organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­benzene-1,3-di­ammonium dinitrate

aLaboratoire de Physico-Chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, BP 802, 3018 Sfax, Tunisia, bInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okolna, 50-422 Wroclaw, Poland, and cFaculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
*Correspondence e-mail: w_rekik@alinto.com

(Received 31 December 2013; accepted 22 January 2014; online 25 January 2014)

In the crystal structure of the title salt, C7H12N22+·2NO3, the nitrate ions are located in the vicinity of the protonated amine groups, accepting strong N—H⋯O hydrogen bonds. Each ammonium group is involved in a total of three such inter­actions with neighbouring nitrate ions, generating a three-dimensional network. In addition, there are ππ inter­actions between the aromatic rings of centrosymmetrically related di­ammonium moieties, with a centroid–centroid distance of 3.682 (1) Å.

Related literature

For applications of amine salts, see: Jayaraman et al. (2002[Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413-422.]). For hydrogen bonding, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). For related structures, see: Garza Rodríguez et al. (2013[Garza Rodríguez, L. Á., Elizondo Martínez, P., Bernès, S., Nájera Martínez, B. & Pérez Rodríguez, N. (2013). Acta Cryst. E69, o1643-o1644.]); Gao & Ng (2012[Gao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2474.]); Riahi et al. (2012[Riahi, S., Mrad, M. L., Ferretti, V., Lefebvre, F. & Ben Nasr, C. (2012). Acta Cryst. E68, o1647.]). For comparable crystal packing arrangements, see: Abrahams et al. (2013[Abrahams, A., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o661.]); Glidewell et al. (2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o273-o275.]).

[Scheme 1]

Experimental

Crystal data
  • C7H12N22+·2NO3

  • Mr = 248.21

  • Monoclinic, P 21 /n

  • a = 10.494 (3) Å

  • b = 7.417 (2) Å

  • c = 13.487 (4) Å

  • β = 91.46 (5)°

  • V = 1049.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.36 × 0.30 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.708, Tmax = 0.982

  • 11810 measured reflections

  • 2400 independent reflections

  • 1617 reflections with I > 2σ(I)

  • Rint = 0.000

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.091

  • S = 0.84

  • 2400 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O5 0.91 (2) 1.85 (2) 2.746 (2) 168 (2)
N1—H12⋯O1i 0.93 (2) 1.93 (2) 2.845 (2) 168 (2)
N1—H13⋯O3ii 0.85 (2) 2.07 (2) 2.891 (2) 161 (2)
N2—H21⋯O5i 0.94 (2) 1.91 (2) 2.808 (2) 161 (2)
N2—H22⋯O1 0.89 (2) 1.96 (2) 2.839 (2) 172 (2)
N2—H23⋯O2iii 0.91 (2) 2.05 (3) 2.958 (2) 174 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Experimental top

Synthesis and crystallization top

The title compound is resulting from a chemical reaction between three reagents: 2,6-di­amino­toluene (C7H10N2), nitric acid HNO3 and nitrate zinc hexahydrate Zn(NO3)2·6H2O. In the molar ratio 1:2:1, 0.12 g. The amine was dissolved in a little amount of distilled water, then 0.12 g of nitric acid and 0.29 g of zinc nitrate were added. The mixture was stirred for 15 minutes and the clear solution is allowed to stand at room temperature. The slow evaporation gives rise to the formation of dark brown crystals. The X-ray analysis investigation proves that a the divalent metal is not part of the structure and that the obtained phase is (C7H12N2). 2(NO3)

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bonded to N were found in a difference map and freely refined while H bonded to carbon atom were positioned geometrically and allowed to ride on their parent atom, with C—H = 0.93 Å, and Uiso = 1.2Ueq(C) for aromatic and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl.

Results and discussion top

The amine salt family of compounds have attracted more attention due to their potential importance (Jayaraman et al., 2002; Steiner et al., 2002). In this paper, we report the synthesis and the crystal structure of a new amine nitrate salt (C7H12N2)2+ 2(NO3)-, (I). The asymmetric unit of (I), represented in figure 1, contains one protonated di­amine and two nitrate anions with general positions for all atoms. Both protonated nitro­gen atoms of organic cation are engaged in hydrogen bonds with two crystallographic independent nitrate groups. So that, nitro­gen atoms play the role of donor and oxygen atoms are acceptors in the model of hydrogen bond. Within these inter­molecular hydrogen bonds, the D···A distances vary from 2.745 (2) to 2.960 (2) Å. Within the nitrate groups, the N—O distances and the O—N—O angles are in the normal ranges (Garza Rodríguez et al., 2013; Riahi et al., 2012; Gao & Ng, 2012). Indeed, the N—O bond lengths range from 1.235 (2) to 1.284 (2) Å and the O—N—O bond angles are between 118.42 (16) and 122.46 (17) °. These values show that each nitrate anion exhibits a slightly distorted C3h geometry. Within the aromatic rings of the organic moiety, the C—C and C—C—C angles are in the ranges 1.384 (3)—1.403 (3) Å and 115.68 (18)—123.15 (17) °. These values are comparable with those seen in other amine salts where the used amine contains a similar aromatic system (Riahi et al., 2012; Gao et al., 2012). The shortest inter­centroid distance between two aromatic systems is equal to 3.682 (1) Å. This value proves the existence of p···p inter­actions which contribute to the crystal stability. Comparable inter­centroid distances and inter­planar spacing between two parallel aromatic rings, have already been observed in the literature (Abrahams et al., 2013; Glidewell et al. 2004). A perspective view of the structure shows an anionic stacking and a cationic one along the crystallographic b axis (figure 2). The obtained anionic and cationic layers, which are parallel to (-1 0 1) plane and inter­linked by N—H···O bonds, alternate along [1 0 - 1] direction (figure 3).

Related literature top

For applications of amine salts, see: Jayaraman et al. (2002). For hydrogen bonding, see: Steiner (2002). For related structures, see: Garza Rodríguez et al. (2013); Gao & Ng (2012); Riahi et al. (2012). For comparable crystal packing arrangements, see: Abrahams et al. (2013); Glidewell et al. (2004).

Structure description top

The amine salt family of compounds have attracted more attention due to their potential importance (Jayaraman et al., 2002; Steiner et al., 2002). In this paper, we report the synthesis and the crystal structure of a new amine nitrate salt (C7H12N2)2+ 2(NO3)-, (I). The asymmetric unit of (I), represented in figure 1, contains one protonated di­amine and two nitrate anions with general positions for all atoms. Both protonated nitro­gen atoms of organic cation are engaged in hydrogen bonds with two crystallographic independent nitrate groups. So that, nitro­gen atoms play the role of donor and oxygen atoms are acceptors in the model of hydrogen bond. Within these inter­molecular hydrogen bonds, the D···A distances vary from 2.745 (2) to 2.960 (2) Å. Within the nitrate groups, the N—O distances and the O—N—O angles are in the normal ranges (Garza Rodríguez et al., 2013; Riahi et al., 2012; Gao & Ng, 2012). Indeed, the N—O bond lengths range from 1.235 (2) to 1.284 (2) Å and the O—N—O bond angles are between 118.42 (16) and 122.46 (17) °. These values show that each nitrate anion exhibits a slightly distorted C3h geometry. Within the aromatic rings of the organic moiety, the C—C and C—C—C angles are in the ranges 1.384 (3)—1.403 (3) Å and 115.68 (18)—123.15 (17) °. These values are comparable with those seen in other amine salts where the used amine contains a similar aromatic system (Riahi et al., 2012; Gao et al., 2012). The shortest inter­centroid distance between two aromatic systems is equal to 3.682 (1) Å. This value proves the existence of p···p inter­actions which contribute to the crystal stability. Comparable inter­centroid distances and inter­planar spacing between two parallel aromatic rings, have already been observed in the literature (Abrahams et al., 2013; Glidewell et al. 2004). A perspective view of the structure shows an anionic stacking and a cationic one along the crystallographic b axis (figure 2). The obtained anionic and cationic layers, which are parallel to (-1 0 1) plane and inter­linked by N—H···O bonds, alternate along [1 0 - 1] direction (figure 3).

For applications of amine salts, see: Jayaraman et al. (2002). For hydrogen bonding, see: Steiner (2002). For related structures, see: Garza Rodríguez et al. (2013); Gao & Ng (2012); Riahi et al. (2012). For comparable crystal packing arrangements, see: Abrahams et al. (2013); Glidewell et al. (2004).

Synthesis and crystallization top

The title compound is resulting from a chemical reaction between three reagents: 2,6-di­amino­toluene (C7H10N2), nitric acid HNO3 and nitrate zinc hexahydrate Zn(NO3)2·6H2O. In the molar ratio 1:2:1, 0.12 g. The amine was dissolved in a little amount of distilled water, then 0.12 g of nitric acid and 0.29 g of zinc nitrate were added. The mixture was stirred for 15 minutes and the clear solution is allowed to stand at room temperature. The slow evaporation gives rise to the formation of dark brown crystals. The X-ray analysis investigation proves that a the divalent metal is not part of the structure and that the obtained phase is (C7H12N2). 2(NO3)

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bonded to N were found in a difference map and freely refined while H bonded to carbon atom were positioned geometrically and allowed to ride on their parent atom, with C—H = 0.93 Å, and Uiso = 1.2Ueq(C) for aromatic and C—H = 0.96 Å, Uiso = 1.5Ueq(C) for methyl.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title salt. Displacement ellipsoids for non-H atoms are presented at the 50% probability level.
[Figure 2] Fig. 2. A perspective view of the crytal structure of (I). Hydrogen atoms are omitted for clarity.
[Figure 3] Fig. 3. Projection of the structure of (I) along the b axis. Hydrogen atoms are omitted for clarity
2-Methylbenzene-1,3-diammonium dinitrate top
Crystal data top
C7H12N22+·2NO3F(000) = 520
Mr = 248.21Dx = 1.571 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 11810 reflections
a = 10.494 (3) Åθ = 3.1–27.5°
b = 7.417 (2) ŵ = 0.14 mm1
c = 13.487 (4) ÅT = 293 K
β = 91.46 (5)°Prism, brown
V = 1049.4 (5) Å30.36 × 0.30 × 0.16 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2400 independent reflections
Radiation source: fine-focus sealed tube1617 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.000
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD rotation images, thick slices scansh = 1313
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 09
Tmin = 0.708, Tmax = 0.982l = 017
11810 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.84 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C7H12N22+·2NO3V = 1049.4 (5) Å3
Mr = 248.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.494 (3) ŵ = 0.14 mm1
b = 7.417 (2) ÅT = 293 K
c = 13.487 (4) Å0.36 × 0.30 × 0.16 mm
β = 91.46 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2400 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
1617 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.982Rint = 0.000
11810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.28 e Å3
2400 reflectionsΔρmin = 0.23 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32257 (14)0.5382 (2)0.04883 (13)0.0161 (3)
H110.330 (2)0.416 (3)0.0529 (16)0.034 (6)*
H120.3819 (19)0.590 (3)0.0923 (16)0.029 (6)*
H130.338 (2)0.573 (3)0.0094 (18)0.033 (6)*
N20.03954 (14)0.5320 (2)0.27455 (11)0.0154 (3)
H210.0007 (18)0.582 (3)0.3308 (15)0.021 (5)*
H220.0346 (18)0.413 (3)0.2809 (14)0.023 (5)*
H230.124 (2)0.558 (3)0.2749 (15)0.031 (5)*
C10.02007 (15)0.5914 (2)0.18309 (12)0.0143 (3)
C20.04968 (15)0.7016 (2)0.11933 (13)0.0174 (4)
HC20.13110.73900.13570.021*
C30.00273 (15)0.7559 (2)0.03071 (13)0.0189 (4)
HC30.04410.82880.01290.023*
C40.12492 (15)0.7017 (2)0.00712 (13)0.0173 (4)
HC40.16060.73730.05220.021*
C50.19263 (14)0.5937 (2)0.07346 (12)0.0142 (3)
C60.14394 (15)0.5344 (2)0.16332 (12)0.0135 (3)
C70.21965 (15)0.4140 (2)0.23249 (12)0.0160 (3)
H10.30760.44990.23310.024*
H20.21240.29130.21030.024*
H30.18730.42400.29820.024*
O10.00268 (10)0.15667 (16)0.30012 (10)0.0216 (3)
O20.18762 (11)0.13185 (17)0.23748 (9)0.0237 (3)
O30.11592 (13)0.06969 (16)0.34182 (9)0.0260 (3)
N30.10232 (13)0.07181 (18)0.29321 (11)0.0171 (3)
O40.37995 (10)0.08942 (15)0.01918 (9)0.0212 (3)
O50.37031 (11)0.17901 (15)0.08249 (9)0.0203 (3)
O60.31797 (11)0.13625 (18)0.07227 (9)0.0257 (3)
N40.35592 (12)0.07296 (19)0.00802 (10)0.0158 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0172 (7)0.0150 (8)0.0161 (8)0.0007 (6)0.0037 (6)0.0003 (6)
N20.0128 (7)0.0164 (8)0.0170 (8)0.0001 (6)0.0014 (6)0.0007 (6)
C10.0162 (7)0.0126 (7)0.0141 (8)0.0036 (6)0.0002 (6)0.0014 (7)
C20.0130 (7)0.0157 (8)0.0234 (10)0.0005 (6)0.0016 (7)0.0001 (7)
C30.0192 (8)0.0159 (8)0.0213 (10)0.0000 (6)0.0063 (7)0.0031 (7)
C40.0225 (9)0.0149 (8)0.0143 (9)0.0036 (6)0.0013 (7)0.0012 (7)
C50.0132 (7)0.0118 (8)0.0176 (9)0.0012 (6)0.0010 (6)0.0026 (7)
C60.0153 (8)0.0098 (7)0.0154 (9)0.0025 (6)0.0023 (6)0.0025 (6)
C70.0150 (7)0.0155 (8)0.0176 (9)0.0008 (6)0.0019 (6)0.0007 (7)
O10.0135 (6)0.0183 (6)0.0329 (7)0.0023 (5)0.0030 (5)0.0016 (5)
O20.0155 (6)0.0332 (7)0.0223 (7)0.0006 (5)0.0038 (5)0.0015 (6)
O30.0429 (8)0.0146 (6)0.0209 (7)0.0057 (6)0.0086 (6)0.0019 (5)
N30.0184 (7)0.0156 (7)0.0172 (7)0.0013 (6)0.0025 (6)0.0027 (6)
O40.0195 (6)0.0116 (6)0.0327 (7)0.0002 (5)0.0041 (5)0.0021 (5)
O50.0292 (7)0.0166 (6)0.0151 (6)0.0035 (5)0.0002 (5)0.0037 (5)
O60.0246 (7)0.0360 (8)0.0163 (7)0.0093 (6)0.0041 (5)0.0017 (6)
N40.0124 (6)0.0170 (7)0.0181 (8)0.0005 (5)0.0014 (5)0.0009 (6)
Geometric parameters (Å, º) top
N1—C51.470 (2)C4—C51.384 (2)
N1—H110.91 (2)C4—HC40.9300
N1—H120.93 (2)C5—C61.398 (2)
N1—H130.85 (2)C6—C71.504 (2)
N2—C11.465 (2)C7—H10.9600
N2—H210.94 (2)C7—H20.9600
N2—H220.89 (2)C7—H30.9600
N2—H230.91 (2)O1—N31.2703 (17)
C1—C21.382 (2)O2—N31.2371 (19)
C1—C61.399 (2)O3—N31.2475 (19)
C2—C31.388 (2)O4—N41.2388 (18)
C2—HC20.9300O5—N41.2817 (18)
C3—C41.389 (2)O6—N41.2367 (18)
C3—HC30.9300
C5—N1—H11110.0 (13)C5—C4—C3118.78 (15)
C5—N1—H12110.8 (12)C5—C4—HC4120.6
H11—N1—H12108.5 (19)C3—C4—HC4120.6
C5—N1—H13109.0 (15)C4—C5—C6123.34 (14)
H11—N1—H13110 (2)C4—C5—N1118.67 (15)
H12—N1—H13108.4 (19)C6—C5—N1117.99 (15)
C1—N2—H21111.6 (11)C5—C6—C1115.58 (15)
C1—N2—H22110.8 (13)C5—C6—C7121.71 (14)
H21—N2—H22107.1 (18)C1—C6—C7122.69 (14)
C1—N2—H23112.2 (13)C6—C7—H1109.5
H21—N2—H23109.3 (17)C6—C7—H2109.5
H22—N2—H23105.5 (18)H1—C7—H2109.5
C2—C1—C6122.68 (15)C6—C7—H3109.5
C2—C1—N2118.10 (14)H1—C7—H3109.5
C6—C1—N2119.22 (15)H2—C7—H3109.5
C1—C2—C3119.49 (15)O2—N3—O3122.10 (14)
C1—C2—HC2120.3O2—N3—O1118.62 (14)
C3—C2—HC2120.3O3—N3—O1119.27 (14)
C2—C3—C4120.11 (16)O6—N4—O4122.38 (14)
C2—C3—HC3119.9O6—N4—O5118.82 (14)
C4—C3—HC3119.9O4—N4—O5118.80 (14)
C6—C1—C2—C31.5 (3)N1—C5—C6—C1179.86 (14)
N2—C1—C2—C3178.15 (15)C4—C5—C6—C7178.77 (15)
C1—C2—C3—C40.8 (3)N1—C5—C6—C71.4 (2)
C2—C3—C4—C50.2 (2)C2—C1—C6—C51.1 (2)
C3—C4—C5—C60.6 (2)N2—C1—C6—C5178.57 (14)
C3—C4—C5—N1179.28 (15)C2—C1—C6—C7179.79 (15)
C4—C5—C6—C10.0 (2)N2—C1—C6—C70.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O50.91 (2)1.85 (2)2.746 (2)168 (2)
N1—H12···O1i0.93 (2)1.93 (2)2.845 (2)168 (2)
N1—H13···O3ii0.85 (2)2.07 (2)2.891 (2)161 (2)
N2—H21···O5i0.94 (2)1.91 (2)2.808 (2)161 (2)
N2—H22···O10.89 (2)1.96 (2)2.839 (2)172 (2)
N2—H23···O2iii0.91 (2)2.05 (3)2.958 (2)174 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O50.91 (2)1.85 (2)2.746 (2)168 (2)
N1—H12···O1i0.93 (2)1.93 (2)2.845 (2)168 (2)
N1—H13···O3ii0.85 (2)2.07 (2)2.891 (2)161 (2)
N2—H21···O5i0.94 (2)1.91 (2)2.808 (2)161 (2)
N2—H22···O10.89 (2)1.96 (2)2.839 (2)172 (2)
N2—H23···O2iii0.91 (2)2.05 (3)2.958 (2)174 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z+1/2.
 

References

First citationAbrahams, A., van Brecht, B. & Betz, R. (2013). Acta Cryst. E69, o661.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, S. & Ng, S. W. (2012). Acta Cryst. E68, o2474.  CSD CrossRef IUCr Journals Google Scholar
First citationGarza Rodríguez, L. Á., Elizondo Martínez, P., Bernès, S., Nájera Martínez, B. & Pérez Rodríguez, N. (2013). Acta Cryst. E69, o1643–o1644.  CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o273–o275.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413-422.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationRiahi, S., Mrad, M. L., Ferretti, V., Lefebvre, F. & Ben Nasr, C. (2012). Acta Cryst. E68, o1647.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds