organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iodo-7-methyl-2-(4-methyl­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 12 January 2014; accepted 14 January 2014; online 22 January 2014)

In the title compound, C17H15IO2S, the dihedral angle between the benzofuran group (r.m.s. deviation = 0.009 Å) and the 4-methylbenzene ring is 12.69 (5)°. In the crystal, mol­ecules are linked via pairs of I⋯O [I⋯O = 3.164 (1) Å, C—I⋯O = 166.63 (5)°] contacts into inversion-related dimers.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2008[Choi, H. D., Seo, P. J., Kim, B. K., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1116.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1680.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15IO2S

  • Mr = 410.25

  • Triclinic, [P \overline 1]

  • a = 7.6816 (3) Å

  • b = 9.6478 (4) Å

  • c = 11.3738 (4) Å

  • α = 75.409 (2)°

  • β = 84.062 (2)°

  • γ = 71.684 (2)°

  • V = 774.14 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.20 mm−1

  • T = 173 K

  • 0.25 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.607, Tmax = 0.652

  • 14337 measured reflections

  • 3858 independent reflections

  • 3637 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.044

  • S = 1.09

  • 3858 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran derivatives containing phenyl (Choi et al., 2008) and 4-fluorophenyl (Choi et al., 2010) substituents in 2-position, we report here the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-methylphenyl ring is 12.69 (5)°. In the crystal structure, molecules are connected by pairs of I···O halogen-bonds between the iodine atom and the O atom of the SO unit [I1···O2i = 3.164 (1) Å, C4—I1···O2i = 166.63 (5)°, Symmetry code i = - x, - y + 1, - z. ] (Politzer et al., 2007), forming inversion-related dimers.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2008, 2010). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-iodo-7-methyl-2-(4-methylphenyl)-3-methylsulfanyl-1-benzofuran (355 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 483–484 K; Rf = 0.48 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq (C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Structure description top

As a part of our continuing study of 5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran derivatives containing phenyl (Choi et al., 2008) and 4-fluorophenyl (Choi et al., 2010) substituents in 2-position, we report here the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-methylphenyl ring is 12.69 (5)°. In the crystal structure, molecules are connected by pairs of I···O halogen-bonds between the iodine atom and the O atom of the SO unit [I1···O2i = 3.164 (1) Å, C4—I1···O2i = 166.63 (5)°, Symmetry code i = - x, - y + 1, - z. ] (Politzer et al., 2007), forming inversion-related dimers.

For background information and the crystal structures of related compounds, see: Choi et al. (2008, 2010). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
5-Iodo-7-methyl-2-(4-methylphenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C17H15IO2SZ = 2
Mr = 410.25F(000) = 404
Triclinic, P1Dx = 1.760 Mg m3
Hall symbol: -P 1Melting point = 483–484 K
a = 7.6816 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.6478 (4) ÅCell parameters from 9908 reflections
c = 11.3738 (4) Åθ = 2.6–28.4°
α = 75.409 (2)°µ = 2.20 mm1
β = 84.062 (2)°T = 173 K
γ = 71.684 (2)°Block, colourless
V = 774.14 (5) Å30.25 × 0.25 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3858 independent reflections
Radiation source: rotating anode3637 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.019
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 1.9°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.607, Tmax = 0.652l = 1515
14337 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: difference Fourier map
wR(F2) = 0.044H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0222P)2 + 0.2874P]
where P = (Fo2 + 2Fc2)/3
3858 reflections(Δ/σ)max = 0.002
193 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C17H15IO2Sγ = 71.684 (2)°
Mr = 410.25V = 774.14 (5) Å3
Triclinic, P1Z = 2
a = 7.6816 (3) ÅMo Kα radiation
b = 9.6478 (4) ŵ = 2.20 mm1
c = 11.3738 (4) ÅT = 173 K
α = 75.409 (2)°0.25 × 0.25 × 0.21 mm
β = 84.062 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3858 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3637 reflections with I > 2σ(I)
Tmin = 0.607, Tmax = 0.652Rint = 0.019
14337 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.09Δρmax = 0.45 e Å3
3858 reflectionsΔρmin = 0.41 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.019314 (14)0.745216 (11)0.052801 (9)0.02619 (4)
S10.34602 (7)0.20502 (4)0.38345 (4)0.03019 (9)
O10.19544 (15)0.59238 (12)0.48325 (10)0.0235 (2)
O20.2168 (2)0.19491 (16)0.29934 (14)0.0444 (4)
C10.2754 (2)0.39157 (17)0.40042 (15)0.0230 (3)
C20.1875 (2)0.52209 (17)0.30798 (14)0.0216 (3)
C40.0549 (2)0.69626 (18)0.12932 (15)0.0228 (3)
C50.0068 (2)0.81375 (18)0.18956 (15)0.0247 (3)
H50.05610.91250.14690.030*
C60.0492 (2)0.78875 (18)0.31048 (15)0.0242 (3)
C70.1397 (2)0.64097 (17)0.36481 (14)0.0217 (3)
C80.2778 (2)0.43936 (17)0.50377 (14)0.0221 (3)
C90.0053 (3)0.9109 (2)0.37826 (18)0.0347 (4)
H9A0.10260.90730.43170.052*
H9B0.02031.00860.32020.052*
H9C0.11000.89650.42720.052*
C100.3492 (2)0.36861 (18)0.62510 (14)0.0226 (3)
C110.4716 (2)0.22337 (19)0.65298 (15)0.0273 (3)
H110.50870.16800.59180.033*
C120.5393 (2)0.1594 (2)0.76906 (16)0.0282 (3)
H120.62040.05990.78670.034*
C130.4905 (2)0.2385 (2)0.85977 (15)0.0258 (3)
C140.3695 (2)0.3839 (2)0.83131 (16)0.0284 (3)
H140.33530.44010.89210.034*
C150.2985 (2)0.44779 (19)0.71653 (15)0.0266 (3)
H150.21470.54620.69980.032*
C30.1452 (2)0.54937 (18)0.18552 (15)0.0237 (3)
H30.17710.47110.14340.028*
C160.5645 (3)0.1710 (2)0.98538 (16)0.0323 (4)
H16A0.46480.15431.04280.049*
H16B0.61780.23961.00900.049*
H16C0.65920.07500.98630.049*
C170.5538 (3)0.2117 (3)0.2978 (2)0.0455 (5)
H17A0.60660.11910.26930.068*
H17B0.64140.22190.34950.068*
H17C0.52700.29800.22790.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03146 (6)0.02535 (6)0.02107 (6)0.00844 (4)0.00869 (4)0.00105 (4)
S10.0457 (2)0.01849 (18)0.0264 (2)0.00770 (17)0.01246 (18)0.00318 (16)
O10.0287 (6)0.0218 (5)0.0188 (5)0.0053 (4)0.0034 (4)0.0041 (4)
O20.0641 (9)0.0315 (7)0.0452 (8)0.0174 (7)0.0248 (7)0.0091 (6)
C10.0282 (7)0.0197 (7)0.0211 (7)0.0075 (6)0.0051 (6)0.0023 (6)
C20.0237 (7)0.0200 (7)0.0211 (7)0.0076 (6)0.0041 (6)0.0021 (6)
C40.0249 (7)0.0245 (7)0.0196 (7)0.0097 (6)0.0058 (6)0.0013 (6)
C50.0260 (7)0.0207 (7)0.0246 (8)0.0053 (6)0.0059 (6)0.0003 (6)
C60.0253 (7)0.0216 (7)0.0246 (8)0.0053 (6)0.0021 (6)0.0052 (6)
C70.0235 (7)0.0232 (7)0.0184 (7)0.0071 (6)0.0035 (6)0.0034 (6)
C80.0233 (7)0.0213 (7)0.0213 (7)0.0070 (6)0.0020 (6)0.0032 (6)
C90.0448 (10)0.0246 (8)0.0299 (9)0.0004 (7)0.0061 (8)0.0096 (7)
C100.0246 (7)0.0253 (7)0.0193 (7)0.0106 (6)0.0024 (6)0.0027 (6)
C110.0322 (8)0.0274 (8)0.0211 (8)0.0055 (7)0.0045 (7)0.0064 (7)
C120.0294 (8)0.0272 (8)0.0243 (8)0.0053 (6)0.0058 (7)0.0012 (7)
C130.0249 (7)0.0334 (8)0.0198 (7)0.0129 (7)0.0040 (6)0.0007 (7)
C140.0331 (8)0.0330 (9)0.0210 (8)0.0109 (7)0.0013 (7)0.0080 (7)
C150.0294 (8)0.0263 (8)0.0233 (8)0.0072 (6)0.0024 (6)0.0054 (7)
C30.0280 (8)0.0229 (7)0.0224 (8)0.0095 (6)0.0048 (6)0.0052 (6)
C160.0316 (9)0.0440 (10)0.0211 (8)0.0130 (8)0.0071 (7)0.0023 (7)
C170.0470 (12)0.0409 (11)0.0454 (12)0.0025 (9)0.0023 (10)0.0194 (10)
Geometric parameters (Å, º) top
I1—C42.1025 (16)C9—H9C0.9800
S1—O21.4879 (14)C10—C151.395 (2)
I1—O2i3.1642 (14)C10—C111.399 (2)
S1—C11.7637 (16)C11—C121.387 (2)
S1—C171.792 (2)C11—H110.9500
O1—C71.3759 (18)C12—C131.387 (2)
O1—C81.3799 (18)C12—H120.9500
C1—C81.370 (2)C13—C141.396 (3)
C1—C21.447 (2)C13—C161.502 (2)
C2—C71.389 (2)C14—C151.383 (2)
C2—C31.403 (2)C14—H140.9500
C4—C31.384 (2)C15—H150.9500
C4—C51.402 (2)C3—H30.9500
C5—C61.390 (2)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.386 (2)C16—H16C0.9800
C6—C91.500 (2)C17—H17A0.9800
C8—C101.455 (2)C17—H17B0.9800
C9—H9A0.9800C17—H17C0.9800
C9—H9B0.9800
C4—I1—O2i166.63 (5)C15—C10—C8119.69 (15)
O2—S1—C1107.08 (8)C11—C10—C8121.93 (14)
O2—S1—C17106.95 (10)C12—C11—C10120.71 (15)
C1—S1—C1797.23 (9)C12—C11—H11119.6
C7—O1—C8107.01 (12)C10—C11—H11119.6
C8—C1—C2107.37 (14)C11—C12—C13120.98 (16)
C8—C1—S1127.41 (13)C11—C12—H12119.5
C2—C1—S1125.00 (12)C13—C12—H12119.5
C7—C2—C3119.35 (14)C12—C13—C14118.12 (15)
C7—C2—C1105.00 (14)C12—C13—C16121.45 (16)
C3—C2—C1135.65 (14)C14—C13—C16120.44 (15)
C3—C4—C5122.76 (15)C15—C14—C13121.40 (16)
C3—C4—I1118.82 (11)C15—C14—H14119.3
C5—C4—I1118.40 (12)C13—C14—H14119.3
C6—C5—C4121.36 (15)C14—C15—C10120.41 (16)
C6—C5—H5119.3C14—C15—H15119.8
C4—C5—H5119.3C10—C15—H15119.8
C7—C6—C5114.86 (14)C4—C3—C2116.55 (14)
C7—C6—C9121.60 (15)C4—C3—H3121.7
C5—C6—C9123.53 (15)C2—C3—H3121.7
O1—C7—C6124.21 (14)C13—C16—H16A109.5
O1—C7—C2110.68 (13)C13—C16—H16B109.5
C6—C7—C2125.11 (15)H16A—C16—H16B109.5
C1—C8—O1109.92 (14)C13—C16—H16C109.5
C1—C8—C10135.43 (15)H16A—C16—H16C109.5
O1—C8—C10114.62 (13)H16B—C16—H16C109.5
C6—C9—H9A109.5S1—C17—H17A109.5
C6—C9—H9B109.5S1—C17—H17B109.5
H9A—C9—H9B109.5H17A—C17—H17B109.5
C6—C9—H9C109.5S1—C17—H17C109.5
H9A—C9—H9C109.5H17A—C17—H17C109.5
H9B—C9—H9C109.5H17B—C17—H17C109.5
C15—C10—C11118.36 (15)
O2—S1—C1—C8142.69 (15)S1—C1—C8—O1174.32 (11)
C17—S1—C1—C8107.04 (17)C2—C1—C8—C10177.62 (17)
O2—S1—C1—C231.25 (17)S1—C1—C8—C107.6 (3)
C17—S1—C1—C279.02 (16)C7—O1—C8—C10.29 (17)
C8—C1—C2—C71.04 (17)C7—O1—C8—C10178.82 (13)
S1—C1—C2—C7173.92 (12)C1—C8—C10—C15168.65 (18)
C8—C1—C2—C3179.06 (17)O1—C8—C10—C1513.3 (2)
S1—C1—C2—C36.0 (3)C1—C8—C10—C1112.8 (3)
C3—C4—C5—C60.5 (3)O1—C8—C10—C11165.23 (14)
I1—C4—C5—C6179.04 (12)C15—C10—C11—C120.6 (2)
C4—C5—C6—C70.5 (2)C8—C10—C11—C12179.16 (15)
C4—C5—C6—C9178.40 (17)C10—C11—C12—C131.2 (3)
C8—O1—C7—C6179.35 (15)C11—C12—C13—C140.7 (2)
C8—O1—C7—C20.99 (17)C11—C12—C13—C16179.36 (16)
C5—C6—C7—O1179.41 (14)C12—C13—C14—C150.5 (2)
C9—C6—C7—O10.5 (3)C16—C13—C14—C15179.46 (16)
C5—C6—C7—C20.2 (2)C13—C14—C15—C101.1 (3)
C9—C6—C7—C2179.08 (16)C11—C10—C15—C140.6 (2)
C3—C2—C7—O1178.83 (13)C8—C10—C15—C14178.03 (15)
C1—C2—C7—O11.25 (17)C5—C4—C3—C20.1 (2)
C3—C2—C7—C60.8 (2)I1—C4—C3—C2178.41 (11)
C1—C2—C7—C6179.09 (15)C7—C2—C3—C40.7 (2)
C2—C1—C8—O10.47 (18)C1—C2—C3—C4179.15 (17)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H15IO2S
Mr410.25
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.6816 (3), 9.6478 (4), 11.3738 (4)
α, β, γ (°)75.409 (2), 84.062 (2), 71.684 (2)
V3)774.14 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.20
Crystal size (mm)0.25 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.607, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
14337, 3858, 3637
Rint0.019
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.044, 1.09
No. of reflections3858
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998).

 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Kim, B. K., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds