metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m73-m74

Hydrido(prolinato-κ2N,O)tris­­(tri­methyl­phosphane-κP)iridium(III) hexa­fluorido­phosphate

aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA, and bDepartment of Chemistry, Duke University, Durham, NC 27708, USA
*Correspondence e-mail: jmerola@vt.edu

(Received 18 December 2013; accepted 25 January 2014; online 31 January 2014)

The title complex, [Ir(C5H8NO2)H(C3H9P)3]PF6, has two independent anion–cation pairs in the asymmetric unit. The geometry about each IrIII atom is pseudo-octa­hedral with a meridional arrangement of the P(CH3)3 ligands, N,O-bidentate coordination of prolinate and a hydride ligand trans to the prolinate N atom. The independent IrIII moieties are joined by N—H⋯O hydrogen bonds and the N—H⋯O bonding motif continues throughout the structure, creating an extended chain parallel to the c-axis direction. The methyl groups of one P(CH3)3 ligand are rotationally disordered over two sets of sites in a 0.62 (2):0.38 (2) ratio.

Related literature

For the valine structure analogous to the proline structure described herein, see: Roy et al. (2006[Roy, C. P., Huff, L. A., Barker, N. A., Berg, M. A. G. & Merola, J. S. (2006). J. Organomet. Chem. 691, 2270-2276.]). For a Cp*Ir complex with proline and a t-butyl­ethynl ligand, see: Carmona et al. (2000[Carmona, D., Vega, C., Lahoz, F. J., Atencio, R., Oro, L. A., Lamata, M. P., Viguri, F. & San José, E. (2000). Organometallics, 19, 2273-2280.]). For a Cp*Ir complex with proline and a chloride ligand, see: Carmona et al. (2012[Carmona, D., Pilar-Lamata, M., Viguri, F., San José, E., Mendoza, A., Lahoz, F. J., García-Orduña, P., Atencio, R. & Oro, L. A. (2012). J. Organomet. Chem. 717, 152-163.]). For the preparation of [Ir(COD)(PMe3)3]Cl, see: Frazier & Merola (1992[Frazier, J. F. & Merola, J. S. (1992). Polyhedron, 11, 2917-2927.]). For a selection of amino acid complexes in general, their structures and their extended lattice features, see: Urban et al. (1996[Urban, R., Krämer, R., Mihan, S., Polborn, K., Wagner, B. & Beck, W. (1996). J. Organomet. Chem. 517, 191-200.]); Shimazaki et al. (2009[Shimazaki, Y., Takani, M. & Yamauchi, O. (2009). Dalton Trans. pp. 7854-7869.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C5H8NO2)H(C3H9P)3]PF6

  • Mr = 680.52

  • Monoclinic, P 21

  • a = 10.824 (2) Å

  • b = 20.021 (4) Å

  • c = 11.826 (2) Å

  • β = 91.15 (1)°

  • V = 2562.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.51 mm−1

  • T = 293 K

  • 0.5 × 0.4 × 0.4 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.618, Tmax = 1.000

  • 6363 measured reflections

  • 6055 independent reflections

  • 5587 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 300 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.075

  • S = 1.06

  • 6055 reflections

  • 522 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.93 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.001 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.91 2.04 2.909 (9) 160
Symmetry code: (i) x+1, y, z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Experimental top

[Ir(COD)(PMe3)3]Cl was synthesized as reported previously (Frazier & Merola, 1992). L-proline was purchased from Aldrich Chemical and used as received. Water was deionized/distilled.

Synthesis and crystallization top

A 100 mL flask equipped with a stir bar and septum was charged with 117.5 mg (1.02 mmol) of L-proline. The flask was then charged with 250 mg (0.443 mmol) of [Ir(COD)(PMe3)3]Cl under N2 in a drybox. The flask was then connected to a double manifold (vacuum/nitro­gen) Schlenk line and 20 mL of distilled water was added to the flask via syringe. The solution was stirred magnetically and heated to reflux. After 18 hours at reflux the reaction mixture was allowed to cool and solvent was removed in vacuo. The white solid residue was treated with distilled methyl­ene chloride (3 x 10 mL) to extract the product from the excess amino acid. The solution was filtered from the solid using cannula techniques. The methyl­ene chloride was removed in vacuo and the solids were dried under reduced pressure to yield 150 mg (0.263 mmol, 60.7% yield based on the amount of Ir(COD)(PMe3)3]Cl) of [Ir(L-pro)(H)(PMe3)3]Cl C,H analysis: Calculated for C14H36NO2P3IrCl:C, 29.4% H,6.3% Found: C, 29.17%; H, 6.2% An aqueous solution of the chloride salt was treated with an aqueous solution of K[PF6] to precipitate [Ir(L-pro)(H)(PMe3)3][PF6]. Crystals suitable for X-ray diffraction were grown from di­chloro­methane/di­ethyl­ether.

Refinement top

Hydrogen atoms were treated with a combination of restrained refinement (i.e. for the Ir—H hydrogens) and constrained riding models. Values of Uiso(H) were set to either 1.2Ueq or 1.5Ueq of the parent atom. Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

The chemistry of amino acid complexes of transition metals has a long history (Shimazaki et al., 2009). A search of the CSD data base (Allen, 2002) reveals over 1400 hits for compounds with bidentate N,O coordination of amino acids to transition metals. Restricting the search to the specific amino acid proline, yields over 140 hits. Finally, restricting the search to iridium compounds, there are 6 CSD structures with proline coordinated to iridium. We reported on the crystal structure of [hydrido-valinato-tris­(tri­methyl­phosphine)iridium][hexa­fluoro­phosphate] (CSD:20060907) (Roy et al., 2006) in the space group P43, which has very strong inter­molecular N—H···O hydrogen bonding that results in a 43 helical arrangement of the iridium complexes. In this report, the title proline complex has a "flatter" inter­molecular motif with the N—H···O hydrogen bonding resulting in a one-dimenional chain motif with the chain parallel to the c-axis. Hydrogen bonding parameters are listed Table 1. A similar motif has been reported for (η5-Penta­methyl-cyclo­penta­dienyl)-(t-butyl­ethynyl)-(L-prolinato-N,O)-ιridium (CSD:20010919) (Carmona et al., 2000), but when the t-butyl­ethynyl group is replaced by chloride (CSD: 19911024) (Carmona et al., 2012), the motif changes to alternating N—H···O and N—H···Cl bonding to generate the full lattice.

Related literature top

For the valine structure analogous to the proline structure described herein, see: Roy et al. (2006). For a Cp*Ir complex with proline and a t-butylethynl ligand, see: Carmona et al. (2000). For a Cp*Ir complex with proline and a chloride ligand ,see: Carmona et al. (2012). For the preparation of [Ir(COD)(PMe3)3]Cl, see: Frazier & Merola (1992). For a selection of amino acid complexes in general, their structures and their extended lattice features, see: Urban et al. (1996); Shimazaki et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Structure description top

[Ir(COD)(PMe3)3]Cl was synthesized as reported previously (Frazier & Merola, 1992). L-proline was purchased from Aldrich Chemical and used as received. Water was deionized/distilled.

The chemistry of amino acid complexes of transition metals has a long history (Shimazaki et al., 2009). A search of the CSD data base (Allen, 2002) reveals over 1400 hits for compounds with bidentate N,O coordination of amino acids to transition metals. Restricting the search to the specific amino acid proline, yields over 140 hits. Finally, restricting the search to iridium compounds, there are 6 CSD structures with proline coordinated to iridium. We reported on the crystal structure of [hydrido-valinato-tris­(tri­methyl­phosphine)iridium][hexa­fluoro­phosphate] (CSD:20060907) (Roy et al., 2006) in the space group P43, which has very strong inter­molecular N—H···O hydrogen bonding that results in a 43 helical arrangement of the iridium complexes. In this report, the title proline complex has a "flatter" inter­molecular motif with the N—H···O hydrogen bonding resulting in a one-dimenional chain motif with the chain parallel to the c-axis. Hydrogen bonding parameters are listed Table 1. A similar motif has been reported for (η5-Penta­methyl-cyclo­penta­dienyl)-(t-butyl­ethynyl)-(L-prolinato-N,O)-ιridium (CSD:20010919) (Carmona et al., 2000), but when the t-butyl­ethynyl group is replaced by chloride (CSD: 19911024) (Carmona et al., 2012), the motif changes to alternating N—H···O and N—H···Cl bonding to generate the full lattice.

For the valine structure analogous to the proline structure described herein, see: Roy et al. (2006). For a Cp*Ir complex with proline and a t-butylethynl ligand, see: Carmona et al. (2000). For a Cp*Ir complex with proline and a chloride ligand ,see: Carmona et al. (2012). For the preparation of [Ir(COD)(PMe3)3]Cl, see: Frazier & Merola (1992). For a selection of amino acid complexes in general, their structures and their extended lattice features, see: Urban et al. (1996); Shimazaki et al. (2009). For a description of the Cambridge Structural Database, see: Allen (2002).

Synthesis and crystallization top

A 100 mL flask equipped with a stir bar and septum was charged with 117.5 mg (1.02 mmol) of L-proline. The flask was then charged with 250 mg (0.443 mmol) of [Ir(COD)(PMe3)3]Cl under N2 in a drybox. The flask was then connected to a double manifold (vacuum/nitro­gen) Schlenk line and 20 mL of distilled water was added to the flask via syringe. The solution was stirred magnetically and heated to reflux. After 18 hours at reflux the reaction mixture was allowed to cool and solvent was removed in vacuo. The white solid residue was treated with distilled methyl­ene chloride (3 x 10 mL) to extract the product from the excess amino acid. The solution was filtered from the solid using cannula techniques. The methyl­ene chloride was removed in vacuo and the solids were dried under reduced pressure to yield 150 mg (0.263 mmol, 60.7% yield based on the amount of Ir(COD)(PMe3)3]Cl) of [Ir(L-pro)(H)(PMe3)3]Cl C,H analysis: Calculated for C14H36NO2P3IrCl:C, 29.4% H,6.3% Found: C, 29.17%; H, 6.2% An aqueous solution of the chloride salt was treated with an aqueous solution of K[PF6] to precipitate [Ir(L-pro)(H)(PMe3)3][PF6]. Crystals suitable for X-ray diffraction were grown from di­chloro­methane/di­ethyl­ether.

Refinement details top

Hydrogen atoms were treated with a combination of restrained refinement (i.e. for the Ir—H hydrogens) and constrained riding models. Values of Uiso(H) were set to either 1.2Ueq or 1.5Ueq of the parent atom. Crystal data, data collection and structure refinement details are summarized in Table 1.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing both sets of independent cations and anions. Hydrogen atoms are omitted for clarity. The displacement ellipsoids are shown at the 50% probability level and only the major component of the disordered methyl groups on P1 is shown.
[Figure 2] Fig. 2. Hydrogen bonding motif for the title compound. Hydrogen atoms (with the exception of the metal hydrides and N—H atoms) and phosphorus methyl groups are omitted for clarity.) The displacement ellipsoids are shown at the 50% probability level.
Hydrido(prolinato-κ2N,O)tris(trimethylphosphane-κP)iridium hexafluoridophosphate top
Crystal data top
[Ir(C5H8NO2)H(C3H9P)3]PF6F(000) = 1336
Mr = 680.52Dx = 1.764 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.824 (2) ÅCell parameters from 25 reflections
b = 20.021 (4) Åθ = 2–22°
c = 11.826 (2) ŵ = 5.51 mm1
β = 91.15 (1)°T = 293 K
V = 2562.3 (8) Å3Prism, clear colourless
Z = 40.5 × 0.4 × 0.4 mm
Data collection top
Siemens P4
diffractometer
5587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω–scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 026
Tmin = 0.618, Tmax = 1.000l = 1515
6363 measured reflections3 standard reflections every 300 reflections
6055 independent reflections intensity decay: 0(1)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0445P)2 + 1.0877P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.001
S = 1.06Δρmax = 1.02 e Å3
6055 reflectionsΔρmin = 0.93 e Å3
522 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.00105 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (8)
Crystal data top
[Ir(C5H8NO2)H(C3H9P)3]PF6V = 2562.3 (8) Å3
Mr = 680.52Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.824 (2) ŵ = 5.51 mm1
b = 20.021 (4) ÅT = 293 K
c = 11.826 (2) Å0.5 × 0.4 × 0.4 mm
β = 91.15 (1)°
Data collection top
Siemens P4
diffractometer
5587 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.618, Tmax = 1.0003 standard reflections every 300 reflections
6363 measured reflections intensity decay: 0(1)
6055 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 1.02 e Å3
S = 1.06Δρmin = 0.93 e Å3
6055 reflectionsAbsolute structure: Flack (1983)
522 parametersAbsolute structure parameter: 0.001 (8)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir20.08795 (2)0.490281 (13)0.05567 (2)0.03453 (8)
H0.014 (7)0.486 (5)0.021 (6)0.041*
P40.0431 (2)0.38225 (14)0.1162 (2)0.0514 (5)
P50.0256 (2)0.54315 (14)0.18575 (19)0.0491 (6)
P60.0981 (2)0.58276 (13)0.0664 (2)0.0500 (6)
O30.2047 (6)0.4449 (3)0.0633 (5)0.0438 (13)
O40.3980 (6)0.4334 (4)0.1118 (5)0.0622 (18)
N20.2684 (5)0.4939 (4)0.1474 (4)0.0336 (12)
H2A0.25900.47130.21340.040*
C60.3219 (8)0.4439 (4)0.0432 (7)0.0428 (18)
C70.3627 (8)0.4555 (5)0.0791 (7)0.048 (2)
H70.37210.41150.11450.057*
C80.4842 (9)0.4914 (9)0.0947 (10)0.082 (4)
H8A0.50490.51560.02660.099*
H8B0.55010.46000.11230.099*
C90.4661 (9)0.5386 (6)0.1910 (9)0.065 (3)
H9A0.48110.51670.26320.078*
H9B0.51980.57720.18540.078*
C100.3311 (10)0.5583 (5)0.1762 (9)0.055 (2)
H10A0.32020.59050.11560.066*
H10B0.29930.57700.24540.066*
C410.1356 (14)0.3456 (7)0.2278 (11)0.092 (5)
H41A0.12860.37190.29520.137*
H41B0.10710.30100.24210.137*
H41C0.22040.34420.20570.137*
C420.0602 (14)0.3248 (6)0.0002 (10)0.081 (4)
H42A0.14330.32680.02680.121*
H42B0.04250.28020.02470.121*
H42C0.00370.33680.06050.121*
C430.1141 (11)0.3655 (7)0.1608 (14)0.096 (5)
H43A0.17100.37480.09950.144*
H43B0.12120.31940.18230.144*
H43C0.13300.39340.22410.144*
C510.0109 (11)0.5114 (8)0.3276 (8)0.081 (4)
H51A0.07350.51530.35340.121*
H51B0.06310.53660.37640.121*
H51C0.03510.46530.32860.121*
C520.0078 (14)0.6317 (6)0.2063 (10)0.081 (4)
H52A0.00530.65500.13610.122*
H52B0.04600.64960.26230.122*
H52C0.09220.63700.23110.122*
C530.1922 (9)0.5445 (8)0.1651 (11)0.081 (4)
H53A0.22310.49960.16340.122*
H53B0.22910.56840.22620.122*
H53C0.21260.56630.09490.122*
C610.1468 (18)0.5558 (9)0.2034 (10)0.130 (8)
H61A0.08970.52320.23290.196*
H61B0.14910.59350.25350.196*
H61C0.22770.53640.19680.196*
C620.1973 (14)0.6552 (8)0.0456 (15)0.112 (6)
H62A0.28230.64150.04660.168*
H62B0.18180.68690.10510.168*
H62C0.18030.67550.02600.168*
C630.0501 (11)0.6209 (6)0.0953 (9)0.066 (3)
H63A0.08450.63630.02580.099*
H63B0.04000.65790.14570.099*
H63C0.10470.58860.12970.099*
Ir10.42609 (3)0.385828 (17)0.42830 (3)0.04158 (10)
HA0.291 (8)0.387 (5)0.497 (7)0.050*
P10.4533 (3)0.29798 (17)0.5578 (3)0.0643 (8)
P20.3190 (2)0.32928 (16)0.2955 (2)0.0585 (7)
P30.3672 (3)0.49222 (17)0.3689 (2)0.0656 (7)
O10.5350 (6)0.4376 (4)0.5512 (5)0.0592 (18)
O20.7238 (7)0.4649 (4)0.6036 (6)0.068 (2)
N10.6065 (6)0.3865 (4)0.3446 (5)0.0421 (14)
H10.59440.40970.27910.051*
C10.6479 (10)0.4445 (5)0.5318 (8)0.057 (2)
C20.6963 (8)0.4281 (5)0.4158 (8)0.048 (2)
H20.70820.47050.37610.057*
C30.8210 (10)0.3902 (8)0.4148 (8)0.072 (3)
H3A0.83360.36460.48370.087*
H3B0.88960.42090.40620.087*
C40.8077 (9)0.3443 (7)0.3123 (9)0.076 (3)
H4A0.86020.30530.32030.092*
H4B0.82790.36760.24310.092*
C50.6716 (9)0.3252 (6)0.3132 (9)0.061 (3)
H5A0.65740.29010.36800.073*
H5B0.64400.30980.23920.073*
C110.331 (3)0.243 (2)0.585 (3)0.23 (3)0.62 (2)
H11A0.25430.26720.58310.339*0.62 (2)
H11B0.32840.20840.52910.339*0.62 (2)
H11C0.34300.22350.65880.339*0.62 (2)
C120.448 (4)0.3406 (14)0.7038 (19)0.169 (17)0.62 (2)
H12A0.38270.37310.70370.253*0.62 (2)
H12B0.43310.30770.76090.253*0.62 (2)
H12C0.52540.36240.71960.253*0.62 (2)
C130.582 (3)0.252 (3)0.579 (3)0.23 (3)0.62 (2)
H13A0.65240.27720.55610.351*0.62 (2)
H13B0.58990.24070.65740.351*0.62 (2)
H13C0.57570.21180.53460.351*0.62 (2)
C11'0.595 (4)0.281 (4)0.620 (5)0.23 (3)0.38 (2)
H11D0.65170.26800.56240.339*0.38 (2)
H11E0.62530.32020.65770.339*0.38 (2)
H11F0.58650.24540.67320.339*0.38 (2)
C12'0.439 (7)0.204 (2)0.497 (3)0.169 (17)0.38 (2)
H12D0.48750.20040.43020.253*0.38 (2)
H12E0.46900.17350.55320.253*0.38 (2)
H12F0.35420.19480.47880.253*0.38 (2)
C13'0.349 (5)0.296 (4)0.648 (5)0.23 (3)0.38 (2)
H13D0.27120.30780.61250.351*0.38 (2)
H13E0.34350.25200.67920.351*0.38 (2)
H13F0.36790.32750.70720.351*0.38 (2)
C210.3609 (18)0.2415 (7)0.2790 (16)0.115 (6)
H21A0.34790.21830.34880.173*
H21B0.31050.22180.22020.173*
H21C0.44630.23820.25940.173*
C220.1528 (11)0.3273 (10)0.3072 (12)0.102 (6)
H22A0.12120.37210.30580.154*
H22B0.11750.30250.24500.154*
H22C0.13140.30620.37700.154*
C230.3395 (14)0.3606 (10)0.1514 (10)0.104 (6)
H23A0.42530.35830.13270.156*
H23B0.29200.33380.09920.156*
H23C0.31190.40610.14680.156*
C310.220 (2)0.5030 (10)0.303 (2)0.194 (13)
H31A0.15680.48960.35460.291*
H31B0.20830.54910.28350.291*
H31C0.21420.47610.23620.291*
C320.465 (2)0.5422 (10)0.2820 (17)0.177 (12)
H32A0.47930.51920.21240.265*
H32B0.42460.58410.26610.265*
H32C0.54170.55020.32100.265*
C330.3521 (18)0.5449 (8)0.4876 (13)0.116 (6)
H33A0.43020.54810.52720.173*
H33B0.32650.58850.46300.173*
H33C0.29160.52670.53720.173*
P2F0.9668 (3)0.18818 (16)0.5529 (2)0.0642 (7)
F70.8585 (9)0.1880 (7)0.6377 (7)0.125 (4)
F81.0611 (9)0.1994 (5)0.6545 (7)0.107 (3)
F90.9816 (11)0.1118 (4)0.5672 (10)0.119 (3)
F100.8701 (9)0.1759 (7)0.4529 (6)0.126 (4)
F110.9558 (16)0.2645 (5)0.5403 (9)0.171 (6)
F121.0760 (9)0.1859 (7)0.4653 (8)0.134 (4)
P1F0.5916 (3)0.20678 (17)0.0328 (3)0.0726 (8)
F10.4971 (14)0.1944 (10)0.0534 (13)0.206 (8)
F20.6848 (16)0.2087 (9)0.0641 (13)0.218 (8)
F30.6158 (16)0.1305 (6)0.0336 (11)0.178 (6)
F40.4963 (12)0.1990 (8)0.1305 (11)0.184 (6)
F50.5793 (17)0.2797 (6)0.0332 (18)0.229 (8)
F60.6855 (13)0.2143 (11)0.1255 (12)0.214 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir20.03230 (13)0.04134 (16)0.02985 (13)0.00099 (14)0.00191 (10)0.00124 (14)
P40.0558 (12)0.0494 (13)0.0487 (11)0.0107 (12)0.0023 (10)0.0037 (12)
P50.0391 (11)0.0700 (16)0.0382 (11)0.0085 (11)0.0049 (9)0.0037 (11)
P60.0521 (12)0.0526 (14)0.0453 (12)0.0123 (11)0.0035 (10)0.0121 (10)
O30.051 (3)0.050 (3)0.031 (3)0.009 (3)0.005 (2)0.002 (2)
O40.059 (4)0.090 (5)0.038 (3)0.011 (4)0.011 (3)0.008 (3)
N20.041 (3)0.039 (3)0.022 (2)0.002 (3)0.000 (2)0.006 (3)
C60.045 (4)0.041 (4)0.043 (4)0.007 (3)0.009 (4)0.002 (4)
C70.038 (4)0.062 (6)0.044 (5)0.010 (4)0.000 (3)0.004 (4)
C80.043 (5)0.133 (11)0.072 (7)0.017 (7)0.010 (5)0.019 (9)
C90.056 (6)0.076 (7)0.064 (6)0.018 (5)0.013 (5)0.000 (6)
C100.058 (6)0.051 (5)0.056 (5)0.011 (4)0.017 (5)0.007 (4)
C410.127 (12)0.070 (8)0.076 (8)0.018 (8)0.038 (8)0.036 (7)
C420.135 (11)0.043 (6)0.065 (7)0.025 (7)0.001 (7)0.003 (5)
C430.065 (7)0.079 (9)0.145 (13)0.028 (6)0.021 (8)0.004 (8)
C510.070 (7)0.132 (12)0.040 (5)0.021 (7)0.005 (5)0.003 (6)
C520.108 (10)0.069 (7)0.066 (7)0.024 (7)0.009 (7)0.014 (6)
C530.036 (5)0.124 (11)0.084 (8)0.017 (6)0.007 (5)0.005 (8)
C610.22 (2)0.124 (13)0.049 (7)0.087 (14)0.053 (10)0.039 (8)
C620.084 (9)0.095 (11)0.156 (15)0.020 (8)0.030 (10)0.064 (11)
C630.079 (7)0.062 (6)0.057 (6)0.014 (6)0.014 (5)0.014 (5)
Ir10.03547 (15)0.0540 (2)0.03524 (15)0.00449 (15)0.00001 (12)0.00367 (15)
P10.0485 (13)0.080 (2)0.0641 (16)0.0015 (13)0.0004 (12)0.0302 (15)
P20.0446 (12)0.0774 (18)0.0532 (14)0.0142 (13)0.0031 (11)0.0018 (13)
P30.0754 (16)0.0640 (16)0.0574 (14)0.0267 (16)0.0038 (12)0.0042 (15)
O10.047 (4)0.090 (5)0.040 (3)0.004 (4)0.003 (3)0.013 (3)
O20.061 (4)0.090 (5)0.053 (4)0.015 (4)0.008 (3)0.014 (4)
N10.048 (3)0.052 (4)0.026 (3)0.006 (4)0.002 (2)0.001 (3)
C10.074 (7)0.060 (6)0.036 (4)0.010 (5)0.008 (4)0.002 (4)
C20.041 (4)0.058 (5)0.043 (5)0.001 (4)0.001 (4)0.004 (4)
C30.054 (5)0.119 (10)0.044 (5)0.002 (7)0.003 (4)0.006 (7)
C40.050 (5)0.121 (10)0.058 (6)0.024 (6)0.003 (5)0.004 (7)
C50.050 (5)0.080 (8)0.054 (6)0.004 (5)0.010 (4)0.006 (5)
C110.18 (3)0.33 (5)0.17 (3)0.20 (4)0.11 (3)0.18 (4)
C120.36 (5)0.094 (17)0.052 (11)0.04 (3)0.02 (2)0.037 (11)
C130.14 (2)0.38 (6)0.18 (3)0.20 (4)0.12 (3)0.21 (4)
C11'0.18 (3)0.33 (5)0.17 (3)0.20 (4)0.11 (3)0.18 (4)
C12'0.36 (5)0.094 (17)0.052 (11)0.04 (3)0.02 (2)0.037 (11)
C13'0.14 (2)0.38 (6)0.18 (3)0.20 (4)0.12 (3)0.21 (4)
C210.150 (16)0.074 (9)0.121 (13)0.011 (10)0.003 (12)0.026 (9)
C220.048 (6)0.174 (17)0.085 (9)0.020 (9)0.004 (6)0.000 (10)
C230.091 (9)0.171 (17)0.050 (6)0.040 (10)0.002 (6)0.011 (8)
C310.21 (2)0.122 (16)0.24 (3)0.112 (16)0.14 (2)0.047 (16)
C320.28 (3)0.100 (13)0.154 (17)0.047 (16)0.146 (19)0.062 (13)
C330.175 (17)0.086 (10)0.087 (10)0.052 (12)0.031 (11)0.000 (8)
P2F0.088 (2)0.0630 (17)0.0421 (13)0.0072 (15)0.0048 (13)0.0013 (12)
F70.109 (6)0.198 (11)0.068 (5)0.021 (7)0.022 (4)0.017 (6)
F80.127 (7)0.121 (7)0.072 (5)0.039 (6)0.018 (5)0.018 (5)
F90.146 (9)0.072 (6)0.140 (9)0.009 (5)0.003 (7)0.001 (5)
F100.122 (7)0.193 (11)0.061 (4)0.004 (8)0.023 (5)0.004 (6)
F110.333 (19)0.079 (6)0.101 (7)0.045 (9)0.018 (9)0.022 (5)
F120.118 (7)0.211 (12)0.075 (5)0.047 (8)0.031 (5)0.026 (7)
P1F0.078 (2)0.072 (2)0.0678 (18)0.0101 (16)0.0070 (16)0.0079 (15)
F10.171 (12)0.28 (2)0.167 (12)0.026 (14)0.099 (11)0.041 (13)
F20.253 (18)0.223 (18)0.174 (13)0.044 (14)0.115 (13)0.024 (12)
F30.300 (18)0.090 (7)0.144 (10)0.004 (9)0.012 (11)0.020 (7)
F40.150 (10)0.220 (15)0.180 (12)0.042 (10)0.080 (9)0.062 (11)
F50.30 (2)0.072 (7)0.32 (2)0.035 (11)0.055 (17)0.006 (11)
F60.152 (11)0.34 (2)0.148 (11)0.029 (13)0.051 (9)0.060 (13)
Geometric parameters (Å, º) top
Ir2—H1.42 (8)P2—C211.827 (15)
Ir2—P42.332 (3)P2—C221.807 (12)
Ir2—P52.252 (2)P2—C231.833 (12)
Ir2—P62.352 (2)P3—C311.774 (17)
Ir2—O32.114 (6)P3—C321.792 (16)
Ir2—N22.216 (6)P3—C331.766 (15)
P4—C411.798 (12)O1—C11.256 (13)
P4—C421.807 (12)O2—C11.238 (11)
P4—C431.823 (11)N1—H10.9100
P5—C511.798 (11)N1—C21.520 (11)
P5—C521.824 (13)N1—C51.467 (13)
P5—C531.816 (10)C1—C21.515 (13)
P6—C611.796 (12)C2—H20.9800
P6—C621.819 (15)C2—C31.548 (14)
P6—C631.802 (11)C3—H3A0.9700
O3—C61.287 (10)C3—H3B0.9700
O4—C61.186 (10)C3—C41.525 (17)
N2—H2A0.9100C4—H4A0.9700
N2—C71.521 (10)C4—H4B0.9700
N2—C101.493 (12)C4—C51.522 (14)
C6—C71.522 (12)C5—H5A0.9700
C7—H70.9800C5—H5B0.9700
C7—C81.507 (14)C11—H11A0.9600
C8—H8A0.9700C11—H11B0.9600
C8—H8B0.9700C11—H11C0.9600
C8—C91.496 (17)C12—H12A0.9600
C9—H9A0.9700C12—H12B0.9600
C9—H9B0.9700C12—H12C0.9600
C9—C101.520 (15)C13—H13A0.9600
C10—H10A0.9700C13—H13B0.9600
C10—H10B0.9700C13—H13C0.9600
C41—H41A0.9600C11'—H11D0.9600
C41—H41B0.9600C11'—H11E0.9600
C41—H41C0.9600C11'—H11F0.9600
C42—H42A0.9600C12'—H12D0.9600
C42—H42B0.9600C12'—H12E0.9600
C42—H42C0.9600C12'—H12F0.9600
C43—H43A0.9600C13'—H13D0.9600
C43—H43B0.9600C13'—H13E0.9600
C43—H43C0.9600C13'—H13F0.9600
C51—H51A0.9600C21—H21A0.9600
C51—H51B0.9600C21—H21B0.9600
C51—H51C0.9600C21—H21C0.9600
C52—H52A0.9600C22—H22A0.9600
C52—H52B0.9600C22—H22B0.9600
C52—H52C0.9600C22—H22C0.9600
C53—H53A0.9600C23—H23A0.9600
C53—H53B0.9600C23—H23B0.9600
C53—H53C0.9600C23—H23C0.9600
C61—H61A0.9600C31—H31A0.9600
C61—H61B0.9600C31—H31B0.9600
C61—H61C0.9600C31—H31C0.9600
C62—H62A0.9600C32—H32A0.9600
C62—H62B0.9600C32—H32B0.9600
C62—H62C0.9600C32—H32C0.9600
C63—H63A0.9600C33—H33A0.9600
C63—H63B0.9600C33—H33B0.9600
C63—H63C0.9600C33—H33C0.9600
Ir1—HA1.69 (8)P2F—F71.559 (8)
Ir1—P12.346 (3)P2F—F81.577 (8)
Ir1—P22.241 (3)P2F—F91.545 (9)
Ir1—P32.328 (3)P2F—F101.583 (8)
Ir1—O12.123 (7)P2F—F111.539 (10)
Ir1—N12.206 (6)P2F—F121.588 (9)
P1—C111.76 (2)P1F—F11.480 (11)
P1—C121.93 (3)P1F—F21.512 (13)
P1—C131.68 (2)P1F—F31.550 (13)
P1—C11'1.72 (5)P1F—F41.540 (11)
P1—C12'2.01 (4)P1F—F51.466 (12)
P1—C13'1.57 (4)P1F—F61.517 (12)
P4—Ir2—H89 (4)C13'—P1—C1251 (3)
P4—Ir2—P6158.58 (9)C13'—P1—C13119.4 (17)
P5—Ir2—H92 (3)C13'—P1—C11'111 (2)
P5—Ir2—P496.12 (10)C13'—P1—C12'100 (3)
P5—Ir2—P694.71 (9)C21—P2—Ir1115.8 (6)
P6—Ir2—H72 (4)C21—P2—C23101.3 (9)
O3—Ir2—H91 (3)C22—P2—Ir1117.3 (5)
O3—Ir2—P486.36 (18)C22—P2—C21103.7 (9)
O3—Ir2—P5176.11 (18)C22—P2—C23102.6 (7)
O3—Ir2—P683.91 (17)C23—P2—Ir1114.1 (5)
O3—Ir2—N278.9 (2)C31—P3—Ir1118.8 (7)
N2—Ir2—H169 (3)C31—P3—C32102.5 (12)
N2—Ir2—P493.83 (19)C32—P3—Ir1121.6 (7)
N2—Ir2—P597.94 (17)C33—P3—Ir1109.6 (5)
N2—Ir2—P6102.91 (18)C33—P3—C31100.3 (9)
C41—P4—Ir2119.2 (4)C33—P3—C32100.8 (10)
C41—P4—C42103.6 (7)C1—O1—Ir1117.2 (6)
C41—P4—C43102.8 (7)Ir1—N1—H1105.8
C42—P4—Ir2109.4 (4)C2—N1—Ir1108.5 (5)
C42—P4—C43102.4 (7)C2—N1—H1105.8
C43—P4—Ir2117.4 (5)C5—N1—Ir1122.8 (6)
C51—P5—Ir2115.6 (4)C5—N1—H1105.8
C51—P5—C52101.9 (6)C5—N1—C2107.0 (7)
C51—P5—C53101.5 (6)O1—C1—C2119.8 (8)
C52—P5—Ir2116.0 (4)O2—C1—O1123.1 (9)
C53—P5—Ir2118.0 (5)O2—C1—C2117.1 (10)
C53—P5—C52101.3 (7)N1—C2—H2107.3
C61—P6—Ir2109.6 (5)N1—C2—C3106.0 (8)
C61—P6—C62100.3 (9)C1—C2—N1113.0 (7)
C61—P6—C63103.4 (7)C1—C2—H2107.3
C62—P6—Ir2125.4 (5)C1—C2—C3115.5 (8)
C63—P6—Ir2113.4 (4)C3—C2—H2107.3
C63—P6—C62102.1 (6)C2—C3—H3A111.1
C6—O3—Ir2119.0 (5)C2—C3—H3B111.1
Ir2—N2—H2A106.9H3A—C3—H3B109.0
C7—N2—Ir2108.5 (4)C4—C3—C2103.4 (8)
C7—N2—H2A106.9C4—C3—H3A111.1
C10—N2—Ir2122.1 (6)C4—C3—H3B111.1
C10—N2—H2A106.9C3—C4—H4A111.2
C10—N2—C7104.5 (7)C3—C4—H4B111.2
O3—C6—C7116.0 (7)H4A—C4—H4B109.1
O4—C6—O3125.0 (9)C5—C4—C3102.8 (8)
O4—C6—C7119.0 (8)C5—C4—H4A111.2
N2—C7—C6113.4 (6)C5—C4—H4B111.2
N2—C7—H7107.1N1—C5—C4105.1 (9)
C6—C7—H7107.1N1—C5—H5A110.7
C8—C7—N2106.7 (8)N1—C5—H5B110.7
C8—C7—C6115.1 (8)C4—C5—H5A110.7
C8—C7—H7107.1C4—C5—H5B110.7
C7—C8—H8A110.7H5A—C5—H5B108.8
C7—C8—H8B110.7P1—C11—H11A109.5
H8A—C8—H8B108.8P1—C11—H11B109.5
C9—C8—C7105.4 (8)P1—C11—H11C109.5
C9—C8—H8A110.7H11A—C11—H11B109.5
C9—C8—H8B110.7H11A—C11—H11C109.5
C8—C9—H9A111.3H11B—C11—H11C109.5
C8—C9—H9B111.3P1—C12—H12A109.5
C8—C9—C10102.5 (8)P1—C12—H12B109.5
H9A—C9—H9B109.2P1—C12—H12C109.5
C10—C9—H9A111.3H12A—C12—H12B109.5
C10—C9—H9B111.3H12A—C12—H12C109.5
N2—C10—C9103.5 (8)H12B—C12—H12C109.5
N2—C10—H10A111.1P1—C13—H13A109.5
N2—C10—H10B111.1P1—C13—H13B109.5
C9—C10—H10A111.1P1—C13—H13C109.5
C9—C10—H10B111.1H13A—C13—H13B109.5
H10A—C10—H10B109.0H13A—C13—H13C109.5
P4—C41—H41A109.5H13B—C13—H13C109.5
P4—C41—H41B109.5P1—C11'—H11D109.5
P4—C41—H41C109.5P1—C11'—H11E109.5
H41A—C41—H41B109.5P1—C11'—H11F109.5
H41A—C41—H41C109.5H11D—C11'—H11E109.5
H41B—C41—H41C109.5H11D—C11'—H11F109.5
P4—C42—H42A109.5H11E—C11'—H11F109.5
P4—C42—H42B109.5P1—C12'—H12D109.5
P4—C42—H42C109.5P1—C12'—H12E109.5
H42A—C42—H42B109.5P1—C12'—H12F109.5
H42A—C42—H42C109.5H12D—C12'—H12E109.5
H42B—C42—H42C109.5H12D—C12'—H12F109.5
P4—C43—H43A109.5H12E—C12'—H12F109.5
P4—C43—H43B109.5P1—C13'—H13D109.5
P4—C43—H43C109.5P1—C13'—H13E109.5
H43A—C43—H43B109.5P1—C13'—H13F109.5
H43A—C43—H43C109.5H13D—C13'—H13E109.5
H43B—C43—H43C109.5H13D—C13'—H13F109.5
P5—C51—H51A109.5H13E—C13'—H13F109.5
P5—C51—H51B109.5P2—C21—H21A109.5
P5—C51—H51C109.5P2—C21—H21B109.5
H51A—C51—H51B109.5P2—C21—H21C109.5
H51A—C51—H51C109.5H21A—C21—H21B109.5
H51B—C51—H51C109.5H21A—C21—H21C109.5
P5—C52—H52A109.5H21B—C21—H21C109.5
P5—C52—H52B109.5P2—C22—H22A109.5
P5—C52—H52C109.5P2—C22—H22B109.5
H52A—C52—H52B109.5P2—C22—H22C109.5
H52A—C52—H52C109.5H22A—C22—H22B109.5
H52B—C52—H52C109.5H22A—C22—H22C109.5
P5—C53—H53A109.5H22B—C22—H22C109.5
P5—C53—H53B109.5P2—C23—H23A109.5
P5—C53—H53C109.5P2—C23—H23B109.5
H53A—C53—H53B109.5P2—C23—H23C109.5
H53A—C53—H53C109.5H23A—C23—H23B109.5
H53B—C53—H53C109.5H23A—C23—H23C109.5
P6—C61—H61A109.5H23B—C23—H23C109.5
P6—C61—H61B109.5P3—C31—H31A109.5
P6—C61—H61C109.5P3—C31—H31B109.5
H61A—C61—H61B109.5P3—C31—H31C109.5
H61A—C61—H61C109.5H31A—C31—H31B109.5
H61B—C61—H61C109.5H31A—C31—H31C109.5
P6—C62—H62A109.5H31B—C31—H31C109.5
P6—C62—H62B109.5P3—C32—H32A109.5
P6—C62—H62C109.5P3—C32—H32B109.5
H62A—C62—H62B109.5P3—C32—H32C109.5
H62A—C62—H62C109.5H32A—C32—H32B109.5
H62B—C62—H62C109.5H32A—C32—H32C109.5
P6—C63—H63A109.5H32B—C32—H32C109.5
P6—C63—H63B109.5P3—C33—H33A109.5
P6—C63—H63C109.5P3—C33—H33B109.5
H63A—C63—H63B109.5P3—C33—H33C109.5
H63A—C63—H63C109.5H33A—C33—H33B109.5
H63B—C63—H63C109.5H33A—C33—H33C109.5
P1—Ir1—HA78 (3)H33B—C33—H33C109.5
P2—Ir1—HA84 (3)F7—P2F—F889.6 (5)
P2—Ir1—P197.77 (12)F7—P2F—F1089.2 (5)
P2—Ir1—P396.65 (11)F7—P2F—F12178.1 (7)
P3—Ir1—HA84 (3)F8—P2F—F10178.6 (6)
P3—Ir1—P1155.90 (11)F8—P2F—F1291.3 (5)
O1—Ir1—HA98 (3)F9—P2F—F790.3 (7)
O1—Ir1—P181.9 (2)F9—P2F—F889.6 (6)
O1—Ir1—P2177.4 (2)F9—P2F—F1089.7 (7)
O1—Ir1—P384.5 (2)F9—P2F—F1288.0 (7)
O1—Ir1—N179.6 (2)F10—P2F—F1289.9 (5)
N1—Ir1—HA178 (3)F11—P2F—F790.4 (7)
N1—Ir1—P1101.4 (2)F11—P2F—F888.8 (7)
N1—Ir1—P297.99 (18)F11—P2F—F9178.3 (8)
N1—Ir1—P395.6 (2)F11—P2F—F1091.9 (8)
C11—P1—Ir1120.3 (11)F11—P2F—F1291.3 (8)
C11—P1—C1294.3 (17)F1—P1F—F286.6 (10)
C11—P1—C12'55 (2)F1—P1F—F387.6 (9)
C12—P1—Ir1104.3 (8)F1—P1F—F492.2 (9)
C12—P1—C12'136.8 (13)F1—P1F—F6175.5 (11)
C13—P1—Ir1126.8 (11)F2—P1F—F385.3 (9)
C13—P1—C11105 (2)F2—P1F—F4175.6 (9)
C13—P1—C1298.6 (17)F2—P1F—F695.7 (10)
C13—P1—C12'66 (2)F4—P1F—F390.4 (8)
C11'—P1—Ir1121.7 (15)F5—P1F—F196.0 (11)
C11'—P1—C11117.8 (18)F5—P1F—F292.1 (11)
C11'—P1—C1275 (3)F5—P1F—F3175.5 (10)
C11'—P1—C12'92 (2)F5—P1F—F492.2 (10)
C12'—P1—Ir1117.2 (11)F5—P1F—F687.8 (11)
C13'—P1—Ir1112.2 (17)F6—P1F—F388.8 (10)
C13'—P1—C1146 (3)F6—P1F—F485.3 (8)
Ir2—O3—C6—O4162.9 (8)P1—Ir1—P2—C2288.9 (7)
Ir2—O3—C6—C718.6 (10)P1—Ir1—P2—C23151.1 (7)
Ir2—N2—C7—C617.1 (9)P1—Ir1—P3—C3195.9 (10)
Ir2—N2—C7—C8144.8 (7)P1—Ir1—P3—C32135.3 (10)
Ir2—N2—C10—C9157.3 (6)P1—Ir1—P3—C3318.5 (8)
P4—Ir2—P5—C5144.0 (5)P1—Ir1—O1—C1100.2 (8)
P4—Ir2—P5—C52163.2 (5)P1—Ir1—N1—C284.8 (5)
P4—Ir2—P5—C5376.3 (6)P1—Ir1—N1—C540.8 (7)
P4—Ir2—P6—C6144.0 (8)P2—Ir1—P1—C1142 (2)
P4—Ir2—P6—C62163.1 (8)P2—Ir1—P1—C12145.8 (15)
P4—Ir2—P6—C6371.0 (5)P2—Ir1—P1—C13102 (3)
P4—Ir2—O3—C6101.2 (6)P2—Ir1—P1—C11'133 (3)
P4—Ir2—N2—C779.0 (5)P2—Ir1—P1—C12'22 (2)
P4—Ir2—N2—C10159.5 (6)P2—Ir1—P1—C13'93 (4)
P5—Ir2—P4—C4186.2 (6)P2—Ir1—P3—C3130.6 (10)
P5—Ir2—P4—C42155.0 (5)P2—Ir1—P3—C3298.3 (10)
P5—Ir2—P4—C4339.0 (6)P2—Ir1—P3—C33144.9 (7)
P5—Ir2—P6—C61164.2 (7)P2—Ir1—N1—C2175.6 (5)
P5—Ir2—P6—C6276.8 (8)P2—Ir1—N1—C558.8 (7)
P5—Ir2—P6—C6349.2 (4)P3—Ir1—P1—C1184 (2)
P5—Ir2—N2—C7175.7 (5)P3—Ir1—P1—C1219.5 (15)
P5—Ir2—N2—C1062.8 (6)P3—Ir1—P1—C13132 (3)
P6—Ir2—P4—C41153.9 (6)P3—Ir1—P1—C11'101 (3)
P6—Ir2—P4—C4235.0 (6)P3—Ir1—P1—C12'148 (2)
P6—Ir2—P4—C4380.9 (6)P3—Ir1—P1—C13'34 (4)
P6—Ir2—P5—C51154.5 (5)P3—Ir1—P2—C21165.2 (7)
P6—Ir2—P5—C5235.3 (5)P3—Ir1—P2—C2271.7 (7)
P6—Ir2—P5—C5385.2 (6)P3—Ir1—P2—C2348.3 (7)
P6—Ir2—O3—C697.9 (6)P3—Ir1—O1—C199.7 (7)
P6—Ir2—N2—C787.6 (5)P3—Ir1—N1—C278.0 (5)
P6—Ir2—N2—C1033.9 (6)P3—Ir1—N1—C5156.3 (6)
O3—Ir2—P4—C4190.8 (7)O1—Ir1—P1—C11141 (2)
O3—Ir2—P4—C4228.0 (6)O1—Ir1—P1—C1236.8 (15)
O3—Ir2—P4—C43144.0 (6)O1—Ir1—P1—C1376 (3)
O3—Ir2—P6—C6119.4 (7)O1—Ir1—P1—C11'45 (3)
O3—Ir2—P6—C6299.6 (8)O1—Ir1—P1—C12'156 (2)
O3—Ir2—P6—C63134.5 (5)O1—Ir1—P1—C13'90 (4)
O3—Ir2—N2—C76.5 (5)O1—Ir1—P3—C31151.7 (10)
O3—Ir2—N2—C10115.0 (6)O1—Ir1—P3—C3279.5 (10)
O3—C6—C7—N223.9 (11)O1—Ir1—P3—C3337.4 (7)
O3—C6—C7—C8147.2 (10)O1—Ir1—N1—C25.4 (5)
O4—C6—C7—N2157.5 (8)O1—Ir1—N1—C5120.3 (7)
O4—C6—C7—C834.2 (14)O1—C1—C2—N116.0 (13)
N2—Ir2—P4—C4112.3 (7)O1—C1—C2—C3138.4 (11)
N2—Ir2—P4—C42106.6 (6)O2—C1—C2—N1164.5 (9)
N2—Ir2—P4—C43137.4 (6)O2—C1—C2—C342.1 (14)
N2—Ir2—P5—C5150.8 (6)N1—Ir1—P1—C11142 (2)
N2—Ir2—P5—C5268.4 (5)N1—Ir1—P1—C12114.4 (15)
N2—Ir2—P5—C53171.1 (6)N1—Ir1—P1—C132 (3)
N2—Ir2—P6—C6196.5 (7)N1—Ir1—P1—C11'33 (3)
N2—Ir2—P6—C6222.5 (8)N1—Ir1—P1—C12'78 (2)
N2—Ir2—P6—C63148.5 (5)N1—Ir1—P1—C13'167 (4)
N2—Ir2—O3—C66.6 (6)N1—Ir1—P2—C2168.6 (7)
N2—C7—C8—C913.1 (13)N1—Ir1—P2—C22168.4 (7)
C6—C7—C8—C9139.9 (10)N1—Ir1—P2—C2348.4 (7)
C7—N2—C10—C933.9 (9)N1—Ir1—P3—C31129.3 (10)
C7—C8—C9—C1033.7 (13)N1—Ir1—P3—C320.5 (10)
C8—C9—C10—N242.1 (11)N1—Ir1—P3—C33116.4 (7)
C10—N2—C7—C6114.7 (8)N1—Ir1—O1—C13.0 (7)
C10—N2—C7—C813.1 (10)N1—C2—C3—C419.3 (11)
Ir1—O1—C1—O2169.2 (8)C1—C2—C3—C4145.3 (9)
Ir1—O1—C1—C211.3 (12)C2—N1—C5—C427.6 (10)
Ir1—N1—C2—C111.9 (9)C2—C3—C4—C535.5 (12)
Ir1—N1—C2—C3139.4 (6)C3—C4—C5—N139.7 (11)
Ir1—N1—C5—C4153.9 (6)C5—N1—C2—C1122.5 (8)
P1—Ir1—P2—C2134.1 (7)C5—N1—C2—C35.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.912.042.909 (9)160
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.912.042.909 (9)159.7
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Financial support for this work was provided by ACS–PRF (grant #23961-C1) and by the National Science Foundation (CHE-902244). The Virginia Tech Subvention Fund is gratefully acknowledged for covering the open-access fee.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCarmona, D., Pilar-Lamata, M., Viguri, F., San José, E., Mendoza, A., Lahoz, F. J., García-Orduña, P., Atencio, R. & Oro, L. A. (2012). J. Organomet. Chem. 717, 152–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarmona, D., Vega, C., Lahoz, F. J., Atencio, R., Oro, L. A., Lamata, M. P., Viguri, F. & San José, E. (2000). Organometallics, 19, 2273–2280.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrazier, J. F. & Merola, J. S. (1992). Polyhedron, 11, 2917–2927.  CSD CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRoy, C. P., Huff, L. A., Barker, N. A., Berg, M. A. G. & Merola, J. S. (2006). J. Organomet. Chem. 691, 2270–2276.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimazaki, Y., Takani, M. & Yamauchi, O. (2009). Dalton Trans. pp. 7854–7869.  Web of Science CrossRef Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationUrban, R., Krämer, R., Mihan, S., Polborn, K., Wagner, B. & Beck, W. (1996). J. Organomet. Chem. 517, 191–200.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m73-m74
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds