metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Tetra­carbonyl­bis­­(tri­phenyl­phosphane-κP)molybdenum(0)

aDepartment of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607, USA
*Correspondence e-mail: npm@uic.edu

(Received 3 January 2014; accepted 6 January 2014; online 11 January 2014)

The well known title compound, trans-[Mo(C18H15P)2(CO)4], has not been studied previously by X-ray crystallography, unlike its cis isomer. The complex possesses crystallographically imposed inversion symmetry, with the Mo atom residing on an inversion centre (1a Wyckoff position). The two tri­phenyl­phosphane groups are arranged in a staggered orientation. Each of the phenyl groups exhibits significantly different Mo—P—C—C torsion angles ranging from 2.6 (2) to 179.4 (1)°, most likely due to steric inter­actions based upon their positions relative to the carbonyl ligands.

Related literature

For the synthesis of the title compound and a structural study of its cis isomer, see: Cotton et al. (1982[Cotton, F. A., Darensbourg, D. J., Klein, S. & Kolthammer, B. W. (1982). Inorg. Chem. 21, 294-299.]). For ligand dissociation and thermal reactivity of similar compounds, see: Darensbourg & Kump (1978[Darensbourg, D. J. & Kump, R. L. (1978). Inorg. Chem. 17, 2680-2682.]). For an IR analysis of metal carbonyls, see: Haas & Sheline (1967[Haas, H. & Sheline, R. K. (1967). J. Chem. Phys. 47, 2996-3022.]). For kinetic investigations of metal–phosphanes, see: Darensbourg & Bischoff (1993[Darensbourg, D. J. & Bischoff, C. J. (1993). Inorg. Chem. 32, 47-53.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C18H15P)2(CO)4]

  • Mr = 732.52

  • Triclinic, [P \overline 1]

  • a = 9.3443 (13) Å

  • b = 10.2267 (15) Å

  • c = 10.7258 (16) Å

  • α = 64.794 (4)°

  • β = 69.417 (4)°

  • γ = 83.699 (4)°

  • V = 867.2 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 300 K

  • 0.62 × 0.45 × 0.33 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.70, Tmax = 0.85

  • 7865 measured reflections

  • 2907 independent reflections

  • 2770 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.058

  • S = 1.11

  • 2907 reflections

  • 214 parameters

  • 61 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We initiated this study as part of an undergraduate teaching lab using the Bruker SMART X2S bench-top diffractometer. Students use FT—IR spectroscopy to propose whether unknown samples are either the cis- or trans-isomer, and then use crystallography to test their hypotheses. To our surprise, the trans-isomer had not been reported in the CSD. In our hands, dissolving the trans-isomer in dichloromethane causes reversion to the cis-isomer. Crystallization from chloroform, on the other hand, provides the trans arrangement cleanly.

The 0 1 0 and 0 0 1 reflections were omitted from final refinements because of the suspicion that they were affected by the beamstop. Hydrogen atoms were placed at calculated positions 0.93 angstroms from the phenyl carbons and refined using the standard riding model with Uiso(H) set to 1.2 times Ueq(C).

Related literature top

For the synthesis of the title compound and a structural study of its cis isomer, see: Cotton et al. (1982). For ligand dissociation and thermal reactivity of similar compounds, see: Darensbourg & Kump (1978). For an IR analysis of metal carbonyls, see: Haas & Sheline (1967). For kinetic investigations of metal–phosphanes, see: Darensbourg & Bischoff (1993).

Structure description top

We initiated this study as part of an undergraduate teaching lab using the Bruker SMART X2S bench-top diffractometer. Students use FT—IR spectroscopy to propose whether unknown samples are either the cis- or trans-isomer, and then use crystallography to test their hypotheses. To our surprise, the trans-isomer had not been reported in the CSD. In our hands, dissolving the trans-isomer in dichloromethane causes reversion to the cis-isomer. Crystallization from chloroform, on the other hand, provides the trans arrangement cleanly.

The 0 1 0 and 0 0 1 reflections were omitted from final refinements because of the suspicion that they were affected by the beamstop. Hydrogen atoms were placed at calculated positions 0.93 angstroms from the phenyl carbons and refined using the standard riding model with Uiso(H) set to 1.2 times Ueq(C).

For the synthesis of the title compound and a structural study of its cis isomer, see: Cotton et al. (1982). For ligand dissociation and thermal reactivity of similar compounds, see: Darensbourg & Kump (1978). For an IR analysis of metal carbonyls, see: Haas & Sheline (1967). For kinetic investigations of metal–phosphanes, see: Darensbourg & Bischoff (1993).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound (50% probability).
trans-Tetracarbonylbis(triphenylphosphane-κP)molybdenum(0) top
Crystal data top
[Mo(C18H15P)2(CO)4]Z = 1
Mr = 732.52F(000) = 374
Triclinic, P1Dx = 1.403 Mg m3
a = 9.3443 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2267 (15) ÅCell parameters from 6345 reflections
c = 10.7258 (16) Åθ = 2.2–25.1°
α = 64.794 (4)°µ = 0.51 mm1
β = 69.417 (4)°T = 300 K
γ = 83.699 (4)°Block, yellow
V = 867.2 (2) Å30.62 × 0.45 × 0.33 mm
Data collection top
Bruker SMART X2S benchtop
diffractometer
2907 independent reflections
Radiation source: XOS X-beam microfocus source2770 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.020
Detector resolution: 8.3330 pixels mm-1θmax = 24.7°, θmin = 2.3°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1212
Tmin = 0.70, Tmax = 0.85l = 1212
7865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0238P)2 + 0.3878P]
where P = (Fo2 + 2Fc2)/3
2907 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.25 e Å3
61 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Mo(C18H15P)2(CO)4]γ = 83.699 (4)°
Mr = 732.52V = 867.2 (2) Å3
Triclinic, P1Z = 1
a = 9.3443 (13) ÅMo Kα radiation
b = 10.2267 (15) ŵ = 0.51 mm1
c = 10.7258 (16) ÅT = 300 K
α = 64.794 (4)°0.62 × 0.45 × 0.33 mm
β = 69.417 (4)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
2907 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2770 reflections with I > 2σ(I)
Tmin = 0.70, Tmax = 0.85Rint = 0.020
7865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02261 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.11Δρmax = 0.25 e Å3
2907 reflectionsΔρmin = 0.28 e Å3
214 parameters
Special details top

Experimental. For synthesis of the compound, see Cotton (1982). Yellow crystals of the title compound suitable for X-ray diffraction were obtained by layering methanol above a chloroform solution of the title compound and allowing the layers to mix gradually. This crystallization method was performed on the bench with reagent grade solvents and without use of an inert atmosphere.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo1001.00.02814 (8)
P10.21394 (5)0.16894 (5)0.79865 (5)0.02888 (12)
O10.0078 (2)0.1374 (2)1.21320 (19)0.0659 (5)
O20.2517 (2)0.22032 (19)1.0879 (2)0.0677 (5)
C10.0065 (2)0.0886 (2)1.1355 (2)0.0396 (4)
C20.1594 (2)0.1425 (2)1.0585 (2)0.0400 (4)
C50.2591 (2)0.3109 (2)0.8425 (2)0.0360 (4)
C60.3274 (3)0.2769 (3)0.9478 (2)0.0516 (5)
H60.35820.18340.990.062*
C70.3502 (3)0.3800 (3)0.9906 (3)0.0643 (7)
H70.39760.35571.06020.077*
C80.3043 (4)0.5164 (3)0.9327 (3)0.0750 (8)
H80.32010.58550.96190.09*
C90.2344 (4)0.5514 (3)0.8306 (4)0.0842 (9)
H90.20140.64450.79150.101*
C100.2122 (3)0.4496 (3)0.7848 (3)0.0604 (6)
H100.16540.47530.71460.072*
C110.3989 (2)0.0886 (2)0.7434 (2)0.0375 (4)
C120.3988 (3)0.0338 (2)0.7195 (3)0.0527 (6)
H120.30590.07510.73710.063*
C130.5324 (3)0.0962 (3)0.6703 (3)0.0684 (7)
H130.52890.17720.65290.082*
C140.6677 (3)0.0407 (4)0.6475 (3)0.0800 (9)
H140.75780.08440.61670.096*
C150.6720 (3)0.0795 (4)0.6694 (4)0.0992 (12)
H150.76590.1190.65160.119*
C160.5381 (3)0.1452 (3)0.7183 (4)0.0735 (8)
H160.54310.22710.73390.088*
C170.1953 (2)0.27353 (19)0.61689 (19)0.0348 (4)
C180.3120 (3)0.3699 (2)0.5024 (2)0.0542 (6)
H180.40080.38220.51740.065*
C190.2971 (3)0.4474 (3)0.3666 (3)0.0668 (7)
H190.37510.51280.29120.08*
C200.1676 (4)0.4284 (3)0.3421 (2)0.0657 (7)
H200.15760.48130.25060.079*
C210.0550 (3)0.3322 (3)0.4515 (3)0.0659 (7)
H210.03160.31740.43460.079*
C220.0681 (3)0.2555 (2)0.5893 (2)0.0485 (5)
H220.01090.19090.66410.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.02853 (13)0.02430 (12)0.02774 (12)0.00060 (8)0.00954 (9)0.00693 (9)
P10.0288 (3)0.0261 (2)0.0290 (2)0.00119 (18)0.00896 (19)0.00910 (19)
O10.0699 (12)0.0822 (12)0.0664 (11)0.0004 (9)0.0223 (9)0.0497 (10)
O20.0675 (11)0.0606 (10)0.0694 (11)0.0316 (9)0.0346 (10)0.0197 (9)
C10.0355 (11)0.0402 (11)0.0406 (11)0.0005 (8)0.0115 (9)0.0150 (9)
C20.0432 (12)0.0351 (10)0.0358 (10)0.0027 (9)0.0130 (9)0.0100 (8)
C50.0347 (10)0.0355 (10)0.0353 (10)0.0054 (8)0.0057 (8)0.0156 (8)
C60.0599 (14)0.0485 (12)0.0477 (12)0.0108 (10)0.0196 (11)0.0170 (10)
C70.0701 (17)0.0782 (18)0.0525 (14)0.0245 (14)0.0167 (12)0.0311 (13)
C80.088 (2)0.0738 (19)0.0778 (19)0.0188 (15)0.0106 (16)0.0531 (16)
C90.110 (3)0.0520 (16)0.115 (3)0.0194 (16)0.046 (2)0.0537 (17)
C100.0742 (17)0.0479 (13)0.0787 (17)0.0172 (12)0.0379 (14)0.0379 (13)
C110.0330 (10)0.0387 (10)0.0354 (10)0.0038 (8)0.0102 (8)0.0122 (8)
C120.0471 (13)0.0524 (13)0.0599 (14)0.0043 (10)0.0101 (11)0.0314 (11)
C130.0693 (18)0.0652 (16)0.0713 (17)0.0220 (13)0.0159 (14)0.0399 (14)
C140.0568 (17)0.099 (2)0.087 (2)0.0381 (16)0.0221 (15)0.0508 (19)
C150.0332 (14)0.136 (3)0.151 (3)0.0142 (17)0.0281 (18)0.085 (3)
C160.0379 (13)0.0846 (19)0.114 (2)0.0031 (12)0.0185 (14)0.0620 (19)
C170.0421 (11)0.0287 (9)0.0281 (9)0.0027 (8)0.0091 (8)0.0094 (7)
C180.0534 (14)0.0503 (13)0.0410 (12)0.0077 (10)0.0067 (10)0.0080 (10)
C190.0797 (19)0.0506 (14)0.0345 (12)0.0025 (13)0.0013 (12)0.0006 (10)
C200.092 (2)0.0577 (15)0.0327 (12)0.0155 (14)0.0212 (13)0.0079 (11)
C210.0777 (18)0.0697 (16)0.0470 (13)0.0055 (14)0.0362 (13)0.0097 (12)
C220.0520 (13)0.0496 (12)0.0361 (11)0.0042 (10)0.0186 (10)0.0062 (9)
Geometric parameters (Å, º) top
Mo1—C12.034 (2)C11—C161.373 (3)
Mo1—C1i2.034 (2)C11—C121.380 (3)
Mo1—C2i2.035 (2)C12—C131.376 (3)
Mo1—C22.035 (2)C12—H120.93
Mo1—P1i2.4879 (5)C13—C141.343 (4)
Mo1—P12.4879 (5)C13—H130.93
P1—C51.8341 (19)C14—C151.353 (4)
P1—C111.8430 (19)C14—H140.93
P1—C171.8430 (19)C15—C161.395 (4)
O1—C11.143 (3)C15—H150.93
O2—C21.141 (2)C16—H160.93
C5—C101.376 (3)C17—C221.370 (3)
C5—C61.389 (3)C17—C181.390 (3)
C6—C71.378 (3)C18—C191.381 (3)
C6—H60.93C18—H180.93
C7—C81.354 (4)C19—C201.374 (4)
C7—H70.93C19—H190.93
C8—C91.367 (4)C20—C211.352 (4)
C8—H80.93C20—H200.93
C9—C101.386 (3)C21—C221.390 (3)
C9—H90.93C21—H210.93
C10—H100.93C22—H220.93
C1—Mo1—C1i180.00 (11)C5—C10—H10119.8
C1—Mo1—C2i89.09 (8)C9—C10—H10119.8
C1i—Mo1—C2i90.91 (8)C16—C11—C12117.4 (2)
C1—Mo1—C290.91 (8)C16—C11—P1124.63 (17)
C1i—Mo1—C289.09 (8)C12—C11—P1117.92 (16)
C2i—Mo1—C2180.0C13—C12—C11121.8 (2)
C1—Mo1—P1i89.67 (6)C13—C12—H12119.1
C1i—Mo1—P1i90.33 (6)C11—C12—H12119.1
C2i—Mo1—P1i87.97 (6)C14—C13—C12120.3 (3)
C2—Mo1—P1i92.03 (6)C14—C13—H13119.9
C1—Mo1—P190.33 (6)C12—C13—H13119.9
C1i—Mo1—P189.67 (6)C13—C14—C15119.4 (3)
C2i—Mo1—P192.04 (6)C13—C14—H14120.3
C2—Mo1—P187.97 (6)C15—C14—H14120.3
P1i—Mo1—P1180.0C14—C15—C16121.2 (3)
C5—P1—C11104.37 (9)C14—C15—H15119.4
C5—P1—C17102.38 (9)C16—C15—H15119.4
C11—P1—C1799.19 (9)C11—C16—C15119.8 (3)
C5—P1—Mo1112.63 (6)C11—C16—H16120.1
C11—P1—Mo1116.61 (6)C15—C16—H16120.1
C17—P1—Mo1119.47 (6)C22—C17—C18117.96 (19)
O1—C1—Mo1178.84 (18)C22—C17—P1121.05 (14)
O2—C2—Mo1178.21 (19)C18—C17—P1120.96 (16)
C10—C5—C6117.94 (19)C19—C18—C17120.5 (2)
C10—C5—P1121.47 (16)C19—C18—H18119.8
C6—C5—P1120.24 (16)C17—C18—H18119.8
C7—C6—C5120.8 (2)C20—C19—C18120.4 (2)
C7—C6—H6119.6C20—C19—H19119.8
C5—C6—H6119.6C18—C19—H19119.8
C8—C7—C6120.8 (3)C21—C20—C19119.7 (2)
C8—C7—H7119.6C21—C20—H20120.2
C6—C7—H7119.6C19—C20—H20120.2
C7—C8—C9119.3 (2)C20—C21—C22120.3 (3)
C7—C8—H8120.3C20—C21—H21119.9
C9—C8—H8120.3C22—C21—H21119.9
C8—C9—C10120.7 (3)C17—C22—C21121.2 (2)
C8—C9—H9119.6C17—C22—H22119.4
C10—C9—H9119.6C21—C22—H22119.4
C5—C10—C9120.4 (2)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Mo(C18H15P)2(CO)4]
Mr732.52
Crystal system, space groupTriclinic, P1
Temperature (K)300
a, b, c (Å)9.3443 (13), 10.2267 (15), 10.7258 (16)
α, β, γ (°)64.794 (4), 69.417 (4), 83.699 (4)
V3)867.2 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.62 × 0.45 × 0.33
Data collection
DiffractometerBruker SMART X2S benchtop
Absorption correctionMulti-scan
(SADABS; Bruker, 2012)
Tmin, Tmax0.70, 0.85
No. of measured, independent and
observed [I > 2σ(I)] reflections
7865, 2907, 2770
Rint0.020
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.058, 1.11
No. of reflections2907
No. of parameters214
No. of restraints61
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The Department of Chemistry and the College of Liberal Arts & Sciences at UIC are acknowledged for purchasing a Bruker SMART X2S bench-top diffractometer, and for providing supplies and equipment for the inorganic teaching lab that motivated this study.

References

First citationBruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Darensbourg, D. J., Klein, S. & Kolthammer, B. W. (1982). Inorg. Chem. 21, 294–299.  CSD CrossRef CAS Web of Science Google Scholar
First citationDarensbourg, D. J. & Bischoff, C. J. (1993). Inorg. Chem. 32, 47–53.  CrossRef CAS Web of Science Google Scholar
First citationDarensbourg, D. J. & Kump, R. L. (1978). Inorg. Chem. 17, 2680–2682.  CrossRef CAS Web of Science Google Scholar
First citationHaas, H. & Sheline, R. K. (1967). J. Chem. Phys. 47, 2996–3022.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds