metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m32-m33

Poly[tetra­kis­(μ-1,1,1,3,3,3-hexa­fluoropropan-2-olato)iron(II)dipotassium]

aNaval Research Laboratory, Chemistry Division, Code 6100, 4555 Overlook Av, SW, Washington DC 20375, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC, 20059, USA
*Correspondence e-mail: andrew.purdy@nrl.navy.mil

(Received 13 October 2013; accepted 30 December 2013; online 8 January 2014)

The title compound, [K2Fe{OCH(CF3)2}4]n, was formed from the reaction of potassium hexa­fluoro­isopropoxide with iron(II) chloride in toluene. The FeII atom has a highly distorted tetra­hedral coordination environment. All four of the non-equivalent hexa­fluoro­isoprop­oxy O atoms link the FeII atoms to one of the K+ atoms in an alternating chain of Fe—O—K—O fused four-membered rings, with K—Fe distances of 3.715 (2) and 3.717 (2) Å. This K+ atom is also bridged to eight of the F atoms. The other K+ atom is bonded to only two of the O atoms, but has seven short K⋯F contacts, one of which links the chains into a three-dimensional arrangement. Weak hydrogen bonding between the lone H atoms on the hexa­fluoro­isoprop­oxy groups and F atoms is also present. The crystal studied was refined as an inversion twin.

Related literature

For alkali or alkaline earth metal fluoro­alkoxides with short F—A distances, see: Zheng et al. (2009[Zheng, B., Miranda, M. O., DiPasquale, A. G., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2009). Inorg. Chem. 48, 4274-4276.]); Yamashita et al. (2005[Yamashita, M. Y., Yamamoto, Y., Akiba, K., Hashizume, D., Iwasaki, F., Takagi, N. & Nagase, S. (2005). J. Am. Chem. Soc. 127, 4354-4371.]); Bernhardt et al. (2007[Bernhardt, E., Brauer, D. J., Köckerling, M. & Pawelke, G. (2007). Z. Anorg. Allg. Chem. 633, 947-954.]); Purdy & George (1991[Purdy, A. P. & George, C. F. (1991). Inorg. Chem. 30, 1970-1972.], 1994[Purdy, A. P. & George, C. F. (1994). ACS Symposium Series, Vol. 555, Inorganic Fluorine Chemistry, edited by Joseph S . Thrasher & Steven H. Strauss, ch. 26, pp. 405-420, . Washington, DC: American Chemical Society.]); Samuels et al. (1993[Samuels, J. A., Lobkovsky, E. B., Streib, W. E., Folting, K., Huffman, J. C., Zwanziger, J. W. & Caulton, K. G. (1993). J. Am. Chem. Soc. 115, 5093-5104.]); Purdy et al. (1991[Purdy, A. P., George, C. F. & Callahan, J. H. (1991). Inorg. Chem. 30, 2812-2819.]). For iron(II) fluoro­alkoxides, see: Konefal et al. (1986[Konefal, E., Loeb, S. J., Willis, C. J. & Stephan, D. W. (1986). Inorg. Chim. Acta, 115, 147-151.]); Cantalupo et al. (2010[Cantalupo, S. A., Lum, J. S., Buzzeo, M. C., Moore, C., DiPasquale, A. G., Rheingold, A. L. & Doerrer, L. H. (2010). Dalton Trans. 39, 374-383.], 2012[Cantalupo, S. A., Fiedler, S. R., Shores, M. P., Rheingold, A. L. & Doerrer, L. H. (2012). Angew. Chem. Int. Ed. 51, 1000-1005.]).

[Scheme 1]

Experimental

Crystal data
  • [FeK2(C3HF6O)4]

  • Mr = 802.20

  • Orthorhombic, P 21 21 21

  • a = 9.7368 (2) Å

  • b = 13.4345 (4) Å

  • c = 18.3933 (4) Å

  • V = 2406.02 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 10.15 mm−1

  • T = 123 K

  • 0.43 × 0.21 × 0.17 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, UK.]) Tmin = 0.254, Tmax = 1.000

  • 16099 measured reflections

  • 4923 independent reflections

  • 4190 reflections with I > 2σ(I)

  • Rint = 0.100

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.182

  • S = 1.02

  • 4923 reflections

  • 389 parameters

  • 144 restraints

  • H-atom parameters constrained

  • Δρmax = 1.63 e Å−3

  • Δρmin = −1.29 e Å−3

  • Absolute structure: Refined as an inversion twin

  • Absolute structure parameter: 0.205 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1AA⋯F3Bi 1.00 2.54 3.236 (10) 126
C1B—H1BA⋯F2C 1.00 2.56 3.199 (11) 122
C1C—H1CA⋯F4Dii 1.00 2.56 3.201 (11) 122
C1D—H1DA⋯F2Aiii 1.00 2.46 3.361 (11) 150
C1D—H1DA⋯F3A 1.00 2.42 3.093 (11) 124
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, UK.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The iron atoms have a highly distorted tetrahedral coordination by the four O atoms of the hexafluoroisopropoxide ligands, with the O—Fe—O angles ranging from 93.9 (2) to 143.1 (2) °. The two longest Fe—O bonds (2.047 (6) and 2.048 (6) Å) are to the O atoms O1A and O1C, which are also bridged to both K1 and K2. The shorter Fe—O bonds (1.948 (6) and 1.950 (6) Å) are to O1B and O1D, which are bridged only to K1 atoms. While the metal atoms are linked in a zigzag chain along b by coordination to these O atoms, coordination of the fluorine atoms to the potassium atoms completes the potassium coordination spheres. K2 is 9-coordinate and is linked to O1A and O1C (2.689 (6) and 2.698 (7) Å), and 7 fluorine atoms on the HFIP groups, with K—F contacts ranging from 2.798 (8) to 3.088 (7) Å. One fluorine atom, F6C, links K2 to a symmetry equivalent chain. K1 is 12-coordinate with two short K—O bonds of 2.674 (6) and 2.692 (7) Å and two longer K—O bonds of 2.891 (6) and 2.863 (7). The eight K—F contacts range from 2.861 (6) to 3.221 (7) Å. Close contacts between alkali or alkaline earth cations and the fluorine atoms of a fluoroalkoxy ligand are very common and occur in many compounds that have been structurally characterized. Some examples include Na2Cu(OCH(CF3)2)4 (Purdy, et al. 1991), BaCu(OCH(CF3)2)4(THF)4 (Purdy and George, 1994), (18-Crown-6)-(1,1-bis(trifluoromethyl)-1H-anthra(1,9-bc)furan-10-olato-F, O)-potassium (Yamashita, et al., 2005), and some potassium perfluoroalkoxyborates (Bernhardt, et al., 2007). The nature of the bonding between fluorines on fluoroalkoxy groups and electropositive metal ions was explained by a combination of orbital overlap and electrostatics (Samuels et al., 1993). Weak C—H···F hydrogen bonding is also present with all the hexafluoroisopropoxy protons.

Related literature top

For alkali or alkaline earth metal fluoroalkoxides with short F—A distances, see: Zheng et al. (2009); Yamashita et al. (2005); Bernhardt et al. (2007); Purdy & George (1991, 1994); Samuels et al. (1993); Purdy et al. (1991). For iron(II) fluoroalkoxides, see: Konefal et al. (1986); Cantalupo et al. (2010, 2012).

Experimental top

All manipulations were performed under inert atmosphere (Ar). Sublimed FeCl2 (0.66 g, 5.21 mmol) and potassium hexafluoroisopropoxide (2.16 g, 10.48 mmol) were combined in 20 ml toluene in an H-tube equipped with a fine frit, and sonicated for a week. Mixture was filtered and rewashed 3x with recondensed hot toluene. Some product is slightly soluble in toluene and that solution was allowed to evaporate slowly in a flask in the drybox. Pale yellow crystals resulted, and a crystal of the title compound was obtained from this sample. (The crystals looked pale yellow in bulk but individual crystals appeared almost colorless.) A total of 0.56 g was isolated. NMR: 19F (THF solution, CFCl3 ref) -37.89.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

The iron atoms have a highly distorted tetrahedral coordination by the four O atoms of the hexafluoroisopropoxide ligands, with the O—Fe—O angles ranging from 93.9 (2) to 143.1 (2) °. The two longest Fe—O bonds (2.047 (6) and 2.048 (6) Å) are to the O atoms O1A and O1C, which are also bridged to both K1 and K2. The shorter Fe—O bonds (1.948 (6) and 1.950 (6) Å) are to O1B and O1D, which are bridged only to K1 atoms. While the metal atoms are linked in a zigzag chain along b by coordination to these O atoms, coordination of the fluorine atoms to the potassium atoms completes the potassium coordination spheres. K2 is 9-coordinate and is linked to O1A and O1C (2.689 (6) and 2.698 (7) Å), and 7 fluorine atoms on the HFIP groups, with K—F contacts ranging from 2.798 (8) to 3.088 (7) Å. One fluorine atom, F6C, links K2 to a symmetry equivalent chain. K1 is 12-coordinate with two short K—O bonds of 2.674 (6) and 2.692 (7) Å and two longer K—O bonds of 2.891 (6) and 2.863 (7). The eight K—F contacts range from 2.861 (6) to 3.221 (7) Å. Close contacts between alkali or alkaline earth cations and the fluorine atoms of a fluoroalkoxy ligand are very common and occur in many compounds that have been structurally characterized. Some examples include Na2Cu(OCH(CF3)2)4 (Purdy, et al. 1991), BaCu(OCH(CF3)2)4(THF)4 (Purdy and George, 1994), (18-Crown-6)-(1,1-bis(trifluoromethyl)-1H-anthra(1,9-bc)furan-10-olato-F, O)-potassium (Yamashita, et al., 2005), and some potassium perfluoroalkoxyborates (Bernhardt, et al., 2007). The nature of the bonding between fluorines on fluoroalkoxy groups and electropositive metal ions was explained by a combination of orbital overlap and electrostatics (Samuels et al., 1993). Weak C—H···F hydrogen bonding is also present with all the hexafluoroisopropoxy protons.

For alkali or alkaline earth metal fluoroalkoxides with short F—A distances, see: Zheng et al. (2009); Yamashita et al. (2005); Bernhardt et al. (2007); Purdy & George (1991, 1994); Samuels et al. (1993); Purdy et al. (1991). For iron(II) fluoroalkoxides, see: Konefal et al. (1986); Cantalupo et al. (2010, 2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the repeat unit of [K2Fe(OCH(CF3)2)4]. Ellipsoids are at the 30% probability level.
[Figure 2] Fig. 2. Diagram showing the potassium coordination environment.
[Figure 3] Fig. 3. Packing diagram depicting some of the hydrogen bonding.
Poly[tetrakis(µ-1,1,1,3,3,3-hexafluoropropan-2-olato)iron(II)dipotassium] top
Crystal data top
[FeK2(C3HF6O)4]Dx = 2.215 Mg m3
Mr = 802.20Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 8115 reflections
a = 9.7368 (2) Åθ = 3.3–75.5°
b = 13.4345 (4) ŵ = 10.15 mm1
c = 18.3933 (4) ÅT = 123 K
V = 2406.02 (10) Å3Prism, colorless
Z = 40.43 × 0.21 × 0.17 mm
F(000) = 1552
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4923 independent reflections
Radiation source: Enhance (Cu) X-ray Source4190 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.100
ω scansθmax = 75.7°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 128
Tmin = 0.254, Tmax = 1.000k = 1616
16099 measured reflectionsl = 2217
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1306P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.182(Δ/σ)max < 0.001
S = 1.02Δρmax = 1.63 e Å3
4923 reflectionsΔρmin = 1.29 e Å3
389 parametersAbsolute structure: Refined as an inversion twin
144 restraintsAbsolute structure parameter: 0.205 (11)
Crystal data top
[FeK2(C3HF6O)4]V = 2406.02 (10) Å3
Mr = 802.20Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.7368 (2) ŵ = 10.15 mm1
b = 13.4345 (4) ÅT = 123 K
c = 18.3933 (4) Å0.43 × 0.21 × 0.17 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
4923 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4190 reflections with I > 2σ(I)
Tmin = 0.254, Tmax = 1.000Rint = 0.100
16099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.182Δρmax = 1.63 e Å3
S = 1.02Δρmin = 1.29 e Å3
4923 reflectionsAbsolute structure: Refined as an inversion twin
389 parametersAbsolute structure parameter: 0.205 (11)
144 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. The structure was a racemic twin with a BASF component of 0.20906. In spite of the fact that the data was collected at -150 ° C the CF3 groups had some problems. Disorder was looked at without success but the best solution was to restrain using ISOR compound for some (but not all) F's.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.41997 (13)0.23850 (10)0.28502 (6)0.0109 (3)
K10.41988 (19)0.48834 (14)0.19850 (9)0.0162 (4)
K20.69671 (19)0.23877 (16)0.16065 (9)0.0196 (4)
O1A0.6217 (6)0.1993 (5)0.2983 (3)0.0152 (12)
C1A0.6962 (9)0.2291 (6)0.3584 (4)0.0145 (16)
H1AA0.69950.30350.35880.017*
C2A0.6316 (10)0.1946 (7)0.4284 (5)0.0186 (18)
C3A0.8423 (10)0.1903 (8)0.3490 (5)0.024 (2)
F1A0.6251 (7)0.0950 (4)0.4340 (3)0.0284 (14)
F2A0.6983 (7)0.2266 (5)0.4876 (3)0.0347 (15)
F3A0.5028 (6)0.2283 (5)0.4341 (3)0.0272 (13)
F4A0.8480 (7)0.0916 (5)0.3445 (4)0.0320 (14)
F5A0.9267 (7)0.2178 (6)0.4034 (4)0.0449 (18)
F6A0.8971 (6)0.2258 (6)0.2876 (4)0.0378 (16)
O1B0.3535 (7)0.1029 (5)0.2980 (4)0.0181 (13)
C1B0.2276 (9)0.0657 (7)0.3165 (5)0.0170 (18)
H1BA0.15800.12040.31630.020*
C2B0.1877 (11)0.0141 (8)0.2603 (5)0.025 (2)
C3B0.2342 (11)0.0183 (8)0.3922 (6)0.026 (2)
F1B0.1707 (8)0.0271 (6)0.1949 (3)0.0406 (17)
F2B0.0739 (8)0.0631 (6)0.2766 (4)0.047 (2)
F3B0.2873 (7)0.0833 (5)0.2517 (3)0.0323 (14)
F4B0.1165 (8)0.0222 (6)0.4141 (4)0.0458 (19)
F5B0.3307 (8)0.0548 (5)0.3957 (3)0.0351 (15)
F6B0.2697 (9)0.0858 (6)0.4414 (4)0.0445 (19)
O1C0.4260 (6)0.2752 (4)0.1770 (3)0.0139 (11)
C1C0.3268 (9)0.2457 (7)0.1284 (4)0.0144 (16)
H1CA0.32380.17130.12770.017*
C2C0.1858 (9)0.2841 (7)0.1495 (5)0.0175 (17)
C3C0.3700 (10)0.2821 (7)0.0534 (5)0.0177 (18)
F1C0.1787 (6)0.3837 (5)0.1504 (3)0.0304 (14)
F2C0.1552 (6)0.2545 (5)0.2178 (3)0.0260 (12)
F3C0.0838 (6)0.2516 (6)0.1074 (3)0.0341 (14)
F4C0.3812 (7)0.3802 (5)0.0496 (3)0.0325 (15)
F5C0.4927 (6)0.2443 (5)0.0362 (3)0.0295 (13)
F6C0.2830 (7)0.2540 (6)0.0002 (3)0.0342 (14)
O1D0.3927 (7)0.3754 (5)0.3173 (3)0.0165 (12)
C1D0.3404 (10)0.4119 (7)0.3802 (5)0.0171 (18)
H1DA0.33090.35630.41600.020*
C2D0.4377 (10)0.4903 (8)0.4112 (5)0.023 (2)
C3D0.1970 (12)0.4569 (8)0.3651 (5)0.024 (2)
F1D0.2019 (6)0.5245 (5)0.3110 (3)0.0318 (14)
F2D0.1412 (7)0.5024 (6)0.4213 (3)0.0421 (19)
F3D0.1113 (7)0.3866 (6)0.3436 (4)0.0391 (17)
F4D0.4577 (7)0.5661 (5)0.3630 (4)0.0351 (15)
F5D0.3921 (8)0.5317 (6)0.4723 (4)0.046 (2)
F6D0.5606 (7)0.4520 (6)0.4243 (4)0.0359 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0062 (5)0.0223 (7)0.0041 (5)0.0004 (5)0.0009 (4)0.0011 (5)
K10.0121 (8)0.0246 (9)0.0119 (7)0.0017 (7)0.0010 (7)0.0019 (6)
K20.0133 (8)0.0323 (10)0.0134 (7)0.0013 (8)0.0029 (7)0.0011 (7)
O1A0.010 (2)0.024 (3)0.011 (2)0.003 (2)0.002 (2)0.002 (2)
C1A0.014 (2)0.0158 (19)0.0142 (19)0.0003 (13)0.0017 (13)0.0004 (13)
C2A0.018 (3)0.023 (3)0.015 (3)0.000 (3)0.006 (3)0.002 (3)
C3A0.015 (4)0.040 (5)0.017 (4)0.001 (4)0.009 (4)0.000 (4)
F1A0.041 (4)0.031 (3)0.014 (2)0.001 (3)0.003 (2)0.003 (2)
F2A0.041 (3)0.050 (4)0.012 (2)0.001 (3)0.016 (2)0.002 (2)
F3A0.022 (3)0.048 (4)0.012 (2)0.010 (3)0.005 (2)0.002 (2)
F4A0.019 (3)0.039 (4)0.038 (3)0.009 (3)0.004 (3)0.002 (3)
F5A0.021 (3)0.069 (4)0.045 (4)0.002 (3)0.023 (3)0.010 (3)
F6A0.012 (3)0.062 (4)0.039 (4)0.001 (3)0.009 (2)0.008 (3)
O1B0.010 (2)0.021 (3)0.023 (3)0.001 (2)0.004 (2)0.000 (2)
C1B0.013 (3)0.021 (3)0.017 (3)0.002 (3)0.004 (3)0.001 (3)
C2B0.020 (5)0.033 (5)0.021 (4)0.006 (4)0.000 (4)0.003 (4)
C3B0.023 (4)0.032 (4)0.022 (3)0.001 (3)0.008 (3)0.004 (3)
F1B0.042 (4)0.060 (4)0.019 (3)0.006 (3)0.013 (3)0.005 (3)
F2B0.026 (4)0.073 (5)0.042 (4)0.031 (4)0.008 (3)0.011 (3)
F3B0.035 (4)0.036 (3)0.026 (3)0.003 (3)0.002 (3)0.009 (3)
F4B0.030 (4)0.075 (5)0.033 (3)0.017 (3)0.017 (3)0.008 (3)
F5B0.036 (4)0.046 (4)0.022 (3)0.008 (3)0.000 (3)0.007 (3)
F6B0.049 (5)0.063 (5)0.022 (3)0.004 (4)0.006 (3)0.016 (3)
O1C0.0133 (16)0.0168 (16)0.0114 (15)0.0003 (12)0.0011 (12)0.0006 (12)
C1C0.014 (3)0.020 (3)0.009 (3)0.001 (3)0.002 (2)0.001 (3)
C2C0.011 (3)0.029 (3)0.013 (3)0.000 (3)0.001 (3)0.002 (3)
C3C0.014 (3)0.027 (3)0.012 (3)0.002 (3)0.002 (3)0.002 (3)
F1C0.017 (3)0.042 (3)0.032 (3)0.009 (3)0.005 (2)0.004 (3)
F2C0.016 (2)0.048 (3)0.014 (2)0.001 (2)0.0067 (19)0.004 (2)
F3C0.014 (2)0.064 (4)0.025 (3)0.004 (3)0.007 (2)0.008 (3)
F4C0.037 (4)0.046 (4)0.014 (2)0.002 (3)0.000 (2)0.010 (2)
F5C0.024 (2)0.048 (3)0.017 (2)0.007 (2)0.0095 (19)0.002 (2)
F6C0.033 (3)0.055 (3)0.014 (2)0.003 (3)0.009 (2)0.002 (2)
O1D0.0175 (17)0.0181 (16)0.0141 (16)0.0006 (12)0.0022 (12)0.0007 (12)
C1D0.014 (3)0.024 (3)0.013 (3)0.000 (3)0.000 (3)0.001 (3)
C2D0.021 (5)0.037 (6)0.012 (4)0.004 (4)0.003 (3)0.004 (4)
C3D0.024 (4)0.031 (4)0.018 (3)0.001 (3)0.004 (3)0.000 (3)
F1D0.023 (3)0.052 (4)0.021 (3)0.006 (3)0.000 (2)0.011 (3)
F2D0.028 (3)0.082 (5)0.016 (3)0.021 (4)0.005 (2)0.012 (3)
F3D0.020 (3)0.066 (5)0.032 (3)0.010 (3)0.001 (3)0.003 (3)
F4D0.029 (4)0.035 (4)0.041 (4)0.010 (3)0.006 (3)0.003 (3)
F5D0.034 (4)0.076 (5)0.026 (3)0.001 (4)0.001 (3)0.031 (3)
F6D0.020 (3)0.054 (4)0.035 (3)0.005 (3)0.015 (3)0.006 (3)
Geometric parameters (Å, º) top
Fe—O1B1.948 (6)F1A—K1i2.861 (6)
Fe—O1D1.950 (6)F4A—K1i3.058 (7)
Fe—O1C2.047 (6)O1B—C1B1.367 (11)
Fe—O1A2.048 (6)O1B—K1i2.692 (7)
Fe—K23.535 (2)C1B—C3B1.532 (13)
Fe—K13.715 (2)C1B—C2B1.540 (13)
Fe—K1i3.717 (2)C1B—H1BA1.0000
K1—O1D2.674 (6)C2B—F2B1.323 (12)
K1—O1Bii2.692 (7)C2B—F1B1.335 (11)
K1—F1Aii2.861 (6)C2B—F3B1.353 (13)
K1—O1Aii2.863 (7)C3B—F6B1.326 (13)
K1—F1C2.877 (7)C3B—F4B1.331 (12)
K1—O1C2.891 (6)C3B—F5B1.361 (13)
K1—F1D3.003 (6)F3B—K2i2.888 (7)
K1—F5Bii3.039 (7)F3B—K1i3.145 (7)
K1—F4Aii3.058 (7)F5B—K2i2.973 (7)
K1—F4C3.123 (6)F5B—K1i3.039 (7)
K1—F3Bii3.145 (7)O1C—C1C1.375 (10)
K1—F4D3.221 (7)C1C—C2C1.517 (12)
K2—O1A2.689 (6)C1C—C3C1.522 (11)
K2—O1C2.698 (7)C1C—H1CA1.0000
K2—F4Di2.798 (8)C2C—F3C1.334 (11)
K2—F3Bii2.888 (7)C2C—F1C1.340 (12)
K2—F5Bii2.973 (7)C2C—F2C1.349 (10)
K2—F5C3.032 (6)C3C—F4C1.324 (12)
K2—F6A3.048 (7)C3C—F5C1.336 (11)
K2—F6Ciii3.077 (6)C3C—F6C1.349 (10)
K2—F1Di3.088 (7)F6C—K2iv3.077 (6)
K2—K1i4.395 (3)O1D—C1D1.356 (10)
O1A—C1A1.381 (10)C1D—C2D1.528 (13)
O1A—K1i2.863 (6)C1D—C3D1.547 (14)
C1A—C2A1.507 (12)C1D—H1DA1.0000
C1A—C3A1.524 (13)C2D—F6D1.325 (12)
C1A—H1AA1.0000C2D—F5D1.330 (11)
C2A—F3A1.337 (12)C2D—F4D1.365 (12)
C2A—F2A1.338 (10)C3D—F2D1.319 (11)
C2A—F1A1.344 (12)C3D—F3D1.321 (13)
C3A—F4A1.330 (13)C3D—F1D1.348 (11)
C3A—F6A1.337 (12)F1D—K2ii3.088 (7)
C3A—F5A1.347 (11)F4D—K2ii2.798 (8)
O1B—Fe—O1D143.0 (3)F1Di—K2—Fe97.66 (13)
O1B—Fe—O1C110.7 (3)O1A—K2—K180.40 (13)
O1D—Fe—O1C94.1 (2)O1C—K2—K140.37 (13)
O1B—Fe—O1A93.6 (3)F4Di—K2—K1109.28 (15)
O1D—Fe—O1A109.7 (3)F3Bii—K2—K146.14 (14)
O1C—Fe—O1A98.7 (2)F5Bii—K2—K144.14 (14)
O1B—Fe—K2109.49 (19)F5C—K2—K172.34 (13)
O1D—Fe—K2107.45 (19)F6A—K2—K1108.52 (14)
O1C—Fe—K249.45 (18)F6Ciii—K2—K1107.35 (15)
O1A—Fe—K249.21 (17)F1Di—K2—K1152.62 (13)
O1B—Fe—K1153.8 (2)Fe—K2—K154.96 (4)
O1D—Fe—K143.83 (18)O1A—K2—K1i39.07 (14)
O1C—Fe—K150.70 (17)O1C—K2—K1i79.67 (13)
O1A—Fe—K1106.50 (18)F4Di—K2—K1i47.01 (15)
K2—Fe—K173.86 (5)F3Bii—K2—K1i108.57 (13)
O1B—Fe—K1i44.28 (19)F5Bii—K2—K1i153.69 (15)
O1D—Fe—K1i152.21 (19)F5C—K2—K1i107.12 (14)
O1C—Fe—K1i106.55 (17)F6A—K2—K1i70.74 (13)
O1A—Fe—K1i49.86 (18)F6Ciii—K2—K1i131.40 (15)
K2—Fe—K1i74.57 (5)F1Di—K2—K1i43.05 (12)
K1—Fe—K1i148.42 (4)Fe—K2—K1i54.61 (4)
O1D—K1—O1Bii112.7 (2)K1—K2—K1i109.57 (4)
O1D—K1—F1Aii164.9 (2)C1A—O1A—Fe121.7 (5)
O1Bii—K1—F1Aii81.9 (2)C1A—O1A—K2123.6 (5)
O1D—K1—O1Aii122.10 (19)Fe—O1A—K295.6 (2)
O1Bii—K1—O1Aii63.20 (18)C1A—O1A—K1i110.2 (5)
F1Aii—K1—O1Aii60.00 (17)Fe—O1A—K1i97.0 (2)
O1D—K1—F1C83.88 (19)K2—O1A—K1i104.6 (2)
O1Bii—K1—F1C163.0 (2)O1A—C1A—C2A112.0 (7)
F1Aii—K1—F1C81.81 (19)O1A—C1A—C3A107.5 (7)
O1Aii—K1—F1C112.00 (19)C2A—C1A—C3A112.4 (8)
O1D—K1—O1C63.35 (18)O1A—C1A—H1AA108.3
O1Bii—K1—O1C123.56 (19)C2A—C1A—H1AA108.3
F1Aii—K1—O1C112.51 (17)C3A—C1A—H1AA108.3
O1Aii—K1—O1C170.39 (18)F3A—C2A—F2A106.5 (8)
F1C—K1—O1C59.39 (18)F3A—C2A—F1A106.7 (8)
O1D—K1—F1D57.24 (18)F2A—C2A—F1A106.3 (7)
O1Bii—K1—F1D118.1 (2)F3A—C2A—C1A110.7 (8)
F1Aii—K1—F1D113.43 (19)F2A—C2A—C1A113.2 (8)
O1Aii—K1—F1D74.11 (18)F1A—C2A—C1A113.1 (8)
F1C—K1—F1D73.39 (18)F4A—C3A—F6A106.6 (9)
O1C—K1—F1D105.59 (19)F4A—C3A—F5A107.1 (8)
O1D—K1—F5Bii115.9 (2)F6A—C3A—F5A106.6 (8)
O1Bii—K1—F5Bii57.84 (19)F4A—C3A—C1A112.7 (8)
F1Aii—K1—F5Bii74.45 (19)F6A—C3A—C1A110.3 (8)
O1Aii—K1—F5Bii108.25 (19)F5A—C3A—C1A113.0 (8)
F1C—K1—F5Bii112.55 (18)C2A—F1A—K1i116.1 (5)
O1C—K1—F5Bii73.54 (18)C3A—F4A—K1i115.7 (6)
F1D—K1—F5Bii171.23 (18)C3A—F6A—K2114.3 (5)
O1D—K1—F4Aii112.61 (19)C1B—O1B—Fe132.1 (6)
O1Bii—K1—F4Aii116.48 (19)C1B—O1B—K1i121.3 (5)
F1Aii—K1—F4Aii54.69 (19)Fe—O1B—K1i105.4 (3)
O1Aii—K1—F4Aii55.65 (17)O1B—C1B—C3B110.0 (7)
F1C—K1—F4Aii56.36 (17)O1B—C1B—C2B108.3 (7)
O1C—K1—F4Aii115.57 (18)C3B—C1B—C2B109.3 (8)
F1D—K1—F4Aii60.14 (17)O1B—C1B—H1BA109.7
F5Bii—K1—F4Aii128.35 (19)C3B—C1B—H1BA109.7
O1D—K1—F4C116.14 (18)C2B—C1B—H1BA109.7
O1Bii—K1—F4C112.7 (2)F2B—C2B—F1B107.9 (9)
F1Aii—K1—F4C57.82 (16)F2B—C2B—F3B106.6 (9)
O1Aii—K1—F4C117.47 (17)F1B—C2B—F3B105.5 (8)
F1C—K1—F4C53.42 (18)F2B—C2B—C1B113.9 (8)
O1C—K1—F4C54.68 (16)F1B—C2B—C1B110.3 (8)
F1D—K1—F4C126.43 (19)F3B—C2B—C1B112.1 (8)
F5Bii—K1—F4C60.50 (18)F6B—C3B—F4B107.3 (8)
F4Aii—K1—F4C83.19 (19)F6B—C3B—F5B106.3 (9)
O1D—K1—F3Bii71.22 (18)F4B—C3B—F5B106.5 (9)
O1Bii—K1—F3Bii54.89 (18)F6B—C3B—C1B110.3 (9)
F1Aii—K1—F3Bii122.69 (19)F4B—C3B—C1B114.2 (9)
O1Aii—K1—F3Bii115.15 (17)F5B—C3B—C1B111.8 (8)
F1C—K1—F3Bii132.85 (19)C2B—F3B—K2i122.8 (6)
O1C—K1—F3Bii73.62 (18)C2B—F3B—K1i114.0 (6)
F1D—K1—F3Bii119.30 (17)K2i—F3B—K1i92.40 (19)
F5Bii—K1—F3Bii51.94 (17)C3B—F5B—K2i126.5 (6)
F4Aii—K1—F3Bii170.79 (18)C3B—F5B—K1i112.8 (6)
F4C—K1—F3Bii102.85 (19)K2i—F5B—K1i92.91 (19)
O1D—K1—F4D55.11 (18)C1C—O1C—Fe122.8 (5)
O1Bii—K1—F4D72.43 (19)C1C—O1C—K2124.2 (5)
F1Aii—K1—F4D130.92 (18)Fe—O1C—K295.3 (2)
O1Aii—K1—F4D71.10 (18)C1C—O1C—K1111.1 (5)
F1C—K1—F4D122.75 (18)Fe—O1C—K196.1 (2)
O1C—K1—F4D116.56 (17)K2—O1C—K1102.4 (2)
F1D—K1—F4D51.80 (18)O1C—C1C—C2C111.8 (7)
F5Bii—K1—F4D120.40 (19)O1C—C1C—C3C107.6 (7)
F4Aii—K1—F4D101.14 (19)C2C—C1C—C3C111.9 (7)
F4C—K1—F4D171.16 (18)O1C—C1C—H1CA108.5
F3Bii—K1—F4D73.87 (18)C2C—C1C—H1CA108.5
O1A—K2—O1C70.43 (17)C3C—C1C—H1CA108.5
O1A—K2—F4Di80.6 (2)F3C—C2C—F1C107.1 (8)
O1C—K2—F4Di69.08 (19)F3C—C2C—F2C106.3 (7)
O1A—K2—F3Bii69.64 (18)F1C—C2C—F2C105.8 (7)
O1C—K2—F3Bii80.8 (2)F3C—C2C—C1C114.5 (7)
F4Di—K2—F3Bii143.3 (2)F1C—C2C—C1C112.9 (8)
O1A—K2—F5Bii119.22 (19)F2C—C2C—C1C109.8 (7)
O1C—K2—F5Bii77.4 (2)F4C—C3C—F5C107.0 (8)
F4Di—K2—F5Bii132.1 (2)F4C—C3C—F6C106.9 (8)
F3Bii—K2—F5Bii55.06 (17)F5C—C3C—F6C106.5 (7)
O1A—K2—F5C122.54 (18)F4C—C3C—C1C113.0 (7)
O1C—K2—F5C55.93 (17)F5C—C3C—C1C109.9 (7)
F4Di—K2—F5C63.32 (19)F6C—C3C—C1C113.2 (8)
F3Bii—K2—F5C115.89 (19)C2C—F1C—K1116.7 (5)
F5Bii—K2—F5C69.82 (18)C3C—F4C—K1115.3 (5)
O1A—K2—F6A56.03 (17)C3C—F5C—K2114.6 (5)
O1C—K2—F6A123.39 (17)C3C—F6C—K2iv149.4 (6)
F4Di—K2—F6A114.6 (2)C1D—O1D—Fe130.7 (6)
F3Bii—K2—F6A65.49 (19)C1D—O1D—K1121.9 (5)
F5Bii—K2—F6A112.2 (2)Fe—O1D—K1105.8 (2)
F5C—K2—F6A177.8 (2)O1D—C1D—C2D109.6 (8)
O1A—K2—F6Ciii170.4 (2)O1D—C1D—C3D109.1 (7)
O1C—K2—F6Ciii111.62 (18)C2D—C1D—C3D110.9 (8)
F4Di—K2—F6Ciii91.4 (2)O1D—C1D—H1DA109.1
F3Bii—K2—F6Ciii119.7 (2)C2D—C1D—H1DA109.1
F5Bii—K2—F6Ciii70.11 (19)C3D—C1D—H1DA109.1
F5C—K2—F6Ciii56.78 (16)F6D—C2D—F5D108.1 (8)
F6A—K2—F6Ciii124.30 (18)F6D—C2D—F4D106.2 (8)
O1A—K2—F1Di75.14 (17)F5D—C2D—F4D106.5 (9)
O1C—K2—F1Di117.56 (18)F6D—C2D—C1D111.1 (9)
F4Di—K2—F1Di54.91 (17)F5D—C2D—C1D113.4 (9)
F3Bii—K2—F1Di131.32 (18)F4D—C2D—C1D111.1 (7)
F5Bii—K2—F1Di163.23 (19)F2D—C3D—F3D107.8 (9)
F5C—K2—F1Di111.10 (18)F2D—C3D—F1D106.4 (8)
F6A—K2—F1Di67.20 (18)F3D—C3D—F1D106.5 (8)
F6Ciii—K2—F1Di96.01 (18)F2D—C3D—C1D114.3 (8)
O1A—K2—Fe35.22 (13)F3D—C3D—C1D110.1 (8)
O1C—K2—Fe35.22 (12)F1D—C3D—C1D111.4 (8)
F4Di—K2—Fe71.94 (15)C3D—F1D—K1115.1 (6)
F3Bii—K2—Fe71.37 (14)C3D—F1D—K2ii121.0 (6)
F5Bii—K2—Fe99.10 (15)K1—F1D—K2ii92.36 (18)
F5C—K2—Fe89.38 (11)C2D—F4D—K2ii130.0 (6)
F6A—K2—Fe89.56 (12)C2D—F4D—K1110.6 (5)
F6Ciii—K2—Fe146.14 (14)K2ii—F4D—K193.5 (2)
Fe—O1A—C1A—C2A58.2 (9)K1—O1C—C1C—C2C52.8 (8)
K2—O1A—C1A—C2A178.7 (5)Fe—O1C—C1C—C3C177.0 (5)
K1i—O1A—C1A—C2A54.1 (8)K2—O1C—C1C—C3C52.3 (8)
Fe—O1A—C1A—C3A177.8 (6)K1—O1C—C1C—C3C70.5 (7)
K2—O1A—C1A—C3A54.7 (8)O1C—C1C—C2C—F3C175.2 (7)
K1i—O1A—C1A—C3A69.8 (7)C3C—C1C—C2C—F3C64.0 (10)
O1A—C1A—C2A—F3A57.5 (10)O1C—C1C—C2C—F1C61.9 (10)
C3A—C1A—C2A—F3A178.7 (8)C3C—C1C—C2C—F1C58.9 (10)
O1A—C1A—C2A—F2A177.0 (7)O1C—C1C—C2C—F2C55.9 (10)
C3A—C1A—C2A—F2A61.8 (10)C3C—C1C—C2C—F2C176.7 (7)
O1A—C1A—C2A—F1A62.1 (10)O1C—C1C—C3C—F4C60.8 (10)
C3A—C1A—C2A—F1A59.1 (11)C2C—C1C—C3C—F4C62.4 (10)
O1A—C1A—C3A—F4A60.4 (10)O1C—C1C—C3C—F5C58.6 (9)
C2A—C1A—C3A—F4A63.3 (10)C2C—C1C—C3C—F5C178.2 (8)
O1A—C1A—C3A—F6A58.6 (10)O1C—C1C—C3C—F6C177.5 (8)
C2A—C1A—C3A—F6A177.7 (8)C2C—C1C—C3C—F6C59.3 (10)
O1A—C1A—C3A—F5A177.9 (8)F3C—C2C—F1C—K1162.6 (5)
C2A—C1A—C3A—F5A58.4 (11)F2C—C2C—F1C—K184.4 (7)
F3A—C2A—F1A—K1i87.7 (7)C1C—C2C—F1C—K135.7 (8)
F2A—C2A—F1A—K1i159.0 (5)F5C—C3C—F4C—K1100.1 (6)
C1A—C2A—F1A—K1i34.2 (10)F6C—C3C—F4C—K1146.1 (5)
F6A—C3A—F4A—K1i100.7 (7)C1C—C3C—F4C—K120.9 (9)
F5A—C3A—F4A—K1i145.5 (6)F4C—C3C—F5C—K282.7 (7)
C1A—C3A—F4A—K1i20.5 (9)F6C—C3C—F5C—K2163.3 (5)
F4A—C3A—F6A—K284.6 (8)C1C—C3C—F5C—K240.3 (9)
F5A—C3A—F6A—K2161.2 (6)F4C—C3C—F6C—K2iv50.4 (15)
C1A—C3A—F6A—K238.1 (9)F5C—C3C—F6C—K2iv63.7 (14)
Fe—O1B—C1B—C3B111.6 (8)C1C—C3C—F6C—K2iv175.4 (8)
K1i—O1B—C1B—C3B54.1 (9)Fe—O1D—C1D—C2D130.2 (7)
Fe—O1B—C1B—C2B129.0 (7)K1—O1D—C1D—C2D66.0 (9)
K1i—O1B—C1B—C2B65.4 (8)Fe—O1D—C1D—C3D108.2 (8)
O1B—C1B—C2B—F2B173.4 (8)K1—O1D—C1D—C3D55.6 (9)
C3B—C1B—C2B—F2B53.6 (11)O1D—C1D—C2D—F6D59.5 (10)
O1B—C1B—C2B—F1B65.1 (10)C3D—C1D—C2D—F6D179.9 (7)
C3B—C1B—C2B—F1B175.1 (8)O1D—C1D—C2D—F5D178.5 (8)
O1B—C1B—C2B—F3B52.2 (10)C3D—C1D—C2D—F5D58.0 (11)
C3B—C1B—C2B—F3B67.6 (10)O1D—C1D—C2D—F4D58.5 (10)
O1B—C1B—C3B—F6B60.7 (10)C3D—C1D—C2D—F4D62.0 (10)
C2B—C1B—C3B—F6B179.4 (9)O1D—C1D—C3D—F2D174.5 (9)
O1B—C1B—C3B—F4B178.5 (8)C2D—C1D—C3D—F2D53.7 (11)
C2B—C1B—C3B—F4B59.7 (11)O1D—C1D—C3D—F3D64.0 (10)
O1B—C1B—C3B—F5B57.4 (11)C2D—C1D—C3D—F3D175.2 (7)
C2B—C1B—C3B—F5B61.4 (11)O1D—C1D—C3D—F1D53.9 (10)
F2B—C2B—F3B—K2i36.4 (10)C2D—C1D—C3D—F1D66.9 (10)
F1B—C2B—F3B—K2i151.0 (5)F2D—C3D—F1D—K1154.9 (6)
C1B—C2B—F3B—K2i88.9 (8)F3D—C3D—F1D—K190.3 (8)
F2B—C2B—F3B—K1i146.4 (6)C1D—C3D—F1D—K129.8 (9)
F1B—C2B—F3B—K1i99.1 (7)F2D—C3D—F1D—K2ii45.4 (10)
C1B—C2B—F3B—K1i21.1 (9)F3D—C3D—F1D—K2ii160.2 (5)
F6B—C3B—F5B—K2i161.5 (6)C1D—C3D—F1D—K2ii79.8 (8)
F4B—C3B—F5B—K2i47.3 (10)F6D—C2D—F4D—K2ii153.1 (5)
C1B—C3B—F5B—K2i78.1 (9)F5D—C2D—F4D—K2ii38.1 (11)
F6B—C3B—F5B—K1i86.2 (8)C1D—C2D—F4D—K2ii85.9 (9)
F4B—C3B—F5B—K1i159.6 (6)F6D—C2D—F4D—K193.2 (7)
C1B—C3B—F5B—K1i34.2 (9)F5D—C2D—F4D—K1151.8 (6)
Fe—O1C—C1C—C2C59.7 (9)C1D—C2D—F4D—K127.8 (9)
K2—O1C—C1C—C2C175.5 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···F3Bii1.002.543.236 (10)126
C1B—H1BA···F2C1.002.563.199 (11)122
C1C—H1CA···F4Di1.002.563.201 (11)122
C1D—H1DA···F2Av1.002.463.361 (11)150
C1D—H1DA···F3A1.002.423.093 (11)124
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1AA···F3Bi1.002.543.236 (10)126.4
C1B—H1BA···F2C1.002.563.199 (11)121.9
C1C—H1CA···F4Dii1.002.563.201 (11)121.8
C1D—H1DA···F2Aiii1.002.463.361 (11)149.5
C1D—H1DA···F3A1.002.423.093 (11)123.8
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

We thank the Office of Naval Research for financial support. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, UK.  Google Scholar
First citationBernhardt, E., Brauer, D. J., Köckerling, M. & Pawelke, G. (2007). Z. Anorg. Allg. Chem. 633, 947–954.  Web of Science CSD CrossRef CAS Google Scholar
First citationCantalupo, S. A., Fiedler, S. R., Shores, M. P., Rheingold, A. L. & Doerrer, L. H. (2012). Angew. Chem. Int. Ed. 51, 1000–1005.  Web of Science CSD CrossRef CAS Google Scholar
First citationCantalupo, S. A., Lum, J. S., Buzzeo, M. C., Moore, C., DiPasquale, A. G., Rheingold, A. L. & Doerrer, L. H. (2010). Dalton Trans. 39, 374–383.  Web of Science CSD CrossRef CAS Google Scholar
First citationKonefal, E., Loeb, S. J., Willis, C. J. & Stephan, D. W. (1986). Inorg. Chim. Acta, 115, 147–151.  CSD CrossRef CAS Web of Science Google Scholar
First citationPurdy, A. P. & George, C. F. (1991). Inorg. Chem. 30, 1970–1972.  Google Scholar
First citationPurdy, A. P. & George, C. F. (1994). ACS Symposium Series, Vol. 555, Inorganic Fluorine Chemistry, edited by Joseph S . Thrasher & Steven H. Strauss, ch. 26, pp. 405–420, . Washington, DC: American Chemical Society.  Google Scholar
First citationPurdy, A. P., George, C. F. & Callahan, J. H. (1991). Inorg. Chem. 30, 2812–2819.  CSD CrossRef CAS Web of Science Google Scholar
First citationSamuels, J. A., Lobkovsky, E. B., Streib, W. E., Folting, K., Huffman, J. C., Zwanziger, J. W. & Caulton, K. G. (1993). J. Am. Chem. Soc. 115, 5093–5104.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamashita, M. Y., Yamamoto, Y., Akiba, K., Hashizume, D., Iwasaki, F., Takagi, N. & Nagase, S. (2005). J. Am. Chem. Soc. 127, 4354–4371.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZheng, B., Miranda, M. O., DiPasquale, A. G., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2009). Inorg. Chem. 48, 4274–4276.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m32-m33
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds