organic compounds
(S,Z)-3-Phenyl-2-[(1,1,1-trichloro-7-methoxy-2,7-dioxohept-3-en-4-yl)amino]propanoic acid monohydrate
aEscola de Quimica e Alimentos, Universidade Federal do Rio Grande, Av. Italia, km 08, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil, bUniversidade Federal da Grande Dourados, UFGD, CEP 79825-070 Dourados, MS, Brazil, and cInstituto Federal Farroupilha, Campus Júlio de Castilhos, CEP 98130-000, Júlio de Castilhos, RS, Brazil
*Correspondence e-mail: alexflores@furg.br
In the title compound, C17H18Cl3NO5·H2O, intramolecular N—H⋯O and C—H⋯Cl hydrogen bonds form S(6) and S(5) ring motifs, respectively. The chiral organic molecule is connected to the solvent water molecule by a short O—H⋯O hydrogen bond. In the crystal, a weak C—H⋯Cl interaction connects the organic molecules along [100] while the water molecules act as bridges between the organic molecules in both the [100] and [010] directions, generating layers parallel to the ab plane.
CCDC reference: 979612
Related literature
For the synthesis of the title compound and a similar et al. (2008). For information about levulinic acid and the biological properties of its derivatives, see: Flores et al. (2013); Hachuła et al. (2013); Lo & Ng (2008). For short intermolecular hydrogen-bond interactions, see: Pojarová et al. (2010). For intramolecular hydrogen-bonding systems, see: da Costa et al. (2013).
see: FloresExperimental
Crystal data
|
Refinement
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 979612
10.1107/S1600536814000154/pk2509sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814000154/pk2509Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814000154/pk2509Isup3.cml
To a stirred solution of methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate (5 mmol, 1.52 g) and L-phenylalanine (5.5 mmol, 0.91 g), at 25 °C, was added a solution of 1 mol·L-1 NaOH. There was an immediate formation of a yellow precipitate and the mixture was further stirred for 30 minutes. A solution of 50% HCl was added until the pH ≈ 1, when there was complete precipitation of the yellow solid. The solid was extracted with ethyl acetate, and this solution was dried over anhydrous MgSO4. The ethyl acetate was removed on a rotary evaporator to give the product as a yellow solid. Yield: 79%. m. p. 120 – 123 °C. 1H NMR (400 MHz, DMSO-D6, TMS): δ 2.17 (m, 2H, CH2), 2.44 (m, 2H, CH2), 3.06 (dd, 1H, 3J=9.1 Hz, 2J=14 Hz, CH2Ph), 3.37 (dd, 1H, 3J=9.1 Hz, 2J=14 Hz, CH2Ph), 3.66 (s, 3H, OMe), 4.53 (m, 1H, CHchiral), 5.60 (s, 1H, =CH), 7.22–7.33 (m, 5H, Ph), 10.9 (d, 1H, 3J = 10 Hz, NH) p.p.m.; 13C NMR (100 MHz, DMSO-D6): δ 26.8, 31.5, 39.9, 52.2, 58.1, 86.0, 96.9, 127.5, 128.9, 129.5, 135.4, 169.9, 172.0, 173.2, 181.2 p.p.m.. Crystals were grown from a methanol solution, which was slowly evaporated at room temperature.
All H atoms attached to carbon were positioned with idealized geometry and were refined isotropically. For H atoms of CH3 group, Uiso(H) was set to 1.5Ueq(C) using a riding model with C—H = 0.96 Å. For all remaining H atoms attached to C atoms, Uiso(H) was set to 1.2Ueq(C) using a riding model with the following C—H distances: C—H (CH) = 0.93 Å, C—H (CHchiral) = 0.98 Å and C—H (CH2) = 0.97 Å. H atoms attached to nitrogen, H atoms of the water molecule and the H atom of the carboxylic acid fragment were located in difference Fourier maps, and were refined with Uiso values set to 1.5Ueq of the parent atom. Reflections (001) and (001) were omitted due to the large difference observed between Fo2 and Fc2.
Dielectrophiles derived from levulinic acid (Hachuła et al., 2013; Lo & Ng, 2008) belong to an important class of organic synthetic intermediates for the synthesis of a variety of
Such precursors are used to produce pyrrolidinones, pyrrolones, pyrazoles and pyrimidines with very interesting biological activities (Flores et al., 2008; Flores et al., 2013). As a part of our studies, we report in this paper the of (S,Z)-3-phenyl-2-(1,1,1-trichloro-7–2,7-dioxo-3-hepten- 4-ylamine)propanoic acid, obtained from the reaction between methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate and L-phenylalanine.In the
of the title compound, the is composed of the whole chiral organic molecule, C17H18Cl3NO5, connected to a water molecule (Fig.1). This connection consists of a short intermolecular hydrogen bond interaction involving the hydrogen atom of the carboxylic acid fragment [O92—H92···O33, 2.542 (4) Å; Pojarová et al., 2010]. Additionally, S(6) and S(5) ring motifs are formed by two distinct intramolecular hydrogen bonding systems, N41—H41···O21 [2.672 (3) Å] and C3—H3···Cl1 [3.031 (3) Å], respectively, thereby stabilizing the structure (da Costa et al., 2013).There is also a weak C6—H6A···Cl1i intermolecular interaction [3.774 (3) Å] connecting organic molecules along the [100] crystallographic direction. The water molecules act as a bridging element in the
by expanding its dimensionality in both [100] and [010] crystallographic directions. The intermolecular hydrogen bond interactions generate bidimensional layers parallel to the ab plane. Each atom of the water molecule is connected to different groups on adjacent organic molecules: carboxylic acid [O92—H92···O33, 2.542 (4) Å and O33—H33B···O91ii, 2.766 (4) Å] and ketone [O33—H33A···O21iii, 2.815 (3) Å]. Symmetry codes: (i) x–1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z. A super cell central projection of the can be viewed in Fig. 2, which depicts a crystal packing diagram as viewed along the crystallographic a axis.For the synthesis of the title compound and a similar
see: Flores et al. (2008). For information about levulinic acid and the biological properties of its derivatives, see: Flores et al. (2013); Hachuła et al. (2013); Lo & Ng (2008). For short intermolecular hydrogen-bond interactions, see: Pojarová et al. (2010). For intramolecular hydrogen-bonding systems, see: da Costa et al. (2013).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. An ellipsoid plot (50% probability) showing the asymmetric unit. Hydrogen bonds are represented as dashed lines. Symmetry codes: (i) x–1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z. | |
Fig. 2. Packing of molecules along the [100] direction through intermolecular hydrogen bonds, represented with dashed lines. Some hydrogen atoms were omitted for clarity. |
C17H18Cl3NO5·H2O | F(000) = 228 |
Mr = 440.69 | Dx = 1.461 Mg m−3 |
Triclinic, P1 | Melting point: 393 K |
a = 5.6684 (16) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.601 (3) Å | Cell parameters from 3866 reflections |
c = 10.336 (3) Å | θ = 3.0–25.5° |
α = 87.720 (19)° | µ = 0.49 mm−1 |
β = 85.696 (17)° | T = 296 K |
γ = 85.649 (17)° | Blade, colorless |
V = 500.8 (2) Å3 | 0.98 × 0.30 × 0.12 mm |
Z = 1 |
Bruker APEXII CCD diffractometer | 6020 independent reflections |
Radiation source: fine-focus sealed tube | 4784 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 30.7°, θmin = 2.4° |
Absorption correction: gaussian (XPREP; Bruker, 2006) | h = −8→8 |
Tmin = 0.881, Tmax = 1 | k = −12→12 |
13424 measured reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0502P)2 + 0.0376P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.41 e Å−3 |
6020 reflections | Δρmin = −0.32 e Å−3 |
256 parameters | Absolute structure: Flack parameter determined using 1984 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
3 restraints | Absolute structure parameter: 0.04 (2) |
C17H18Cl3NO5·H2O | γ = 85.649 (17)° |
Mr = 440.69 | V = 500.8 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.6684 (16) Å | Mo Kα radiation |
b = 8.601 (3) Å | µ = 0.49 mm−1 |
c = 10.336 (3) Å | T = 296 K |
α = 87.720 (19)° | 0.98 × 0.30 × 0.12 mm |
β = 85.696 (17)° |
Bruker APEXII CCD diffractometer | 6020 independent reflections |
Absorption correction: gaussian (XPREP; Bruker, 2006) | 4784 reflections with I > 2σ(I) |
Tmin = 0.881, Tmax = 1 | Rint = 0.024 |
13424 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.105 | Δρmax = 0.41 e Å−3 |
S = 1.04 | Δρmin = −0.32 e Å−3 |
6020 reflections | Absolute structure: Flack parameter determined using 1984 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
256 parameters | Absolute structure parameter: 0.04 (2) |
3 restraints |
Experimental. Absorption correction: XPREP (Bruker, 2006) was used to perform the Gaussian absorption correction based on the face-indexed crystal size. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O33 | 0.4813 (5) | 1.0147 (3) | 0.9230 (3) | 0.0554 (6) | |
H33B | 0.629 (11) | 0.977 (6) | 0.919 (5) | 0.083* | |
H41 | 0.147 (9) | 0.465 (6) | 0.794 (5) | 0.083* | |
H33A | 0.458 (10) | 1.092 (7) | 0.887 (5) | 0.083* | |
H92 | 0.352 (9) | 0.869 (6) | 0.864 (5) | 0.083* | |
Cl1 | 0.75049 (16) | 0.24572 (10) | 0.42096 (9) | 0.0652 (3) | |
Cl2 | 0.50084 (18) | 0.01516 (11) | 0.57338 (11) | 0.0759 (3) | |
Cl3 | 0.88358 (15) | 0.16349 (14) | 0.67617 (11) | 0.0742 (3) | |
N41 | 0.1053 (4) | 0.5403 (3) | 0.7462 (2) | 0.0403 (5) | |
C1 | 0.6395 (5) | 0.1924 (3) | 0.5785 (3) | 0.0432 (6) | |
C7 | −0.1436 (5) | 0.7761 (4) | 0.3642 (3) | 0.0424 (6) | |
C9 | 0.0625 (5) | 0.7901 (3) | 0.8625 (3) | 0.0439 (6) | |
C3 | 0.3699 (5) | 0.4434 (3) | 0.5739 (3) | 0.0412 (6) | |
H3 | 0.4282 | 0.4569 | 0.4880 | 0.049* | |
C10 | −0.0576 (5) | 0.6530 (3) | 0.8145 (3) | 0.0402 (6) | |
H10 | −0.1704 | 0.6956 | 0.7526 | 0.048* | |
C5 | 0.1234 (5) | 0.6912 (3) | 0.5398 (3) | 0.0414 (6) | |
H5A | 0.2526 | 0.7135 | 0.4764 | 0.050* | |
H5B | 0.0854 | 0.7828 | 0.5913 | 0.050* | |
C111 | −0.0514 (5) | 0.4758 (4) | 1.0193 (3) | 0.0455 (6) | |
C2 | 0.4540 (5) | 0.3128 (3) | 0.6460 (3) | 0.0386 (5) | |
C6 | −0.0917 (6) | 0.6567 (4) | 0.4700 (3) | 0.0472 (7) | |
H6A | −0.0645 | 0.5545 | 0.4328 | 0.057* | |
H6B | −0.2285 | 0.6543 | 0.5321 | 0.057* | |
C11 | −0.2023 (5) | 0.5712 (4) | 0.9264 (3) | 0.0475 (7) | |
H11A | −0.3005 | 0.6496 | 0.9745 | 0.057* | |
H11B | −0.3071 | 0.5033 | 0.8897 | 0.057* | |
C112 | 0.0981 (7) | 0.5453 (4) | 1.0959 (3) | 0.0584 (8) | |
H112 | 0.1040 | 0.6532 | 1.0916 | 0.070* | |
C8 | −0.4279 (7) | 0.8699 (5) | 0.2188 (4) | 0.0649 (10) | |
H8A | −0.5833 | 0.8501 | 0.1953 | 0.097* | |
H8B | −0.3165 | 0.8573 | 0.1446 | 0.097* | |
H8C | −0.4299 | 0.9745 | 0.2481 | 0.097* | |
C116 | −0.0616 (8) | 0.3156 (4) | 1.0306 (4) | 0.0638 (9) | |
H116 | −0.1627 | 0.2664 | 0.9813 | 0.077* | |
C115 | 0.0793 (10) | 0.2279 (5) | 1.1156 (4) | 0.0792 (13) | |
H115 | 0.0718 | 0.1202 | 1.1222 | 0.095* | |
C113 | 0.2391 (9) | 0.4563 (6) | 1.1789 (4) | 0.0734 (11) | |
H113 | 0.3422 | 0.5039 | 1.2280 | 0.088* | |
C114 | 0.2259 (9) | 0.2964 (6) | 1.1884 (4) | 0.0774 (13) | |
H114 | 0.3183 | 0.2363 | 1.2450 | 0.093* | |
O72 | −0.3587 (4) | 0.7608 (3) | 0.3218 (2) | 0.0535 (5) | |
O92 | 0.2915 (4) | 0.7852 (3) | 0.8366 (3) | 0.0554 (5) | |
O91 | −0.0517 (4) | 0.8944 (3) | 0.9190 (3) | 0.0591 (6) | |
O71 | −0.0124 (5) | 0.8698 (3) | 0.3220 (3) | 0.0637 (7) | |
C4 | 0.2004 (5) | 0.5547 (3) | 0.6269 (3) | 0.0370 (5) | |
O21 | 0.3934 (4) | 0.2806 (2) | 0.7613 (2) | 0.0473 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O33 | 0.0494 (13) | 0.0492 (13) | 0.0673 (15) | −0.0017 (11) | −0.0076 (11) | 0.0051 (11) |
Cl1 | 0.0759 (6) | 0.0560 (5) | 0.0586 (5) | 0.0031 (4) | 0.0241 (4) | −0.0061 (4) |
Cl2 | 0.0741 (6) | 0.0476 (4) | 0.1050 (8) | −0.0204 (4) | 0.0308 (5) | −0.0288 (5) |
Cl3 | 0.0413 (4) | 0.0946 (7) | 0.0838 (6) | 0.0154 (4) | −0.0058 (4) | −0.0032 (5) |
N41 | 0.0439 (13) | 0.0350 (11) | 0.0398 (12) | 0.0079 (10) | −0.0005 (9) | 0.0012 (9) |
C1 | 0.0375 (14) | 0.0379 (14) | 0.0531 (16) | −0.0024 (11) | 0.0056 (11) | −0.0056 (11) |
C7 | 0.0410 (14) | 0.0435 (15) | 0.0412 (14) | 0.0029 (12) | −0.0024 (11) | 0.0028 (11) |
C9 | 0.0441 (14) | 0.0397 (14) | 0.0459 (15) | 0.0077 (11) | −0.0048 (11) | 0.0056 (12) |
C3 | 0.0417 (14) | 0.0403 (14) | 0.0398 (13) | 0.0013 (11) | 0.0024 (10) | 0.0017 (11) |
C10 | 0.0375 (13) | 0.0376 (13) | 0.0444 (14) | 0.0073 (11) | −0.0052 (11) | −0.0035 (11) |
C5 | 0.0419 (14) | 0.0338 (13) | 0.0481 (15) | −0.0020 (10) | −0.0039 (11) | 0.0043 (11) |
C111 | 0.0480 (15) | 0.0477 (16) | 0.0385 (13) | 0.0000 (13) | 0.0078 (12) | −0.0018 (12) |
C2 | 0.0349 (12) | 0.0363 (13) | 0.0440 (14) | 0.0022 (10) | −0.0012 (10) | −0.0049 (10) |
C6 | 0.0478 (16) | 0.0414 (15) | 0.0532 (16) | −0.0051 (12) | −0.0114 (13) | 0.0081 (13) |
C11 | 0.0387 (14) | 0.0508 (17) | 0.0516 (16) | 0.0032 (12) | 0.0001 (12) | −0.0028 (13) |
C112 | 0.075 (2) | 0.0510 (19) | 0.0489 (17) | −0.0038 (17) | −0.0081 (16) | 0.0032 (14) |
C8 | 0.063 (2) | 0.081 (3) | 0.0495 (18) | 0.0133 (19) | −0.0149 (15) | 0.0064 (17) |
C116 | 0.082 (3) | 0.0495 (19) | 0.059 (2) | −0.0072 (17) | 0.0021 (18) | −0.0027 (15) |
C115 | 0.115 (4) | 0.049 (2) | 0.069 (3) | 0.007 (2) | 0.006 (3) | 0.0063 (18) |
C113 | 0.084 (3) | 0.085 (3) | 0.052 (2) | −0.004 (2) | −0.0171 (19) | 0.0069 (19) |
C114 | 0.093 (3) | 0.078 (3) | 0.055 (2) | 0.026 (2) | −0.002 (2) | 0.013 (2) |
O72 | 0.0482 (12) | 0.0614 (14) | 0.0511 (12) | −0.0012 (10) | −0.0121 (9) | 0.0063 (10) |
O92 | 0.0449 (12) | 0.0501 (13) | 0.0709 (14) | −0.0013 (10) | −0.0017 (10) | −0.0073 (11) |
O91 | 0.0540 (13) | 0.0445 (12) | 0.0778 (16) | 0.0107 (10) | −0.0050 (11) | −0.0166 (11) |
O71 | 0.0538 (14) | 0.0628 (15) | 0.0738 (16) | −0.0076 (11) | −0.0098 (12) | 0.0244 (12) |
C4 | 0.0379 (12) | 0.0331 (13) | 0.0400 (13) | −0.0025 (10) | −0.0037 (10) | 0.0014 (10) |
O21 | 0.0524 (12) | 0.0423 (11) | 0.0432 (11) | 0.0133 (9) | 0.0038 (8) | 0.0029 (9) |
O33—H33B | 0.87 (6) | C5—H5B | 0.9700 |
O33—H33A | 0.76 (6) | C111—C116 | 1.384 (5) |
Cl1—C1 | 1.757 (3) | C111—C112 | 1.385 (5) |
Cl2—C1 | 1.772 (3) | C111—C11 | 1.510 (4) |
Cl3—C1 | 1.770 (3) | C2—O21 | 1.241 (4) |
N41—C4 | 1.314 (4) | C6—H6A | 0.9700 |
N41—C10 | 1.453 (3) | C6—H6B | 0.9700 |
N41—H41 | 0.83 (5) | C11—H11A | 0.9700 |
C1—C2 | 1.564 (4) | C11—H11B | 0.9700 |
C7—O71 | 1.186 (4) | C112—C113 | 1.385 (5) |
C7—O72 | 1.343 (4) | C112—H112 | 0.9300 |
C7—C6 | 1.500 (4) | C8—O72 | 1.448 (4) |
C9—O91 | 1.209 (4) | C8—H8A | 0.9600 |
C9—O92 | 1.303 (4) | C8—H8B | 0.9600 |
C9—C10 | 1.523 (4) | C8—H8C | 0.9600 |
C3—C2 | 1.397 (4) | C116—C115 | 1.393 (6) |
C3—C4 | 1.401 (4) | C116—H116 | 0.9300 |
C3—H3 | 0.9300 | C115—C114 | 1.344 (7) |
C10—C11 | 1.545 (4) | C115—H115 | 0.9300 |
C10—H10 | 0.9800 | C113—C114 | 1.382 (7) |
C5—C4 | 1.509 (4) | C113—H113 | 0.9300 |
C5—C6 | 1.517 (4) | C114—H114 | 0.9300 |
C5—H5A | 0.9700 | O92—H92 | 0.89 (5) |
H33B—O33—H33A | 115 (6) | C7—C6—H6A | 109.2 |
C4—N41—C10 | 126.9 (2) | C5—C6—H6A | 109.2 |
C4—N41—H41 | 121 (4) | C7—C6—H6B | 109.2 |
C10—N41—H41 | 112 (4) | C5—C6—H6B | 109.2 |
C2—C1—Cl1 | 116.0 (2) | H6A—C6—H6B | 107.9 |
C2—C1—Cl3 | 107.9 (2) | C111—C11—C10 | 113.8 (2) |
Cl1—C1—Cl3 | 107.55 (16) | C111—C11—H11A | 108.8 |
C2—C1—Cl2 | 107.0 (2) | C10—C11—H11A | 108.8 |
Cl1—C1—Cl2 | 109.06 (17) | C111—C11—H11B | 108.8 |
Cl3—C1—Cl2 | 109.22 (17) | C10—C11—H11B | 108.8 |
O71—C7—O72 | 124.4 (3) | H11A—C11—H11B | 107.7 |
O71—C7—C6 | 125.1 (3) | C111—C112—C113 | 120.9 (4) |
O72—C7—C6 | 110.5 (2) | C111—C112—H112 | 119.6 |
O91—C9—O92 | 124.1 (3) | C113—C112—H112 | 119.6 |
O91—C9—C10 | 121.0 (3) | O72—C8—H8A | 109.5 |
O92—C9—C10 | 114.9 (3) | O72—C8—H8B | 109.5 |
C2—C3—C4 | 122.1 (3) | H8A—C8—H8B | 109.5 |
C2—C3—H3 | 119.0 | O72—C8—H8C | 109.5 |
C4—C3—H3 | 119.0 | H8A—C8—H8C | 109.5 |
N41—C10—C9 | 113.6 (2) | H8B—C8—H8C | 109.5 |
N41—C10—C11 | 110.4 (2) | C111—C116—C115 | 120.1 (4) |
C9—C10—C11 | 111.3 (2) | C111—C116—H116 | 119.9 |
N41—C10—H10 | 107.1 | C115—C116—H116 | 119.9 |
C9—C10—H10 | 107.1 | C114—C115—C116 | 121.0 (4) |
C11—C10—H10 | 107.1 | C114—C115—H115 | 119.5 |
C4—C5—C6 | 110.9 (2) | C116—C115—H115 | 119.5 |
C4—C5—H5A | 109.5 | C114—C113—C112 | 119.7 (4) |
C6—C5—H5A | 109.5 | C114—C113—H113 | 120.1 |
C4—C5—H5B | 109.5 | C112—C113—H113 | 120.1 |
C6—C5—H5B | 109.5 | C115—C114—C113 | 119.9 (4) |
H5A—C5—H5B | 108.0 | C115—C114—H114 | 120.1 |
C116—C111—C112 | 118.3 (3) | C113—C114—H114 | 120.1 |
C116—C111—C11 | 120.3 (3) | C7—O72—C8 | 115.5 (3) |
C112—C111—C11 | 121.4 (3) | C9—O92—H92 | 111 (3) |
O21—C2—C3 | 125.9 (3) | N41—C4—C3 | 122.1 (2) |
O21—C2—C1 | 115.3 (2) | N41—C4—C5 | 120.6 (2) |
C3—C2—C1 | 118.7 (3) | C3—C4—C5 | 117.4 (2) |
C7—C6—C5 | 112.0 (2) | ||
C4—N41—C10—C9 | −76.6 (4) | N41—C10—C11—C111 | 54.1 (3) |
C4—N41—C10—C11 | 157.5 (3) | C9—C10—C11—C111 | −73.0 (3) |
O91—C9—C10—N41 | 178.7 (3) | C116—C111—C112—C113 | 1.9 (6) |
O92—C9—C10—N41 | −0.6 (4) | C11—C111—C112—C113 | −178.7 (4) |
O91—C9—C10—C11 | −56.0 (3) | C112—C111—C116—C115 | −1.1 (5) |
O92—C9—C10—C11 | 124.7 (3) | C11—C111—C116—C115 | 179.5 (4) |
C4—C3—C2—O21 | −0.5 (5) | C111—C116—C115—C114 | 0.3 (7) |
C4—C3—C2—C1 | 178.8 (3) | C111—C112—C113—C114 | −1.9 (7) |
Cl1—C1—C2—O21 | −173.6 (2) | C116—C115—C114—C113 | −0.3 (7) |
Cl3—C1—C2—O21 | −53.0 (3) | C112—C113—C114—C115 | 1.0 (7) |
Cl2—C1—C2—O21 | 64.5 (3) | O71—C7—O72—C8 | −0.8 (5) |
Cl1—C1—C2—C3 | 7.0 (4) | C6—C7—O72—C8 | −179.7 (3) |
Cl3—C1—C2—C3 | 127.7 (3) | C10—N41—C4—C3 | 175.1 (3) |
Cl2—C1—C2—C3 | −114.9 (3) | C10—N41—C4—C5 | −7.0 (4) |
O71—C7—C6—C5 | 13.3 (5) | C2—C3—C4—N41 | −2.2 (5) |
O72—C7—C6—C5 | −167.8 (3) | C2—C3—C4—C5 | 179.8 (3) |
C4—C5—C6—C7 | −168.9 (3) | C6—C5—C4—N41 | −86.6 (3) |
C116—C111—C11—C10 | −115.5 (3) | C6—C5—C4—C3 | 91.4 (3) |
C112—C111—C11—C10 | 65.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···Cl1i | 0.97 | 2.94 | 3.774 (3) | 145 |
O33—H33B···O91ii | 0.87 (6) | 1.89 (6) | 2.766 (4) | 177 (5) |
N41—H41···O21 | 0.83 (5) | 2.05 (6) | 2.672 (3) | 131 (5) |
O33—H33A···O21iii | 0.76 (6) | 2.06 (6) | 2.815 (3) | 171 (6) |
O92—H92···O33 | 0.89 (5) | 1.66 (5) | 2.542 (4) | 175 (5) |
C3—H3···Cl1 | 0.93 | 2.55 | 3.031 (3) | 112 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6A···Cl1i | 0.97 | 2.94 | 3.774 (3) | 144.9 |
O33—H33B···O91ii | 0.87 (6) | 1.89 (6) | 2.766 (4) | 177 (5) |
N41—H41···O21 | 0.83 (5) | 2.05 (6) | 2.672 (3) | 131 (5) |
O33—H33A···O21iii | 0.76 (6) | 2.06 (6) | 2.815 (3) | 171 (6) |
O92—H92···O33 | 0.89 (5) | 1.66 (5) | 2.542 (4) | 175 (5) |
C3—H3···Cl1 | 0.93 | 2.55 | 3.031 (3) | 112.3 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x, y+1, z. |
Acknowledgements
The authors are grateful for financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Universal grant 6577818477962764–01), the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, PqG grant 1016236) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-PROEX).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costa, D. P. da, Nobre, S. M., Lisboa, B. G., Vicenti, J. R. de M. & Back, D. F. (2013). Acta Cryst. E69, o201. CSD CrossRef IUCr Journals Google Scholar
Flores, A. F. C., Flores, D. C., Oliveira, G., Pizzuti, L., Silva, R. M. S., Martins, M. A. P. & Bonacorso, H. G. (2008). J. Braz. Chem. Soc. 19, 184–193. Web of Science CSD CrossRef CAS Google Scholar
Flores, A. F. C., Malavolta, J. L., Souto, A. A., Goularte, R. B., Flores, D. C. & Piovesan, L. A. (2013). J. Braz. Chem. Soc. 24, 580–584. CAS Google Scholar
Hachuła, B., Polasz, A., Dzida, M., Nowak, M. & Kusz, J. (2013). Acta Cryst. E69, o1406. CSD CrossRef IUCr Journals Google Scholar
Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m722–m723. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pojarová, M., Fejfarová, K. & Makrlík, E. (2010). Acta Cryst. E66, o3341–o3342. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dielectrophiles derived from levulinic acid (Hachuła et al., 2013; Lo & Ng, 2008) belong to an important class of organic synthetic intermediates for the synthesis of a variety of heterocyclic compounds. Such precursors are used to produce pyrrolidinones, pyrrolones, pyrazoles and pyrimidines with very interesting biological activities (Flores et al., 2008; Flores et al., 2013). As a part of our studies, we report in this paper the crystal structure of (S,Z)-3-phenyl-2-(1,1,1-trichloro-7–2,7-dioxo-3-hepten- 4-ylamine)propanoic acid, obtained from the reaction between methyl 7,7,7-trichloro-4-methoxy-6-oxo-3-heptenoate and L-phenylalanine.
In the crystal structure of the title compound, the asymmetric unit is composed of the whole chiral organic molecule, C17H18Cl3NO5, connected to a water molecule (Fig.1). This connection consists of a short intermolecular hydrogen bond interaction involving the hydrogen atom of the carboxylic acid fragment [O92—H92···O33, 2.542 (4) Å; Pojarová et al., 2010]. Additionally, S(6) and S(5) ring motifs are formed by two distinct intramolecular hydrogen bonding systems, N41—H41···O21 [2.672 (3) Å] and C3—H3···Cl1 [3.031 (3) Å], respectively, thereby stabilizing the structure (da Costa et al., 2013).
There is also a weak C6—H6A···Cl1i intermolecular interaction [3.774 (3) Å] connecting organic molecules along the [100] crystallographic direction. The water molecules act as a bridging element in the crystal structure by expanding its dimensionality in both [100] and [010] crystallographic directions. The intermolecular hydrogen bond interactions generate bidimensional layers parallel to the ab plane. Each atom of the water molecule is connected to different groups on adjacent organic molecules: carboxylic acid [O92—H92···O33, 2.542 (4) Å and O33—H33B···O91ii, 2.766 (4) Å] and ketone [O33—H33A···O21iii, 2.815 (3) Å]. Symmetry codes: (i) x–1, y, z; (ii) x + 1, y, z; (iii) x, y + 1, z. A super cell central projection of the crystal structure can be viewed in Fig. 2, which depicts a crystal packing diagram as viewed along the crystallographic a axis.