). Z. Naturforsch. Teil B, 67b, 253-262.]). For the synthesis of the title compound, see: Ullah (2012[Ullah, N. (2012). Z. Naturforsch. Teil B, 67b, 75-84.]) and Eastwood (2000[Eastwood, P. R. (2000). Tetrahedron Lett. 41, 3705-3708.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a description of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.])

[Scheme 1]

Experimental

Crystal data
  • C27H27FN2O·0.25CHCl3

  • Mr = 444.35

  • Triclinic, [P \overline 1]

  • a = 7.6955 (8) Å

  • b = 16.618 (2) Å

  • c = 18.224 (2) Å

  • α = 79.206 (9)°

  • β = 87.563 (9)°

  • γ = 83.976 (9)°

  • V = 2276.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 173 K

  • 0.45 × 0.30 × 0.15 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.764, Tmax = 1.000

  • 27043 measured reflections

  • 8614 independent reflections

  • 3481 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.115

  • S = 0.69

  • 8614 reflections

  • 595 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of rings C2–C7, C8–C11/C27/C28, C16/C17/C21–C24, C29–C34, C35–C38/C54/C55 and C43/C44/C48–C51, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.88 (3) 1.99 (3) 2.869 (3) 173 (3)
N4—H4N⋯O2ii 0.85 (3) 2.01 (3) 2.854 (3) 169 (3)
C15—H15⋯O1i 1.00 2.42 3.286 (4) 145
C34—H34⋯F1iii 0.95 2.53 3.406 (4) 154
C42—H42⋯O2ii 1.00 2.34 3.233 (4) 148
C61—H61⋯N3iv 1.00 2.00 2.978 (9) 164
C3—H3⋯Cg3v 0.95 2.65 3.483 (3) 147
C7—H7⋯Cg4iv 0.95 2.82 3.366 (3) 117
C19—H19BCg2i 0.99 2.84 3.779 (3) 159
C26—H26BCg5vi 0.99 2.94 3.903 (3) 165
C28—H28⋯Cg5iv 0.95 2.71 3.567 (3) 150
C30—H30⋯Cg6vii 0.95 2.78 3.593 (4) 144
C46—H46ACg5ii 0.99 2.93 3.871 (3) 159
C53—H53ACg6vi 0.99 2.86 3.825 (3) 166
C55—H55⋯Cg1 0.95 2.72 3.580 (3) 151
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+2, -y+1, -z+1; (iv) x-1, y, z; (v) -x+1, -y, -z+1; (vi) x+1, y, z; (vii) -x+2, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

The synthesis of the title compound has been previously described (Ullah, 2012; Eastwood, 2000). Rod-like colourless crystals of the title compound were obtained by slow evaporation of a solution in chloro­form.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95, 1.00 and 0.99 Å for CH(aromatic), methine, and methyl­ene H atoms, respectives, with Uiso(H) = 1.2Ueq(C).

Comment top

In ongoing efforts to develop new anti­psychotics, we have synthesized a series of compounds which are structural analogs of adoprazine and bifeprunox and have disclosed their dual D2 and 5-HT1A receptor binding affinities and structure-activity relationship (Ullah, 2013; Ullah & Al-Shaheri, 2012). Herein, we describe the crystal structure of one such molecule, a piperidine quinoline derivative.

The molecular structure of the two independent moleules (A and B) of the title compound are illustrated in Fig. 1. The compound crystallizes with a partially disordered chloro­form molecule situated about an inversion center. The bond lengths (Allen et al., 1987) and bond angles are within normal values.

The conformation of the two molecules is very similar. The piperidine rings, N1/C13—C15/C25/C26 and N3/C40—C42/C52/C53, in molecules A and B, respectively, each have a chair conformation and their mean planes are inclined to the benzene ring to which they are attached by 80.06 (14) ° in molecule A and 83.75 (15)° in molecule B. The piperidin-2-one rings of the quinoline moiety, N2/C17—C21 in A and N4/C44—C48 in B, have screw boat conformations. The two benzene rings of the bi­phenyl moiety are inclined to one another by 26.37 (14) and 23.75 (15) ° in molecules A and B, respectively.

In the crystal, individual molecules are linked by pairs of N—H···O hydrogen bonds forming A—A and B—B inversion dimers (Table 1 and Fig. 2), with R22(8) ring motifs (Bernstein et al., 1995). The dimers, are stabilized by C—H···O hydrogen bonds, and linked via C—H···F and C—H···N hydrogen bonds forming a three-dimensional network (Fig. 2). The network is further stabilized by a number of C—H···π inter­actions (Table 1).

Related literature top

For the synthesis and dual D2 and 5-HT1A receptor binding affinities of 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones, see: Ullah (2013). For the synthesis of new 4-aryl-1-(biarylmethylene)piperidines, structural analogs of Adoprazine (SLV313), see: Ullah & Al-Shaheri (2012). For the synthesis of the title compound, see: Ullah (2012) and Eastwood (2000). For standard bond-length data, see: Allen et al. (1987). For a description of hydrogen-bond motifs,see: Bernstein et al. (1995)

Structure description top

In ongoing efforts to develop new anti­psychotics, we have synthesized a series of compounds which are structural analogs of adoprazine and bifeprunox and have disclosed their dual D2 and 5-HT1A receptor binding affinities and structure-activity relationship (Ullah, 2013; Ullah & Al-Shaheri, 2012). Herein, we describe the crystal structure of one such molecule, a piperidine quinoline derivative.

The molecular structure of the two independent moleules (A and B) of the title compound are illustrated in Fig. 1. The compound crystallizes with a partially disordered chloro­form molecule situated about an inversion center. The bond lengths (Allen et al., 1987) and bond angles are within normal values.

The conformation of the two molecules is very similar. The piperidine rings, N1/C13—C15/C25/C26 and N3/C40—C42/C52/C53, in molecules A and B, respectively, each have a chair conformation and their mean planes are inclined to the benzene ring to which they are attached by 80.06 (14) ° in molecule A and 83.75 (15)° in molecule B. The piperidin-2-one rings of the quinoline moiety, N2/C17—C21 in A and N4/C44—C48 in B, have screw boat conformations. The two benzene rings of the bi­phenyl moiety are inclined to one another by 26.37 (14) and 23.75 (15) ° in molecules A and B, respectively.

In the crystal, individual molecules are linked by pairs of N—H···O hydrogen bonds forming A—A and B—B inversion dimers (Table 1 and Fig. 2), with R22(8) ring motifs (Bernstein et al., 1995). The dimers, are stabilized by C—H···O hydrogen bonds, and linked via C—H···F and C—H···N hydrogen bonds forming a three-dimensional network (Fig. 2). The network is further stabilized by a number of C—H···π inter­actions (Table 1).

For the synthesis and dual D2 and 5-HT1A receptor binding affinities of 5-piperidinyl and 5-piperazinyl-1H-benzo[d]imidazol-2(3H)-ones, see: Ullah (2013). For the synthesis of new 4-aryl-1-(biarylmethylene)piperidines, structural analogs of Adoprazine (SLV313), see: Ullah & Al-Shaheri (2012). For the synthesis of the title compound, see: Ullah (2012) and Eastwood (2000). For standard bond-length data, see: Allen et al. (1987). For a description of hydrogen-bond motifs,see: Bernstein et al. (1995)

Synthesis and crystallization top

The synthesis of the title compound has been previously described (Ullah, 2012; Eastwood, 2000). Rod-like colourless crystals of the title compound were obtained by slow evaporation of a solution in chloro­form.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. The NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95, 1.00 and 0.99 Å for CH(aromatic), methine, and methyl­ene H atoms, respectives, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules (A and B) of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The C-bound H atoms and the disordered chloroform molecule of solvent has been omitted for clarity.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
8-{1-[(4'-Fluoro-[1,1'-biphenyl]-4-yl)methyl]piperidin-4-yl}-3,4-dihydroquinolin-2(1H)-one chloroform 0.25-solvate top
Crystal data top
C27H27FN2O·0.25CHCl3Z = 4
Mr = 444.35F(000) = 938
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6955 (8) ÅCell parameters from 8114 reflections
b = 16.618 (2) Åθ = 1.5–26.0°
c = 18.224 (2) ŵ = 0.17 mm1
α = 79.206 (9)°T = 173 K
β = 87.563 (9)°Rod, colourless
γ = 83.976 (9)°0.45 × 0.30 × 0.15 mm
V = 2276.1 (4) Å3
Data collection top
Stoe IPDS 2
diffractometer
8614 independent reflections
Radiation source: fine-focus sealed tube3481 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.093
φ + ω scansθmax = 25.7°, θmin = 1.5°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 99
Tmin = 0.764, Tmax = 1.000k = 2020
27043 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 0.69Δρmax = 0.63 e Å3
8614 reflectionsΔρmin = 0.60 e Å3
595 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0034 (5)
Crystal data top
C27H27FN2O·0.25CHCl3γ = 83.976 (9)°
Mr = 444.35V = 2276.1 (4) Å3
Triclinic, P1Z = 4
a = 7.6955 (8) ÅMo Kα radiation
b = 16.618 (2) ŵ = 0.17 mm1
c = 18.224 (2) ÅT = 173 K
α = 79.206 (9)°0.45 × 0.30 × 0.15 mm
β = 87.563 (9)°
Data collection top
Stoe IPDS 2
diffractometer
8614 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
3481 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 1.000Rint = 0.093
27043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.69Δρmax = 0.63 e Å3
8614 reflectionsΔρmin = 0.60 e Å3
595 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The crystal diffracted weakly beyond 19° in θ despite is size. This we believe is due to the presence of disordered solvent of crystallization.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.7833 (3)0.46774 (11)0.43761 (10)0.0520 (6)
O10.2054 (3)0.00085 (13)0.53754 (12)0.0385 (6)
N10.4532 (3)0.07591 (14)0.25646 (12)0.0246 (6)
N20.0871 (3)0.09665 (15)0.47441 (13)0.0232 (6)
H2N0.009 (4)0.0712 (18)0.4712 (16)0.034 (9)*
C20.7566 (4)0.39930 (19)0.40904 (18)0.0326 (8)
C30.8092 (4)0.32282 (19)0.44942 (17)0.0346 (8)
H30.86240.31690.49650.042*
C40.7826 (4)0.25500 (19)0.41952 (16)0.0292 (8)
H40.81860.20170.44680.035*
C50.7046 (4)0.26184 (17)0.35058 (16)0.0239 (7)
C60.6540 (4)0.34185 (18)0.31198 (16)0.0282 (7)
H60.60130.34900.26470.034*
C70.6794 (4)0.41019 (19)0.34164 (17)0.0321 (8)
H70.64360.46400.31540.039*
C80.6745 (4)0.18862 (17)0.31910 (15)0.0246 (7)
C90.7798 (4)0.11402 (18)0.33780 (16)0.0301 (8)
H90.87260.11010.37150.036*
C100.7510 (4)0.04604 (18)0.30805 (16)0.0284 (7)
H100.82330.00390.32270.034*
C110.6193 (4)0.04847 (18)0.25737 (16)0.0256 (7)
C120.5943 (4)0.02544 (18)0.22348 (16)0.0295 (8)
H12A0.57120.00610.16970.035*
H12B0.70570.06150.22710.035*
C130.2788 (4)0.03846 (18)0.23558 (16)0.0286 (7)
H13A0.27460.02070.18070.034*
H13B0.25030.01080.25880.034*
C140.1447 (4)0.09995 (18)0.26140 (15)0.0284 (7)
H14A0.17280.14930.23830.034*
H14B0.02660.07480.24580.034*
C150.1482 (4)0.12460 (17)0.34640 (15)0.0234 (7)
H150.12440.07300.36740.028*
C160.0118 (4)0.18178 (17)0.38047 (15)0.0219 (7)
C170.0964 (4)0.16765 (17)0.44165 (15)0.0227 (7)
C180.2169 (4)0.06471 (19)0.51550 (16)0.0268 (7)
C190.3732 (4)0.11199 (18)0.53351 (17)0.0303 (8)
H19A0.45920.09430.49330.036*
H19B0.42930.10030.58080.036*
C200.3202 (4)0.20388 (18)0.54119 (17)0.0335 (8)
H20A0.25000.22330.58650.040*
H20B0.42630.23360.54700.040*
C210.2159 (4)0.22272 (18)0.47433 (15)0.0250 (7)
C220.2296 (4)0.29239 (19)0.44420 (17)0.0319 (8)
H220.31180.32970.46510.038*
C230.1250 (4)0.30808 (19)0.38413 (17)0.0358 (8)
H230.13430.35620.36400.043*
C240.0059 (4)0.25301 (18)0.35321 (17)0.0318 (8)
H240.06580.26450.31200.038*
C250.3338 (4)0.16133 (18)0.36797 (16)0.0299 (8)
H25A0.34070.17500.42310.036*
H25B0.36130.21300.34830.036*
C260.4679 (4)0.10162 (18)0.33715 (15)0.0280 (7)
H26A0.44920.05270.36130.034*
H26B0.58700.12850.34890.034*
C270.5138 (4)0.12268 (18)0.23943 (16)0.0293 (8)
H270.42170.12650.20550.035*
C280.5396 (4)0.19087 (18)0.26978 (15)0.0264 (7)
H280.46390.24010.25670.032*
F21.3617 (3)0.62544 (12)0.38567 (11)0.0588 (6)
O20.2877 (3)0.54027 (12)0.01363 (13)0.0377 (6)
N30.9771 (3)0.20169 (14)0.05422 (13)0.0270 (6)
N40.4096 (3)0.42911 (14)0.05795 (14)0.0229 (6)
H4N0.502 (4)0.4311 (17)0.0344 (15)0.022 (8)*
C291.3188 (5)0.5689 (2)0.3462 (2)0.0410 (9)
C301.3440 (4)0.5841 (2)0.27003 (19)0.0393 (9)
H301.38640.63410.24520.047*
C311.3064 (4)0.52515 (18)0.23002 (17)0.0319 (8)
H311.32350.53510.17730.038*
C321.2437 (4)0.45105 (18)0.26552 (16)0.0283 (7)
C331.2175 (4)0.44066 (19)0.34284 (18)0.0362 (8)
H331.17210.39180.36840.043*
C341.2546 (5)0.4982 (2)0.38355 (19)0.0421 (9)
H341.23620.48930.43620.051*
C351.2088 (4)0.38639 (18)0.22319 (16)0.0273 (7)
C361.2923 (4)0.37995 (18)0.15466 (16)0.0297 (8)
H361.37080.41900.13370.036*
C371.2634 (4)0.31827 (18)0.11671 (16)0.0299 (8)
H371.32120.31630.06990.036*
C381.1510 (4)0.25863 (18)0.14560 (16)0.0277 (7)
C391.1252 (4)0.18953 (18)0.10479 (16)0.0300 (8)
H39A1.23340.17870.07540.036*
H39B1.11170.13930.14270.036*
C400.8066 (4)0.20082 (18)0.09254 (16)0.0281 (7)
H40A0.78500.24940.11710.034*
H40B0.80580.15080.13170.034*
C410.6633 (4)0.20212 (18)0.03805 (16)0.0298 (7)
H41A0.54900.20040.06500.036*
H41B0.68340.15300.01410.036*
C420.6609 (4)0.28031 (17)0.02180 (16)0.0256 (7)
H420.64250.32840.00450.031*
C430.5169 (4)0.29027 (17)0.07819 (16)0.0253 (7)
C440.4001 (4)0.36189 (17)0.09489 (15)0.0221 (7)
C450.2736 (4)0.48745 (18)0.05182 (16)0.0268 (7)
C460.1135 (4)0.48381 (18)0.09304 (16)0.0298 (8)
H46A0.05120.53970.10550.036*
H46B0.03480.44800.06080.036*
C470.1570 (4)0.45047 (18)0.16440 (16)0.0331 (8)
H47A0.04770.44130.18700.040*
H47B0.21700.49130.20060.040*
C480.2733 (4)0.37045 (18)0.14847 (15)0.0244 (7)
C490.2579 (4)0.3066 (2)0.18601 (17)0.0357 (8)
H490.16880.31130.22150.043*
C500.3729 (5)0.2356 (2)0.17158 (18)0.0406 (9)
H500.36500.19220.19820.049*
C510.4987 (4)0.22842 (19)0.11845 (18)0.0365 (8)
H510.57580.17930.10900.044*
C520.8422 (4)0.28231 (19)0.06015 (17)0.0343 (8)
H52A0.86390.23590.08740.041*
H52B0.84600.33420.09690.041*
C530.9835 (4)0.27626 (19)0.00341 (16)0.0323 (8)
H53A1.09940.27520.02910.039*
H53B0.96800.32540.02050.039*
C541.0668 (4)0.26511 (19)0.21371 (16)0.0310 (8)
H540.98890.22580.23480.037*
C551.0941 (4)0.32725 (19)0.25114 (17)0.0321 (8)
H551.03330.33010.29720.039*
Cl10.0132 (2)0.03511 (9)0.07915 (8)0.1134 (6)
Cl20.3096 (5)0.02001 (16)0.00809 (15)0.1066 (10)0.5
C610.0799 (10)0.0456 (5)0.0014 (4)0.065 (3)0.5
H610.04580.10280.00740.078*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0699 (16)0.0417 (12)0.0472 (12)0.0041 (11)0.0038 (11)0.0153 (9)
O10.0344 (15)0.0437 (14)0.0431 (13)0.0094 (11)0.0146 (11)0.0231 (11)
N10.0206 (15)0.0286 (14)0.0239 (13)0.0027 (11)0.0034 (11)0.0039 (11)
N20.0214 (16)0.0278 (14)0.0214 (13)0.0080 (12)0.0059 (12)0.0053 (11)
C20.034 (2)0.0292 (18)0.0378 (19)0.0041 (15)0.0051 (16)0.0143 (15)
C30.036 (2)0.042 (2)0.0248 (17)0.0015 (17)0.0018 (15)0.0050 (15)
C40.028 (2)0.0304 (18)0.0256 (17)0.0000 (15)0.0004 (15)0.0024 (14)
C50.0143 (17)0.0274 (17)0.0272 (16)0.0016 (13)0.0046 (13)0.0008 (13)
C60.0225 (19)0.0342 (18)0.0252 (16)0.0005 (14)0.0013 (14)0.0007 (14)
C70.031 (2)0.0285 (18)0.0326 (18)0.0009 (15)0.0026 (16)0.0016 (14)
C80.0224 (18)0.0273 (17)0.0208 (16)0.0038 (14)0.0057 (14)0.0037 (13)
C90.0227 (19)0.0321 (18)0.0326 (18)0.0013 (15)0.0010 (15)0.0007 (14)
C100.0239 (19)0.0255 (17)0.0325 (18)0.0013 (14)0.0040 (15)0.0004 (14)
C110.0199 (18)0.0294 (17)0.0252 (16)0.0046 (14)0.0067 (14)0.0008 (13)
C120.0224 (19)0.0355 (18)0.0288 (17)0.0000 (15)0.0056 (14)0.0047 (14)
C130.0276 (19)0.0342 (18)0.0224 (16)0.0037 (15)0.0004 (14)0.0008 (13)
C140.0255 (19)0.0346 (18)0.0241 (16)0.0009 (15)0.0008 (14)0.0038 (13)
C150.0262 (19)0.0217 (16)0.0221 (15)0.0038 (14)0.0021 (14)0.0036 (12)
C160.0207 (18)0.0253 (16)0.0191 (15)0.0026 (13)0.0024 (13)0.0022 (13)
C170.0220 (18)0.0223 (16)0.0234 (16)0.0012 (13)0.0049 (14)0.0028 (13)
C180.0237 (19)0.0329 (18)0.0237 (16)0.0031 (15)0.0029 (14)0.0051 (14)
C190.0236 (19)0.0388 (19)0.0290 (17)0.0057 (15)0.0076 (14)0.0076 (14)
C200.031 (2)0.0373 (19)0.0302 (18)0.0106 (16)0.0086 (15)0.0002 (14)
C210.0227 (19)0.0294 (17)0.0213 (16)0.0057 (14)0.0007 (14)0.0011 (13)
C220.030 (2)0.0321 (19)0.0339 (18)0.0129 (15)0.0029 (16)0.0012 (15)
C230.043 (2)0.0285 (18)0.039 (2)0.0099 (16)0.0018 (17)0.0094 (15)
C240.034 (2)0.0345 (19)0.0287 (17)0.0047 (16)0.0002 (15)0.0088 (15)
C250.030 (2)0.0294 (17)0.0280 (17)0.0042 (15)0.0040 (15)0.0027 (13)
C260.0262 (19)0.0284 (17)0.0261 (16)0.0036 (14)0.0007 (14)0.0041 (13)
C270.025 (2)0.0354 (19)0.0243 (16)0.0023 (15)0.0008 (14)0.0028 (14)
C280.0244 (19)0.0280 (17)0.0234 (16)0.0000 (14)0.0005 (14)0.0023 (13)
F20.0776 (17)0.0417 (12)0.0624 (14)0.0126 (11)0.0063 (12)0.0215 (11)
O20.0299 (14)0.0277 (12)0.0601 (15)0.0020 (10)0.0085 (12)0.0207 (12)
N30.0241 (15)0.0250 (14)0.0285 (14)0.0009 (12)0.0010 (12)0.0011 (11)
N40.0198 (16)0.0209 (14)0.0279 (14)0.0004 (12)0.0049 (12)0.0042 (11)
C290.043 (2)0.033 (2)0.050 (2)0.0023 (17)0.0032 (18)0.0158 (17)
C300.034 (2)0.0284 (18)0.052 (2)0.0012 (16)0.0015 (18)0.0027 (17)
C310.028 (2)0.0289 (18)0.0334 (18)0.0002 (15)0.0020 (15)0.0059 (15)
C320.0228 (19)0.0303 (17)0.0277 (17)0.0029 (14)0.0024 (14)0.0009 (14)
C330.038 (2)0.0308 (18)0.0366 (19)0.0049 (16)0.0088 (16)0.0011 (15)
C340.053 (3)0.037 (2)0.037 (2)0.0014 (18)0.0091 (18)0.0112 (17)
C350.0188 (18)0.0306 (18)0.0267 (17)0.0031 (14)0.0007 (14)0.0062 (14)
C360.026 (2)0.0289 (17)0.0308 (18)0.0031 (15)0.0048 (15)0.0016 (14)
C370.0256 (19)0.0353 (19)0.0242 (16)0.0025 (15)0.0035 (14)0.0024 (14)
C380.0176 (18)0.0297 (18)0.0310 (18)0.0027 (14)0.0036 (14)0.0048 (14)
C390.0243 (19)0.0326 (18)0.0297 (17)0.0035 (15)0.0003 (15)0.0005 (14)
C400.0236 (19)0.0277 (17)0.0290 (17)0.0023 (14)0.0038 (14)0.0038 (13)
C410.0272 (19)0.0262 (17)0.0335 (17)0.0010 (14)0.0046 (15)0.0007 (13)
C420.0259 (19)0.0174 (15)0.0327 (17)0.0014 (14)0.0017 (15)0.0045 (13)
C430.0255 (19)0.0211 (16)0.0300 (17)0.0033 (14)0.0008 (14)0.0061 (13)
C440.0225 (18)0.0248 (16)0.0197 (15)0.0058 (14)0.0053 (13)0.0050 (12)
C450.027 (2)0.0199 (16)0.0312 (17)0.0012 (14)0.0022 (15)0.0016 (14)
C460.0243 (19)0.0268 (17)0.0376 (18)0.0020 (14)0.0048 (15)0.0064 (14)
C470.031 (2)0.0364 (19)0.0283 (17)0.0003 (15)0.0059 (15)0.0025 (14)
C480.0232 (19)0.0299 (17)0.0195 (15)0.0026 (14)0.0025 (14)0.0038 (13)
C490.034 (2)0.045 (2)0.0306 (18)0.0065 (17)0.0046 (16)0.0130 (16)
C500.045 (2)0.038 (2)0.045 (2)0.0045 (18)0.0018 (18)0.0236 (17)
C510.036 (2)0.0311 (19)0.045 (2)0.0018 (16)0.0028 (17)0.0153 (16)
C520.029 (2)0.0350 (19)0.0353 (19)0.0037 (15)0.0014 (16)0.0027 (14)
C530.0258 (19)0.0354 (18)0.0305 (18)0.0044 (15)0.0002 (15)0.0080 (14)
C540.025 (2)0.0368 (19)0.0284 (17)0.0086 (15)0.0061 (15)0.0021 (15)
C550.026 (2)0.040 (2)0.0279 (17)0.0042 (16)0.0051 (15)0.0010 (15)
Cl10.1568 (15)0.1040 (11)0.0755 (9)0.0122 (10)0.0064 (9)0.0063 (8)
Cl20.157 (3)0.0827 (18)0.0861 (18)0.0011 (19)0.0029 (19)0.0392 (14)
C610.055 (6)0.074 (6)0.065 (5)0.038 (5)0.047 (5)0.027 (4)
Geometric parameters (Å, º) top
F1—C21.374 (3)N3—C391.470 (4)
O1—C181.242 (3)N3—C531.470 (3)
N1—C131.454 (4)N4—C451.366 (4)
N1—C261.458 (3)N4—C441.417 (4)
N1—C121.480 (4)N4—H4N0.86 (3)
N2—C181.347 (4)C29—C301.372 (5)
N2—C171.428 (4)C29—C341.372 (4)
N2—H2N0.88 (3)C30—C311.386 (4)
C2—C71.360 (4)C30—H300.9500
C2—C31.374 (4)C31—C321.403 (4)
C3—C41.377 (4)C31—H310.9500
C3—H30.9500C32—C331.396 (4)
C4—C51.396 (4)C32—C351.487 (4)
C4—H40.9500C33—C341.374 (4)
C5—C61.407 (4)C33—H330.9500
C5—C81.482 (4)C34—H340.9500
C6—C71.381 (4)C35—C361.397 (4)
C6—H60.9500C35—C551.401 (4)
C7—H70.9500C36—C371.380 (4)
C8—C281.395 (4)C36—H360.9500
C8—C91.402 (4)C37—C381.398 (4)
C9—C101.383 (4)C37—H370.9500
C9—H90.9500C38—C541.392 (4)
C10—C111.392 (4)C38—C391.514 (4)
C10—H100.9500C39—H39A0.9900
C11—C271.396 (4)C39—H39B0.9900
C11—C121.507 (4)C40—C411.511 (4)
C12—H12A0.9900C40—H40A0.9900
C12—H12B0.9900C40—H40B0.9900
C13—C141.526 (4)C41—C421.531 (4)
C13—H13A0.9900C41—H41A0.9900
C13—H13B0.9900C41—H41B0.9900
C14—C151.527 (4)C42—C431.519 (4)
C14—H14A0.9900C42—C521.534 (4)
C14—H14B0.9900C42—H421.0000
C15—C161.524 (4)C43—C511.391 (4)
C15—C251.531 (4)C43—C441.407 (4)
C15—H151.0000C44—C481.388 (4)
C16—C241.388 (4)C45—C461.482 (4)
C16—C171.403 (4)C46—C471.518 (4)
C17—C211.401 (4)C46—H46A0.9900
C18—C191.497 (4)C46—H46B0.9900
C19—C201.520 (4)C47—C481.510 (4)
C19—H19A0.9900C47—H47A0.9900
C19—H19B0.9900C47—H47B0.9900
C20—C211.495 (4)C48—C491.383 (4)
C20—H20A0.9900C49—C501.389 (4)
C20—H20B0.9900C49—H490.9500
C21—C221.386 (4)C50—C511.378 (4)
C22—C231.379 (4)C50—H500.9500
C22—H220.9500C51—H510.9500
C23—C241.391 (4)C52—C531.515 (4)
C23—H230.9500C52—H52A0.9900
C24—H240.9500C52—H52B0.9900
C25—C261.524 (4)C53—H53A0.9900
C25—H25A0.9900C53—H53B0.9900
C25—H25B0.9900C54—C551.377 (4)
C26—H26A0.9900C54—H540.9500
C26—H26B0.9900C55—H550.9500
C27—C281.386 (4)Cl1—C61i1.573 (7)
C27—H270.9500Cl1—C611.960 (9)
C28—H280.9500Cl2—C611.782 (8)
F2—C291.359 (4)C61—Cl1i1.573 (7)
O2—C451.234 (3)C61—H611.0000
N3—C401.460 (4)
C13—N1—C26112.0 (2)C45—N4—H4N117.3 (19)
C13—N1—C12113.8 (2)C44—N4—H4N118.5 (19)
C26—N1—C12112.2 (2)F2—C29—C30118.6 (3)
C18—N2—C17124.3 (3)F2—C29—C34119.2 (3)
C18—N2—H2N114 (2)C30—C29—C34122.2 (3)
C17—N2—H2N122 (2)C29—C30—C31118.7 (3)
C7—C2—F1118.5 (3)C29—C30—H30120.7
C7—C2—C3122.7 (3)C31—C30—H30120.7
F1—C2—C3118.8 (3)C30—C31—C32121.6 (3)
C2—C3—C4117.9 (3)C30—C31—H31119.2
C2—C3—H3121.0C32—C31—H31119.2
C4—C3—H3121.0C33—C32—C31116.6 (3)
C3—C4—C5122.3 (3)C33—C32—C35121.6 (3)
C3—C4—H4118.9C31—C32—C35121.8 (3)
C5—C4—H4118.9C34—C33—C32122.7 (3)
C4—C5—C6117.0 (3)C34—C33—H33118.7
C4—C5—C8122.0 (3)C32—C33—H33118.7
C6—C5—C8121.0 (3)C29—C34—C33118.3 (3)
C7—C6—C5121.1 (3)C29—C34—H34120.9
C7—C6—H6119.4C33—C34—H34120.9
C5—C6—H6119.4C36—C35—C55116.5 (3)
C2—C7—C6118.9 (3)C36—C35—C32121.9 (3)
C2—C7—H7120.5C55—C35—C32121.6 (3)
C6—C7—H7120.5C37—C36—C35121.6 (3)
C28—C8—C9117.1 (3)C37—C36—H36119.2
C28—C8—C5121.4 (3)C35—C36—H36119.2
C9—C8—C5121.5 (3)C36—C37—C38121.5 (3)
C10—C9—C8121.1 (3)C36—C37—H37119.3
C10—C9—H9119.5C38—C37—H37119.3
C8—C9—H9119.5C54—C38—C37117.0 (3)
C9—C10—C11122.1 (3)C54—C38—C39121.9 (3)
C9—C10—H10119.0C37—C38—C39121.0 (3)
C11—C10—H10119.0N3—C39—C38117.5 (2)
C10—C11—C27116.6 (3)N3—C39—H39A107.9
C10—C11—C12121.2 (3)C38—C39—H39A107.9
C27—C11—C12122.2 (3)N3—C39—H39B107.9
N1—C12—C11116.8 (2)C38—C39—H39B107.9
N1—C12—H12A108.1H39A—C39—H39B107.2
C11—C12—H12A108.1N3—C40—C41110.7 (2)
N1—C12—H12B108.1N3—C40—H40A109.5
C11—C12—H12B108.1C41—C40—H40A109.5
H12A—C12—H12B107.3N3—C40—H40B109.5
N1—C13—C14110.1 (2)C41—C40—H40B109.5
N1—C13—H13A109.6H40A—C40—H40B108.1
C14—C13—H13A109.6C40—C41—C42109.9 (2)
N1—C13—H13B109.6C40—C41—H41A109.7
C14—C13—H13B109.6C42—C41—H41A109.7
H13A—C13—H13B108.1C40—C41—H41B109.7
C13—C14—C15109.1 (2)C42—C41—H41B109.7
C13—C14—H14A109.9H41A—C41—H41B108.2
C15—C14—H14A109.9C43—C42—C41114.7 (2)
C13—C14—H14B109.9C43—C42—C52111.6 (2)
C15—C14—H14B109.9C41—C42—C52108.1 (2)
H14A—C14—H14B108.3C43—C42—H42107.4
C16—C15—C14114.7 (2)C41—C42—H42107.4
C16—C15—C25111.9 (2)C52—C42—H42107.4
C14—C15—C25108.0 (2)C51—C43—C44116.4 (3)
C16—C15—H15107.3C51—C43—C42120.5 (3)
C14—C15—H15107.3C44—C43—C42123.1 (3)
C25—C15—H15107.3C48—C44—C43121.9 (3)
C24—C16—C17116.7 (3)C48—C44—N4117.2 (3)
C24—C16—C15120.5 (3)C43—C44—N4120.8 (3)
C17—C16—C15122.8 (3)O2—C45—N4120.0 (3)
C21—C17—C16122.0 (3)O2—C45—C46123.0 (3)
C21—C17—N2116.8 (3)N4—C45—C46117.0 (3)
C16—C17—N2121.1 (3)C45—C46—C47111.3 (3)
O1—C18—N2120.9 (3)C45—C46—H46A109.4
O1—C18—C19122.0 (3)C47—C46—H46A109.4
N2—C18—C19117.0 (3)C45—C46—H46B109.4
C18—C19—C20110.5 (3)C47—C46—H46B109.4
C18—C19—H19A109.5H46A—C46—H46B108.0
C20—C19—H19A109.5C48—C47—C46110.7 (2)
C18—C19—H19B109.5C48—C47—H47A109.5
C20—C19—H19B109.5C46—C47—H47A109.5
H19A—C19—H19B108.1C48—C47—H47B109.5
C21—C20—C19111.1 (2)C46—C47—H47B109.5
C21—C20—H20A109.4H47A—C47—H47B108.1
C19—C20—H20A109.4C49—C48—C44119.6 (3)
C21—C20—H20B109.4C49—C48—C47122.0 (3)
C19—C20—H20B109.4C44—C48—C47118.3 (3)
H20A—C20—H20B108.0C48—C49—C50119.8 (3)
C22—C21—C17118.8 (3)C48—C49—H49120.1
C22—C21—C20123.2 (3)C50—C49—H49120.1
C17—C21—C20118.0 (3)C51—C50—C49119.8 (3)
C23—C22—C21120.6 (3)C51—C50—H50120.1
C23—C22—H22119.7C49—C50—H50120.1
C21—C22—H22119.7C50—C51—C43122.5 (3)
C22—C23—C24119.6 (3)C50—C51—H51118.7
C22—C23—H23120.2C43—C51—H51118.7
C24—C23—H23120.2C53—C52—C42110.9 (2)
C16—C24—C23122.3 (3)C53—C52—H52A109.5
C16—C24—H24118.8C42—C52—H52A109.5
C23—C24—H24118.8C53—C52—H52B109.5
C26—C25—C15111.4 (2)C42—C52—H52B109.5
C26—C25—H25A109.3H52A—C52—H52B108.1
C15—C25—H25A109.3N3—C53—C52111.1 (3)
C26—C25—H25B109.3N3—C53—H53A109.4
C15—C25—H25B109.3C52—C53—H53A109.4
H25A—C25—H25B108.0N3—C53—H53B109.4
N1—C26—C25110.8 (2)C52—C53—H53B109.4
N1—C26—H26A109.5H53A—C53—H53B108.0
C25—C26—H26A109.5C55—C54—C38121.4 (3)
N1—C26—H26B109.5C55—C54—H54119.3
C25—C26—H26B109.5C38—C54—H54119.3
H26A—C26—H26B108.1C54—C55—C35121.9 (3)
C28—C27—C11121.9 (3)C54—C55—H55119.1
C28—C27—H27119.1C35—C55—H55119.1
C11—C27—H27119.1C61i—Cl1—C6169.6 (5)
C27—C28—C8121.2 (3)Cl1i—C61—Cl2112.9 (5)
C27—C28—H28119.4Cl1i—C61—Cl1110.4 (5)
C8—C28—H28119.4Cl2—C61—Cl1101.8 (3)
C40—N3—C39113.9 (2)Cl1i—C61—H61110.5
C40—N3—C53110.8 (2)Cl2—C61—H61110.5
C39—N3—C53112.0 (2)Cl1—C61—H61110.5
C45—N4—C44124.0 (3)
C7—C2—C3—C40.3 (5)F2—C29—C30—C31177.6 (3)
F1—C2—C3—C4179.4 (3)C34—C29—C30—C311.3 (5)
C2—C3—C4—C50.1 (5)C29—C30—C31—C320.0 (5)
C3—C4—C5—C60.2 (5)C30—C31—C32—C331.4 (5)
C3—C4—C5—C8179.3 (3)C30—C31—C32—C35177.9 (3)
C4—C5—C6—C70.5 (4)C31—C32—C33—C341.7 (5)
C8—C5—C6—C7179.0 (3)C35—C32—C33—C34177.7 (3)
F1—C2—C7—C6179.2 (3)F2—C29—C34—C33177.9 (3)
C3—C2—C7—C60.6 (5)C30—C29—C34—C331.1 (5)
C5—C6—C7—C20.7 (5)C32—C33—C34—C290.5 (5)
C4—C5—C8—C28152.9 (3)C33—C32—C35—C36155.2 (3)
C6—C5—C8—C2826.6 (4)C31—C32—C35—C3624.1 (4)
C4—C5—C8—C926.8 (4)C33—C32—C35—C5523.0 (4)
C6—C5—C8—C9153.7 (3)C31—C32—C35—C55157.7 (3)
C28—C8—C9—C100.4 (4)C55—C35—C36—C370.2 (4)
C5—C8—C9—C10179.9 (3)C32—C35—C36—C37178.0 (3)
C8—C9—C10—C111.3 (5)C35—C36—C37—C380.9 (5)
C9—C10—C11—C271.7 (4)C36—C37—C38—C541.2 (4)
C9—C10—C11—C12177.7 (3)C36—C37—C38—C39177.8 (3)
C13—N1—C12—C1175.3 (3)C40—N3—C39—C3870.1 (3)
C26—N1—C12—C1153.1 (3)C53—N3—C39—C3856.6 (3)
C10—C11—C12—N1100.2 (3)C54—C38—C39—N386.9 (4)
C27—C11—C12—N180.3 (4)C37—C38—C39—N394.1 (3)
C26—N1—C13—C1460.6 (3)C39—N3—C40—C41172.4 (2)
C12—N1—C13—C14170.9 (2)C53—N3—C40—C4160.3 (3)
N1—C13—C14—C1561.2 (3)N3—C40—C41—C4260.4 (3)
C13—C14—C15—C16176.2 (2)C40—C41—C42—C43177.6 (3)
C13—C14—C15—C2558.2 (3)C40—C41—C42—C5257.1 (3)
C14—C15—C16—C2450.7 (4)C41—C42—C43—C5154.7 (4)
C25—C15—C16—C2472.8 (3)C52—C42—C43—C5168.7 (4)
C14—C15—C16—C17131.7 (3)C41—C42—C43—C44127.7 (3)
C25—C15—C16—C17104.8 (3)C52—C42—C43—C44108.9 (3)
C24—C16—C17—C210.5 (4)C51—C43—C44—C480.1 (4)
C15—C16—C17—C21177.2 (3)C42—C43—C44—C48177.8 (3)
C24—C16—C17—N2179.3 (3)C51—C43—C44—N4178.9 (3)
C15—C16—C17—N21.6 (4)C42—C43—C44—N41.2 (4)
C18—N2—C17—C2123.1 (4)C45—N4—C44—C4823.1 (4)
C18—N2—C17—C16158.0 (3)C45—N4—C44—C43157.8 (3)
C17—N2—C18—O1174.4 (3)C44—N4—C45—O2174.1 (3)
C17—N2—C18—C196.1 (4)C44—N4—C45—C466.3 (4)
O1—C18—C19—C20147.6 (3)O2—C45—C46—C47148.1 (3)
N2—C18—C19—C2031.9 (4)N4—C45—C46—C4731.5 (4)
C18—C19—C20—C2152.3 (3)C45—C46—C47—C4851.3 (3)
C16—C17—C21—C221.3 (4)C43—C44—C48—C491.2 (4)
N2—C17—C21—C22179.8 (3)N4—C44—C48—C49179.7 (3)
C16—C17—C21—C20177.6 (3)C43—C44—C48—C47178.2 (3)
N2—C17—C21—C201.3 (4)N4—C44—C48—C470.9 (4)
C19—C20—C21—C22143.2 (3)C46—C47—C48—C49143.6 (3)
C19—C20—C21—C1738.0 (4)C46—C47—C48—C4437.0 (4)
C17—C21—C22—C231.3 (4)C44—C48—C49—C502.1 (5)
C20—C21—C22—C23177.5 (3)C47—C48—C49—C50177.2 (3)
C21—C22—C23—C240.6 (5)C48—C49—C50—C511.8 (5)
C17—C16—C24—C230.3 (4)C49—C50—C51—C430.5 (5)
C15—C16—C24—C23178.0 (3)C44—C43—C51—C500.5 (5)
C22—C23—C24—C160.3 (5)C42—C43—C51—C50178.3 (3)
C16—C15—C25—C26176.8 (3)C43—C42—C52—C53177.4 (2)
C14—C15—C25—C2655.9 (3)C41—C42—C52—C5355.5 (3)
C13—N1—C26—C2557.2 (3)C40—N3—C53—C5258.3 (3)
C12—N1—C26—C25173.5 (2)C39—N3—C53—C52173.4 (3)
C15—C25—C26—N155.2 (3)C42—C52—C53—N356.6 (3)
C10—C11—C27—C280.7 (4)C37—C38—C54—C550.4 (4)
C12—C11—C27—C28178.8 (3)C39—C38—C54—C55178.6 (3)
C11—C27—C28—C80.9 (5)C38—C54—C55—C350.7 (5)
C9—C8—C28—C271.4 (4)C36—C35—C55—C541.0 (4)
C5—C8—C28—C27178.8 (3)C32—C35—C55—C54177.2 (3)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of rings C2–C7, C8–C11/C27/C28, C16/C17/C21–C24, C29–C34, C35–C38/C54/C55 and C43/C44/C48–C51, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1ii0.88 (3)1.99 (3)2.869 (3)173 (3)
N4—H4N···O2iii0.85 (3)2.01 (3)2.854 (3)169 (3)
C15—H15···O1ii1.002.423.286 (4)145
C34—H34···F1iv0.952.533.406 (4)154
C42—H42···O2iii1.002.343.233 (4)148
C61—H61···N3v1.002.002.978 (9)164
C3—H3···Cg3vi0.952.653.483 (3)147
C7—H7···Cg4v0.952.823.366 (3)117
C19—H19B···Cg2ii0.992.843.779 (3)159
C26—H26B···Cg5vii0.992.943.903 (3)165
C28—H28···Cg5v0.952.713.567 (3)150
C30—H30···Cg6viii0.952.783.593 (4)144
C46—H46A···Cg5iii0.992.933.871 (3)159
C53—H53A···Cg6vii0.992.863.825 (3)166
C55—H55···Cg10.952.723.580 (3)151
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+2, y+1, z+1; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x+1, y, z; (viii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of rings C2–C7, C8–C11/C27/C28, C16/C17/C21–C24, C29–C34, C35–C38/C54/C55 and C43/C44/C48–C51, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.88 (3)1.99 (3)2.869 (3)173 (3)
N4—H4N···O2ii0.85 (3)2.01 (3)2.854 (3)169 (3)
C15—H15···O1i1.002.423.286 (4)145
C34—H34···F1iii0.952.533.406 (4)154
C42—H42···O2ii1.002.343.233 (4)148
C61—H61···N3iv1.002.002.978 (9)164
C3—H3···Cg3v0.952.653.483 (3)147
C7—H7···Cg4iv0.952.823.366 (3)117
C19—H19B···Cg2i0.992.843.779 (3)159
C26—H26B···Cg5vi0.992.943.903 (3)165
C28—H28···Cg5iv0.952.713.567 (3)150
C30—H30···Cg6vii0.952.783.593 (4)144
C46—H46A···Cg5ii0.992.933.871 (3)159
C53—H53A···Cg6vi0.992.863.825 (3)166
C55—H55···Cg10.952.723.580 (3)151
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x+2, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z+1; (vi) x+1, y, z; (vii) x+2, y+1, z.
 

Acknowledgements

The authors would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science & Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project No. 11-BIO2138-04 as part of the National Science, Technology and Innovation Plan. HSE is grateful to the XRD Application Laboratory, CSEM, Neuchâtel, for access to the X-ray diffraction equipment..

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEastwood, P. R. (2000). Tetrahedron Lett. 41, 3705–3708.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationUllah, N. (2012). Z. Naturforsch. Teil B, 67b, 75–84.  CrossRef Google Scholar
First citationUllah, N. (2013). J. Enzym. Inhib. Med. Chem. doi:10.3109/14756366.2013.776556.  Google Scholar
First citationUllah, N. & Al-Shaheri, A. A. Q. (2012). Z. Naturforsch. Teil B, 67b, 253–262.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o103-o104
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds