metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-tricyanido-tetra­cyanidobis[hydro­tris­­(pyrazoylborato)]tetra­methanol­diiron(III)iron(II) di­methanol disolvate

aInstitute for Materials Chemistry and Engineering, Kyushu University, 6-1, Kasuga-koen, Fukuoka 816-0811, Japan
*Correspondence e-mail: sato@cm.kyushu-u.ac.jp

(Received 18 December 2013; accepted 15 January 2014; online 22 January 2014)

In the title complex, [FeIIFeIII2(C9H10BN6)2(CN)6(CH3OH)4]·2CH3OH, two [FeIII(Tp)(CN)3] anions [Tp is hydro­tris­(pyrazoylborate)] are bridged by an [FeII(MeOH)4]2+ cation, forming a centrosymmetric trinuclear unit. These units are connected via O—H⋯O and O—H⋯N hydrogen bonds involving the uncoordinated methanol solvent mol­ecules, forming a three-dimensional network.

Related literature

For the synthesis of bis­{tri­cyano­[hydro­tris­(pyrazoylborate)]ferrate(III)}, see Lescouëzec et al. (2002[Lescouëzec, R., Vaissermann, J., Lloret, F., Julve, M. & Verdaguer, M. (2002). Inorg. Chem. 41, 5943-5945.]). For a related structure, see Kim et al. (2004[Kim, J., Han, S., Cho, I. K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333-1339.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe3(C9H10BN6)2(CN)6(CH4O)4]·2CH4O

  • Mr = 942.00

  • Monoclinic, P 21 /c

  • a = 9.261 (4) Å

  • b = 16.405 (7) Å

  • c = 14.331 (6) Å

  • β = 94.671 (2)°

  • V = 2169.9 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 123 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Rigaku Saturn70 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.743, Tmax = 0.902

  • 16575 measured reflections

  • 4922 independent reflections

  • 4557 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.167

  • S = 1.13

  • 4922 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.93 1.75 2.645 (4) 161
O2—H2O⋯N7i 0.83 1.97 2.769 (4) 161
O3—H3O⋯N9ii 0.85 1.97 2.815 (4) 172
O1—H1O⋯O3 0.93 1.75 2.645 (4) 161
O2—H2O⋯N7i 0.83 1.97 2.769 (4) 161
C8—H8⋯N9iii 0.95 2.62 3.523 (5) 158
O3—H3O⋯N9ii 0.85 1.97 2.815 (4) 172
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

A trinuclear cyanide bridged complex was synthesized by slow evaporation. In this compound, the central iron(II) ion is coordinated by two nitro­gen atoms from cyanide bridging of [FeIII(Tp)(CN)3]- (Tp = hydro­tris­(pyrazoylborate) with trans geometry, and four oxygen atoms from coordinated methanol molecules. While, the FeIII in the [FeIII(Tp)(CN)3]- part is coordinated by three nitro­gen atoms from Tp- and three carbon atoms from cyanide. The Fe1—N—C—Fe2 structure unit is almost linear with Fe1—C—N and Fe2—N—C angles of 176.1 (3)° and 168.2 (3)°, respectively. Two types of hydrogen bonds O1—H10···O3 and O3—H30···N9 are present between the uncoordinated methanol molecules and [FeIII(Tp)(CN)3]2[FeII(MeOH)4] units, linking the trinuclear units into a three-dimensional supra-molecule. The carbon atom of the uncoordinated methanol molecules is probably disordered. An isostructural compound [FeIII(Tp)(CN)3]2[MnII(MeOH)4] and two methanol molecules was reported previously (Kim et al., 2004).

Experimental top

Tetra-n-butyl­ammonium bis-[tri­cyano-hydro­tris­(pyrazoylborate)-ferrate(III)] (0.589g,0.1mmol) and ferrous perchlorate hydrated (0.018g. 0.05 mmol) in 10 ml methanol were reacted for 30 min at room temperature. Slow evaporation of the filtrate gave red crystals.

Refinement top

Carbon-bound H-atoms of pyrazole were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The carbon-bound H-atoms of methanol, O-bound H-atoms and B-bound H-atoms were located in a difference Fourier map, and were refined with a distance restraints of C—H, O—H and B—H 0.98±0.01 Å, 0.82±0.1 Å, 1.12 Å, respectively; with Uiso(H) set to 1.2Ueq(N).

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For the synthesis of bis[tricyano[hydrotris(pyrazoylborate)]ferrate(III)], see Lescouëzec et al. (2002). For a related structure, see Kim et al. (2004).

Structure description top

A trinuclear cyanide bridged complex was synthesized by slow evaporation. In this compound, the central iron(II) ion is coordinated by two nitro­gen atoms from cyanide bridging of [FeIII(Tp)(CN)3]- (Tp = hydro­tris­(pyrazoylborate) with trans geometry, and four oxygen atoms from coordinated methanol molecules. While, the FeIII in the [FeIII(Tp)(CN)3]- part is coordinated by three nitro­gen atoms from Tp- and three carbon atoms from cyanide. The Fe1—N—C—Fe2 structure unit is almost linear with Fe1—C—N and Fe2—N—C angles of 176.1 (3)° and 168.2 (3)°, respectively. Two types of hydrogen bonds O1—H10···O3 and O3—H30···N9 are present between the uncoordinated methanol molecules and [FeIII(Tp)(CN)3]2[FeII(MeOH)4] units, linking the trinuclear units into a three-dimensional supra-molecule. The carbon atom of the uncoordinated methanol molecules is probably disordered. An isostructural compound [FeIII(Tp)(CN)3]2[MnII(MeOH)4] and two methanol molecules was reported previously (Kim et al., 2004).

Tetra-n-butyl­ammonium bis-[tri­cyano-hydro­tris­(pyrazoylborate)-ferrate(III)] (0.589g,0.1mmol) and ferrous perchlorate hydrated (0.018g. 0.05 mmol) in 10 ml methanol were reacted for 30 min at room temperature. Slow evaporation of the filtrate gave red crystals.

For the synthesis of bis[tricyano[hydrotris(pyrazoylborate)]ferrate(III)], see Lescouëzec et al. (2002). For a related structure, see Kim et al. (2004).

Refinement details top

Carbon-bound H-atoms of pyrazole were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The carbon-bound H-atoms of methanol, O-bound H-atoms and B-bound H-atoms were located in a difference Fourier map, and were refined with a distance restraints of C—H, O—H and B—H 0.98±0.01 Å, 0.82±0.1 Å, 1.12 Å, respectively; with Uiso(H) set to 1.2Ueq(N).

Crystal data, data collection and structure refinement details are summarized in Table 1.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The displacement ellipsoid plot (50% probability level) of the title compound. Unlabelled atoms are related to their labelled counterparts by the symmetry operation (–x + 1, -y + 1, -z + 1).
[Figure 2] Fig. 2. The packing diagram of the title compound viewed along the crystallographic a–axis. H atoms are omitted to enhance clarity.
Di-µ-tricyanido-tetracyanidobis[hydrotris(pyrazoylborato)]tetramethanoldiiron(III)iron(II) dimethanol disolvate top
Crystal data top
[Fe3(C9H10BN6)2(CN)6(CH4O)4]·2CH4OF(000) = 972
Mr = 942.00Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 4554 reflections
a = 9.261 (4) Åθ = 3.1–27.5°
b = 16.405 (7) ŵ = 1.05 mm1
c = 14.331 (6) ÅT = 123 K
β = 94.671 (2)°Block, red
V = 2169.9 (16) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Rigaku Saturn70
diffractometer
4922 independent reflections
Radiation source: fine-focus sealed tube4557 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 7.314 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 2121
Tmin = 0.743, Tmax = 0.902l = 1816
16575 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0721P)2 + 4.4189P]
where P = (Fo2 + 2Fc2)/3
4922 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Fe3(C9H10BN6)2(CN)6(CH4O)4]·2CH4OV = 2169.9 (16) Å3
Mr = 942.00Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.261 (4) ŵ = 1.05 mm1
b = 16.405 (7) ÅT = 123 K
c = 14.331 (6) Å0.30 × 0.20 × 0.10 mm
β = 94.671 (2)°
Data collection top
Rigaku Saturn70
diffractometer
4922 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4557 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.902Rint = 0.097
16575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.13Δρmax = 0.95 e Å3
4922 reflectionsΔρmin = 0.82 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.16211 (4)0.53724 (3)0.76431 (3)0.01108 (15)
Fe20.50000.50000.50000.01447 (18)
O10.6195 (3)0.61004 (16)0.52139 (18)0.0259 (6)
H1O0.58560.64530.56540.031*
O20.3481 (3)0.57099 (18)0.41549 (19)0.0295 (6)
H2O0.25860.57320.41190.035*
O30.5843 (4)0.71803 (18)0.6547 (2)0.0424 (8)
H3O0.62380.76470.65270.051*
N10.1053 (3)0.64652 (16)0.71911 (18)0.0132 (5)
N20.0729 (3)0.70462 (16)0.78192 (18)0.0139 (5)
N30.0040 (3)0.54145 (16)0.84969 (18)0.0136 (5)
N40.0165 (3)0.61102 (16)0.89905 (18)0.0146 (5)
N50.2907 (3)0.58953 (16)0.86392 (18)0.0133 (5)
N60.2409 (3)0.65368 (16)0.91250 (18)0.0151 (5)
N70.0531 (3)0.45434 (18)0.6197 (2)0.0223 (6)
N80.3854 (3)0.52601 (18)0.6178 (2)0.0192 (6)
N90.2724 (3)0.36947 (17)0.8348 (2)0.0210 (6)
C10.0913 (4)0.6807 (2)0.6342 (2)0.0180 (6)
H10.10810.65390.57740.022*
C20.0484 (4)0.7615 (2)0.6417 (2)0.0218 (7)
H20.03020.79980.59240.026*
C30.0379 (4)0.77434 (19)0.7362 (2)0.0191 (7)
H30.01070.82390.76420.023*
C40.0966 (4)0.4884 (2)0.8710 (2)0.0169 (6)
H40.10680.43480.84620.020*
C50.1852 (4)0.5225 (2)0.9348 (2)0.0199 (7)
H50.26530.49780.96120.024*
C60.1310 (3)0.5999 (2)0.9513 (2)0.0180 (6)
H60.16760.63900.99220.022*
C70.4266 (3)0.5739 (2)0.9010 (2)0.0179 (6)
H70.48770.53220.88050.021*
C80.4640 (4)0.6281 (2)0.9736 (2)0.0225 (7)
H80.55280.63071.01160.027*
C90.3438 (4)0.6775 (2)0.9786 (2)0.0197 (7)
H90.33530.72101.02160.024*
C100.2287 (3)0.4314 (2)0.8080 (2)0.0150 (6)
C110.3056 (3)0.53102 (18)0.6750 (2)0.0138 (6)
C120.0301 (3)0.48514 (19)0.6716 (2)0.0149 (6)
C130.7555 (5)0.6320 (3)0.4880 (4)0.0401 (11)
H13A0.78900.68350.51680.048*
H13B0.74380.63840.41980.048*
H13C0.82670.58910.50430.048*
C140.3792 (5)0.6167 (3)0.3344 (3)0.0386 (10)
H14A0.35250.58450.27800.046*
H14B0.48300.62930.33760.046*
H14C0.32350.66760.33210.046*
C150.6291 (13)0.6822 (4)0.7417 (4)0.123 (5)
H15A0.72920.69810.76040.148*
H15B0.62320.62270.73620.148*
H15C0.56580.70070.78910.148*
B10.0838 (4)0.6841 (2)0.8869 (2)0.0150 (7)
H100.05010.73780.92810.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0115 (2)0.0095 (2)0.0126 (2)0.00115 (15)0.00292 (16)0.00043 (15)
Fe20.0125 (3)0.0171 (3)0.0143 (3)0.0025 (2)0.0040 (2)0.0033 (2)
O10.0240 (13)0.0255 (13)0.0297 (14)0.0087 (11)0.0112 (10)0.0113 (11)
O20.0152 (12)0.0420 (16)0.0312 (14)0.0014 (11)0.0002 (10)0.0111 (12)
O30.065 (2)0.0274 (15)0.0368 (16)0.0274 (15)0.0179 (15)0.0142 (12)
N10.0154 (12)0.0117 (12)0.0127 (12)0.0005 (10)0.0030 (9)0.0004 (9)
N20.0175 (12)0.0117 (12)0.0126 (12)0.0018 (10)0.0022 (9)0.0003 (10)
N30.0144 (13)0.0112 (12)0.0156 (13)0.0019 (10)0.0033 (10)0.0001 (9)
N40.0146 (12)0.0141 (13)0.0154 (12)0.0045 (10)0.0028 (10)0.0012 (10)
N50.0126 (12)0.0145 (12)0.0131 (12)0.0008 (10)0.0028 (9)0.0008 (10)
N60.0177 (13)0.0135 (12)0.0146 (12)0.0001 (10)0.0043 (10)0.0017 (10)
N70.0203 (14)0.0233 (15)0.0231 (15)0.0024 (12)0.0006 (12)0.0013 (12)
N80.0192 (14)0.0198 (14)0.0194 (14)0.0016 (11)0.0059 (11)0.0040 (11)
N90.0241 (15)0.0135 (13)0.0252 (15)0.0025 (11)0.0001 (11)0.0003 (11)
C10.0218 (16)0.0173 (15)0.0151 (15)0.0010 (13)0.0018 (12)0.0008 (12)
C20.0341 (19)0.0143 (15)0.0167 (15)0.0032 (14)0.0004 (14)0.0049 (12)
C30.0255 (17)0.0099 (14)0.0217 (16)0.0019 (13)0.0001 (13)0.0013 (12)
C40.0156 (15)0.0158 (15)0.0195 (15)0.0003 (12)0.0033 (12)0.0024 (12)
C50.0157 (15)0.0239 (17)0.0210 (16)0.0028 (13)0.0068 (12)0.0039 (13)
C60.0158 (15)0.0235 (16)0.0154 (14)0.0034 (13)0.0052 (11)0.0015 (12)
C70.0132 (14)0.0202 (16)0.0202 (15)0.0011 (12)0.0010 (12)0.0011 (13)
C80.0169 (15)0.0267 (18)0.0234 (17)0.0024 (14)0.0011 (13)0.0015 (14)
C90.0225 (16)0.0202 (16)0.0162 (15)0.0027 (13)0.0009 (12)0.0025 (12)
C100.0140 (14)0.0170 (15)0.0140 (14)0.0013 (12)0.0012 (11)0.0017 (11)
C110.0148 (14)0.0107 (14)0.0160 (15)0.0002 (11)0.0019 (11)0.0001 (11)
C120.0139 (14)0.0136 (14)0.0175 (15)0.0023 (12)0.0040 (11)0.0008 (12)
C130.027 (2)0.037 (2)0.057 (3)0.0175 (18)0.0123 (19)0.009 (2)
C140.027 (2)0.049 (3)0.041 (2)0.0047 (19)0.0040 (17)0.018 (2)
C150.272 (13)0.069 (4)0.027 (3)0.107 (7)0.007 (5)0.001 (3)
B10.0174 (16)0.0145 (16)0.0134 (15)0.0013 (13)0.0030 (12)0.0008 (12)
Geometric parameters (Å, º) top
Fe1—C111.922 (3)N6—B11.554 (4)
Fe1—C101.930 (3)N7—C121.144 (5)
Fe1—C121.930 (3)N8—C111.150 (4)
Fe1—N11.963 (3)N9—C101.148 (4)
Fe1—N51.979 (3)C1—C21.391 (5)
Fe1—N31.984 (3)C1—H10.9500
Fe2—N8i2.109 (3)C2—C31.382 (5)
Fe2—N82.109 (3)C2—H20.9500
Fe2—O1i2.127 (3)C3—H30.9500
Fe2—O12.127 (3)C4—C51.395 (5)
Fe2—O22.127 (3)C4—H40.9500
Fe2—O2i2.127 (3)C5—C61.379 (5)
O1—C131.429 (5)C5—H50.9500
O1—H1O0.9286C6—H60.9500
O2—C141.432 (5)C7—C81.390 (5)
O2—H2O0.8267C7—H70.9500
O3—C151.410 (8)C8—C91.383 (5)
O3—H3O0.8500C8—H80.9500
N1—C11.336 (4)C9—H90.9500
N1—N21.361 (4)C13—H13A0.9800
N2—C31.344 (4)C13—H13B0.9800
N2—B11.537 (4)C13—H13C0.9800
N3—C41.329 (4)C14—H14A0.9800
N3—N41.364 (4)C14—H14B0.9800
N4—C61.359 (4)C14—H14C0.9800
N4—B11.535 (5)C15—H15A0.9800
N5—C71.350 (4)C15—H15B0.9800
N5—N61.363 (4)C15—H15C0.9800
N6—C91.345 (4)B1—H101.1191
C11—Fe1—C1087.03 (13)C11—N8—Fe2168.2 (3)
C11—Fe1—C1287.23 (14)N1—C1—C2109.7 (3)
C10—Fe1—C1289.59 (13)N1—C1—H1125.1
C11—Fe1—N190.58 (12)C2—C1—H1125.1
C10—Fe1—N1176.91 (12)C3—C2—C1105.3 (3)
C12—Fe1—N192.27 (12)C3—C2—H2127.4
C11—Fe1—N595.46 (12)C1—C2—H2127.4
C10—Fe1—N589.89 (12)N2—C3—C2108.3 (3)
C12—Fe1—N5177.23 (12)N2—C3—H3125.8
N1—Fe1—N588.37 (11)C2—C3—H3125.8
C11—Fe1—N3176.14 (12)N3—C4—C5110.4 (3)
C10—Fe1—N393.65 (12)N3—C4—H4124.8
C12—Fe1—N388.97 (13)C5—C4—H4124.8
N1—Fe1—N388.87 (11)C6—C5—C4104.9 (3)
N5—Fe1—N388.34 (11)C6—C5—H5127.6
N8i—Fe2—N8179.999 (1)C4—C5—H5127.6
N8i—Fe2—O1i90.17 (10)N4—C6—C5108.6 (3)
N8—Fe2—O1i89.83 (10)N4—C6—H6125.7
N8i—Fe2—O189.83 (10)C5—C6—H6125.7
N8—Fe2—O190.17 (10)N5—C7—C8109.9 (3)
O1i—Fe2—O1179.998 (1)N5—C7—H7125.0
N8i—Fe2—O290.45 (11)C8—C7—H7125.0
N8—Fe2—O289.55 (11)C9—C8—C7105.1 (3)
O1i—Fe2—O294.03 (11)C9—C8—H8127.4
O1—Fe2—O285.97 (11)C7—C8—H8127.4
N8i—Fe2—O2i89.55 (11)N6—C9—C8108.7 (3)
N8—Fe2—O2i90.45 (11)N6—C9—H9125.7
O1i—Fe2—O2i85.97 (11)C8—C9—H9125.7
O1—Fe2—O2i94.03 (11)N9—C10—Fe1177.9 (3)
O2—Fe2—O2i180.000 (1)N8—C11—Fe1176.1 (3)
C13—O1—Fe2128.9 (2)N7—C12—Fe1176.7 (3)
C13—O1—H1O115.3O1—C13—H13A109.5
Fe2—O1—H1O115.2O1—C13—H13B109.5
C14—O2—Fe2125.5 (2)H13A—C13—H13B109.5
C14—O2—H2O101.2O1—C13—H13C109.5
Fe2—O2—H2O132.2H13A—C13—H13C109.5
C15—O3—H3O108.1H13B—C13—H13C109.5
C1—N1—N2107.3 (3)O2—C14—H14A109.5
C1—N1—Fe1133.4 (2)O2—C14—H14B109.5
N2—N1—Fe1119.27 (19)H14A—C14—H14B109.5
C3—N2—N1109.3 (3)O2—C14—H14C109.5
C3—N2—B1131.1 (3)H14A—C14—H14C109.5
N1—N2—B1119.6 (2)H14B—C14—H14C109.5
C4—N3—N4107.4 (3)O3—C15—H15A109.5
C4—N3—Fe1133.3 (2)O3—C15—H15B109.5
N4—N3—Fe1119.4 (2)H15A—C15—H15B109.5
C6—N4—N3108.8 (3)O3—C15—H15C109.5
C6—N4—B1132.3 (3)H15A—C15—H15C109.5
N3—N4—B1118.9 (3)H15B—C15—H15C109.5
C7—N5—N6106.8 (3)N4—B1—N2106.8 (3)
C7—N5—Fe1133.6 (2)N4—B1—N6106.7 (3)
N6—N5—Fe1119.6 (2)N2—B1—N6106.7 (2)
C9—N6—N5109.5 (3)N4—B1—H10111.0
C9—N6—B1132.0 (3)N2—B1—H10110.1
N5—N6—B1118.5 (2)N6—B1—H10115.1
N8i—Fe2—O1—C1320.3 (4)N8i—Fe2—N8—C11164 (4)
N8—Fe2—O1—C13159.7 (4)O1i—Fe2—N8—C1120.8 (14)
O1i—Fe2—O1—C1388 (7)O1—Fe2—N8—C11159.2 (14)
O2—Fe2—O1—C13110.8 (4)O2—Fe2—N8—C1173.2 (14)
O2i—Fe2—O1—C1369.2 (4)O2i—Fe2—N8—C11106.8 (14)
N8i—Fe2—O2—C1431.2 (3)N2—N1—C1—C20.4 (4)
N8—Fe2—O2—C14148.8 (3)Fe1—N1—C1—C2179.5 (2)
O1i—Fe2—O2—C14121.4 (3)N1—C1—C2—C30.3 (4)
O1—Fe2—O2—C1458.5 (3)N1—N2—C3—C20.3 (4)
O2i—Fe2—O2—C1412 (53)B1—N2—C3—C2178.1 (3)
C11—Fe1—N1—C138.3 (3)C1—C2—C3—N20.0 (4)
C10—Fe1—N1—C178 (2)N4—N3—C4—C50.0 (4)
C12—Fe1—N1—C148.9 (3)Fe1—N3—C4—C5178.8 (2)
N5—Fe1—N1—C1133.8 (3)N3—C4—C5—C60.3 (4)
N3—Fe1—N1—C1137.9 (3)N3—N4—C6—C50.4 (4)
C11—Fe1—N1—N2140.6 (2)B1—N4—C6—C5178.7 (3)
C10—Fe1—N1—N2101 (2)C4—C5—C6—N40.4 (4)
C12—Fe1—N1—N2132.1 (2)N6—N5—C7—C80.1 (4)
N5—Fe1—N1—N245.2 (2)Fe1—N5—C7—C8177.2 (2)
N3—Fe1—N1—N243.2 (2)N5—C7—C8—C90.1 (4)
C1—N1—N2—C30.4 (4)N5—N6—C9—C80.0 (4)
Fe1—N1—N2—C3179.6 (2)B1—N6—C9—C8177.9 (3)
C1—N1—N2—B1178.2 (3)C7—C8—C9—N60.0 (4)
Fe1—N1—N2—B11.0 (4)C11—Fe1—C10—N963 (8)
C11—Fe1—N3—C453.1 (19)C12—Fe1—C10—N9150 (8)
C10—Fe1—N3—C447.0 (3)N1—Fe1—C10—N923 (10)
C12—Fe1—N3—C442.5 (3)N5—Fe1—C10—N933 (8)
N1—Fe1—N3—C4134.8 (3)N3—Fe1—C10—N9121 (8)
N5—Fe1—N3—C4136.8 (3)Fe2—N8—C11—Fe125 (6)
C11—Fe1—N3—N4125.6 (17)C10—Fe1—C11—N8100 (4)
C10—Fe1—N3—N4134.3 (2)C12—Fe1—C11—N810 (4)
C12—Fe1—N3—N4136.2 (2)N1—Fe1—C11—N882 (4)
N1—Fe1—N3—N443.9 (2)N5—Fe1—C11—N8170 (4)
N5—Fe1—N3—N444.5 (2)N3—Fe1—C11—N80 (6)
C4—N3—N4—C60.2 (3)C11—Fe1—C12—N7179 (100)
Fe1—N3—N4—C6179.2 (2)C10—Fe1—C12—N792 (5)
C4—N3—N4—B1179.1 (3)N1—Fe1—C12—N791 (5)
Fe1—N3—N4—B10.1 (4)N5—Fe1—C12—N712 (7)
C11—Fe1—N5—C747.6 (3)N3—Fe1—C12—N72 (5)
C10—Fe1—N5—C739.4 (3)C6—N4—B1—N2122.6 (3)
C12—Fe1—N5—C7119 (2)N3—N4—B1—N256.4 (3)
N1—Fe1—N5—C7138.0 (3)C6—N4—B1—N6123.6 (3)
N3—Fe1—N5—C7133.0 (3)N3—N4—B1—N657.4 (3)
C11—Fe1—N5—N6135.3 (2)C3—N2—B1—N4124.2 (4)
C10—Fe1—N5—N6137.6 (2)N1—N2—B1—N457.6 (3)
C12—Fe1—N5—N658 (3)C3—N2—B1—N6122.0 (4)
N1—Fe1—N5—N644.9 (2)N1—N2—B1—N656.2 (3)
N3—Fe1—N5—N644.0 (2)C9—N6—B1—N4119.9 (4)
C7—N5—N6—C90.1 (3)N5—N6—B1—N457.8 (3)
Fe1—N5—N6—C9177.7 (2)C9—N6—B1—N2126.1 (3)
C7—N5—N6—B1178.3 (3)N5—N6—B1—N256.1 (3)
Fe1—N5—N6—B10.5 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.931.752.645 (4)161
O2—H2O···N7ii0.831.972.769 (4)161
O3—H3O···N9iii0.851.972.815 (4)172
O1—H1O···O30.931.752.645 (4)161
O2—H2O···N7ii0.831.972.769 (4)161
C8—H8···N9iv0.952.623.523 (5)158
O3—H3O···N9iii0.851.972.815 (4)172
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.931.752.645 (4)160.6
O2—H2O···N7i0.831.972.769 (4)161.4
O3—H3O···N9ii0.851.972.815 (4)172.1
O1—H1O···O30.931.752.645 (4)160.6
O2—H2O···N7i0.831.972.769 (4)161.4
C8—H8···N9iii0.952.623.523 (5)158.0
O3—H3O···N9ii0.851.972.815 (4)172.1
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1, z+2.
 

References

First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, J., Han, S., Cho, I. K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333–1339.  Web of Science CSD CrossRef CAS Google Scholar
First citationLescouëzec, R., Vaissermann, J., Lloret, F., Julve, M. & Verdaguer, M. (2002). Inorg. Chem. 41, 5943–5945.  Web of Science PubMed Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds