organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o212-o213

2-(4,5-Di­chloro-2-nitro­phen­yl)-4-meth­­oxy-3-methyl-9-phenyl­sulfon­yl-9H-carbazole

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 3 January 2014; accepted 20 January 2014; online 29 January 2014)

In the title compound, C26H18Cl2N2O5S, the carbazole ring system is essentially planar with a maximum deviation of 0.0498 (16) Å for the N atom. The carbazole ring system is almost orthogonal to the phenyl­sulfonyl and di­chloro-substituted nitro­phenyl rings, making dihedral angles of 84.23 (7) and 85.46 (12)°, respectively. The mol­ecular structure features intra­molecular C—H⋯O inter­actions, which generate two S(6) ring motifs. In the crystal, mol­ecules are linked by C—Cl⋯O halogen bonds [3.016 (3) Å, 166.63 (5)°], which generate infinite C(8) chains running parallel to [010].

Related literature

For the biological activity and uses of carbazole derivatives, see: Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]). For their electronic properties and applications, see: Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-127.]); Zhang et al. (2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). For a related structure, see: Gopinath et al. (2013[Gopinath, S., Sethusankar, K., Ramalingam, B. M. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o1420-o1421.]). For the Thorpe–Ingold effect, see: Bassindale et al. (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18Cl2N2O5S

  • Mr = 541.39

  • Monoclinic, C 2/c

  • a = 18.6364 (7) Å

  • b = 12.1665 (4) Å

  • c = 21.1272 (7) Å

  • β = 91.461 (2)°

  • V = 4788.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.923

  • 23543 measured reflections

  • 5218 independent reflections

  • 4056 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.03

  • 5218 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.93 2.33 2.915 (3) 121
C11—H11⋯O1 0.93 2.36 2.955 (2) 122

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole and its derivative have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exhibit various biological activities such as antitumor (Itoigawa et al., 2000), anti-inflammatory and antimutagenic (Ramsewak et al., 1999). Carbazole derivatives also exhibit electroactivity and luminenscence and are considered to be potential candidates for electronic applications such as colour displays, organic semiconductors, laser and solar cells (Friend et al., 1999; Zhang et al., 2004).

The title compound, C26H18Cl2N2O5S, comprises a carbazole ring system which is attached to a phenylsulfonyl ring, a dichloro substituted nitrophenyl ring, a methoxy group and a methyl group. The carbazole ring system is essentially planar with maximum deviation of 0.0498 (16)Å for the nitrogen atom (N1). The methyl group carbon atom (C25) deviates from the carbazole ring by -0.0866 (22)Å. The carbazole ring system is almost orthogonal to phenyl ring attached to sulfonyl group and nitrophenyl ring with dihedral angles of 84.23 (7)° and 85.46 (12)°, respectively.

The atom S1 has a distorted tetrahedral configuration. The widening of angle O2—S1—O1 [120.21 (10)°] and narrowing of angle N1—S1—C19 [105.23 (9)°] from the ideal tetrahedral value are attributed to the Thorpe–Ingold effect (Bassindale et al., 1984). As a result of electron-withdrawing character of the phenylsulfonyl group, the bond lengths N1—C1 = 1.426 (2)Å and N1—C12 = 1.418 (2)Å in the molecule are longer than the mean value of 1.355 (14)Å (Allen et al. 1987). The sum of the bond angles around N1 [353.9°] indicate the sp2 hybridization. The chlorine atoms Cl1 & Cl2 are significantly deviated by 0.1037 (6)Å and -0.0586 (5)Å, respectively from the phenyl ring (C13–C18).

The molecular structure is stabilized by C2—H2···O2, C11—H11···O1 intramolecular interactions, which generate two S(6) ring motifs (Fig. 1). In the crystal packing, molecules are linked by C15—Cl1···O5i intermolecular halogen bonding (XB), between the chlorine atom (Cl1) and methoxy group oxygen atom (O5) of the carbazole ring system [Cl1···O5i = 3.016 (3)Å and C15—Cl1···O5i angle of 166.63 (2)°], which generate C(8) infinite one dimensional chain running parallel to base vector [0 1 0] (Bernstein et al., 1995). The packing view of the title compound is shown in Fig. 2. Symmetry code: (i) 1/2-x, 1/2+y, 3/2-z.

Related literature top

For the biological activityand uses of carbazole derivatives, see: Itoigawa et al. (2000); Ramsewak et al. (1999). For their electronic properties and applications, see: Friend et al. (1999); Zhang et al. (2004). For a related structure, see: Gopinath et al. (2013). For the Thorpe–Ingold effect, see: Bassindale et al. (1984). For bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of (E)-1-(2-(4,5-dichloro-2-nitrostyryl)-1-(phenylsulfonyl)- 1H-indol-3-yl)-2-(phenylsulfonyl)propan-1-one (4.0 g, 6 mmol), dimethylsulfate (2.86 ml, 30 mmol) and K2CO3 (8.28 g, 60 mmol) in tetrahydrofuran (100 ml) was stirred at room temperature for 18 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (100 g). The solid obtained was filtered and dried (CaCl2) to give enol ether. Then, the crued enol ether was dissolved in xylenes (100 ml) and refluxed for 24 h. Removal of xylenes in vacuo followed by column chromatographic purification (silica gel; hexane–ethyl acetate, 8:2) gave 9-(phenylsulfonyl)-2-(4,5-dichloro-2-nitrophenyl)-4-methoxy-3-methyl- 9H-carbazole (2.17 g, 67%) as a colourless solid. Single crystal suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform (CHCl3) at room temperature. M.p. 493–495 K.

Refinement top

The positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometrically constrained. The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C—H) = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H) = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl groups. The rotation angles for methyl groups were optimized by least squares.

Structure description top

Carbazole and its derivative have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exhibit various biological activities such as antitumor (Itoigawa et al., 2000), anti-inflammatory and antimutagenic (Ramsewak et al., 1999). Carbazole derivatives also exhibit electroactivity and luminenscence and are considered to be potential candidates for electronic applications such as colour displays, organic semiconductors, laser and solar cells (Friend et al., 1999; Zhang et al., 2004).

The title compound, C26H18Cl2N2O5S, comprises a carbazole ring system which is attached to a phenylsulfonyl ring, a dichloro substituted nitrophenyl ring, a methoxy group and a methyl group. The carbazole ring system is essentially planar with maximum deviation of 0.0498 (16)Å for the nitrogen atom (N1). The methyl group carbon atom (C25) deviates from the carbazole ring by -0.0866 (22)Å. The carbazole ring system is almost orthogonal to phenyl ring attached to sulfonyl group and nitrophenyl ring with dihedral angles of 84.23 (7)° and 85.46 (12)°, respectively.

The atom S1 has a distorted tetrahedral configuration. The widening of angle O2—S1—O1 [120.21 (10)°] and narrowing of angle N1—S1—C19 [105.23 (9)°] from the ideal tetrahedral value are attributed to the Thorpe–Ingold effect (Bassindale et al., 1984). As a result of electron-withdrawing character of the phenylsulfonyl group, the bond lengths N1—C1 = 1.426 (2)Å and N1—C12 = 1.418 (2)Å in the molecule are longer than the mean value of 1.355 (14)Å (Allen et al. 1987). The sum of the bond angles around N1 [353.9°] indicate the sp2 hybridization. The chlorine atoms Cl1 & Cl2 are significantly deviated by 0.1037 (6)Å and -0.0586 (5)Å, respectively from the phenyl ring (C13–C18).

The molecular structure is stabilized by C2—H2···O2, C11—H11···O1 intramolecular interactions, which generate two S(6) ring motifs (Fig. 1). In the crystal packing, molecules are linked by C15—Cl1···O5i intermolecular halogen bonding (XB), between the chlorine atom (Cl1) and methoxy group oxygen atom (O5) of the carbazole ring system [Cl1···O5i = 3.016 (3)Å and C15—Cl1···O5i angle of 166.63 (2)°], which generate C(8) infinite one dimensional chain running parallel to base vector [0 1 0] (Bernstein et al., 1995). The packing view of the title compound is shown in Fig. 2. Symmetry code: (i) 1/2-x, 1/2+y, 3/2-z.

For the biological activityand uses of carbazole derivatives, see: Itoigawa et al. (2000); Ramsewak et al. (1999). For their electronic properties and applications, see: Friend et al. (1999); Zhang et al. (2004). For a related structure, see: Gopinath et al. (2013). For the Thorpe–Ingold effect, see: Bassindale et al. (1984). For bond-length data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius. The intramolecular C—H···O hydrogen bonds, which are generate S(6) ring motifs, shown as a dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down a axis. The dashed lines indicate C—Cl···O intermolecular halogen bondings. Symmetry code: (i) 1/2-x, 1/2+y, 3/2-z.
2-(4,5-Dichloro-2-nitrophenyl)-4-methoxy-3-methyl-9-phenylsulfonyl-9H-carbazole top
Crystal data top
C26H18Cl2N2O5SF(000) = 2224
Mr = 541.39Dx = 1.502 Mg m3
Monoclinic, C2/cMelting point = 493–495 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.6364 (7) ÅCell parameters from 4058 reflections
b = 12.1665 (4) Åθ = 2.0–27.0°
c = 21.1272 (7) ŵ = 0.40 mm1
β = 91.461 (2)°T = 296 K
V = 4788.8 (3) Å3Block, colourless
Z = 80.25 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5218 independent reflections
Radiation source: fine-focus sealed tube4056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω– and φ–scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2323
Tmin = 0.905, Tmax = 0.923k = 1515
23543 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0583P)2 + 2.8891P]
where P = (Fo2 + 2Fc2)/3
5218 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C26H18Cl2N2O5SV = 4788.8 (3) Å3
Mr = 541.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.6364 (7) ŵ = 0.40 mm1
b = 12.1665 (4) ÅT = 296 K
c = 21.1272 (7) Å0.25 × 0.25 × 0.20 mm
β = 91.461 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5218 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4056 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.923Rint = 0.031
23543 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
5218 reflectionsΔρmin = 0.39 e Å3
327 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30233 (10)0.60315 (14)0.46304 (8)0.0376 (4)
C20.31928 (12)0.59976 (18)0.39942 (9)0.0508 (5)
H20.28380.60210.36770.061*
C30.39066 (13)0.59284 (19)0.38525 (10)0.0573 (6)
H30.40350.58910.34300.069*
C40.44365 (12)0.59128 (18)0.43162 (11)0.0539 (5)
H40.49150.58750.42020.065*
C50.42723 (10)0.59515 (16)0.49463 (9)0.0434 (4)
H50.46330.59410.52590.052*
C60.35545 (9)0.60060 (13)0.51051 (8)0.0338 (4)
C70.32037 (9)0.60416 (13)0.57063 (8)0.0321 (3)
C80.34576 (9)0.60187 (14)0.63289 (8)0.0347 (4)
C90.29861 (9)0.60208 (14)0.68281 (8)0.0360 (4)
C100.22473 (9)0.60638 (14)0.66796 (8)0.0353 (4)
C110.19794 (9)0.61140 (15)0.60641 (9)0.0375 (4)
H110.14890.61620.59780.045*
C120.24651 (9)0.60903 (13)0.55824 (8)0.0333 (4)
C130.17149 (9)0.61156 (15)0.71942 (8)0.0367 (4)
C140.15400 (10)0.71305 (15)0.74444 (8)0.0398 (4)
H140.17870.77500.73130.048*
C150.10101 (10)0.72501 (15)0.78834 (8)0.0393 (4)
C160.06477 (9)0.63314 (16)0.81004 (8)0.0384 (4)
C170.07991 (9)0.53179 (16)0.78529 (9)0.0408 (4)
H170.05500.46990.79830.049*
C180.13256 (10)0.52280 (15)0.74091 (9)0.0388 (4)
C190.15457 (11)0.42952 (17)0.46831 (10)0.0504 (5)
C200.19244 (13)0.36252 (19)0.42797 (13)0.0632 (6)
H200.21960.39280.39600.076*
C210.18912 (18)0.2500 (2)0.43609 (19)0.0933 (11)
H210.21440.20380.40950.112*
C220.1490 (2)0.2064 (3)0.4828 (2)0.1137 (15)
H220.14650.13050.48760.136*
C230.1125 (2)0.2727 (3)0.5224 (2)0.1109 (13)
H230.08590.24210.55460.133*
C240.11478 (17)0.3856 (2)0.51522 (14)0.0790 (8)
H240.08940.43100.54210.095*
C250.32572 (11)0.59430 (18)0.75030 (9)0.0488 (5)
H25A0.37570.57530.75100.073*
H25B0.29920.53880.77200.073*
H25C0.31950.66380.77090.073*
C260.45504 (12)0.6937 (2)0.65493 (13)0.0670 (7)
H26A0.44890.74000.61840.101*
H26B0.50520.67990.66260.101*
H26C0.43550.72950.69110.101*
N10.23420 (8)0.61223 (12)0.49177 (7)0.0379 (3)
N20.14522 (10)0.41316 (14)0.71521 (9)0.0547 (4)
O10.10190 (8)0.62053 (13)0.49305 (8)0.0582 (4)
O20.16291 (9)0.59563 (13)0.39235 (7)0.0590 (4)
O30.20623 (10)0.38349 (14)0.70792 (11)0.0838 (6)
O40.09295 (11)0.35658 (15)0.70249 (11)0.0870 (6)
O50.41857 (6)0.59176 (11)0.64406 (6)0.0428 (3)
S10.15720 (3)0.57206 (4)0.45772 (2)0.04322 (14)
Cl10.08048 (3)0.85490 (4)0.81386 (3)0.05761 (16)
Cl20.00173 (3)0.64492 (5)0.86734 (2)0.05700 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0450 (10)0.0334 (9)0.0349 (9)0.0025 (7)0.0085 (8)0.0000 (7)
C20.0599 (13)0.0586 (13)0.0339 (10)0.0034 (10)0.0054 (9)0.0013 (8)
C30.0698 (15)0.0659 (14)0.0371 (11)0.0007 (11)0.0208 (10)0.0041 (10)
C40.0507 (12)0.0614 (13)0.0508 (12)0.0030 (9)0.0243 (10)0.0079 (10)
C50.0392 (10)0.0472 (11)0.0446 (11)0.0025 (8)0.0130 (8)0.0073 (8)
C60.0398 (9)0.0281 (8)0.0340 (9)0.0001 (6)0.0093 (7)0.0018 (6)
C70.0335 (9)0.0285 (8)0.0345 (9)0.0007 (6)0.0069 (7)0.0003 (6)
C80.0323 (9)0.0323 (9)0.0396 (9)0.0011 (6)0.0048 (7)0.0018 (7)
C90.0375 (9)0.0367 (9)0.0341 (9)0.0014 (7)0.0053 (7)0.0002 (7)
C100.0358 (9)0.0333 (9)0.0371 (9)0.0002 (7)0.0092 (7)0.0008 (7)
C110.0308 (9)0.0411 (10)0.0408 (10)0.0002 (7)0.0048 (7)0.0038 (7)
C120.0365 (9)0.0314 (8)0.0321 (9)0.0005 (6)0.0031 (7)0.0017 (6)
C130.0347 (9)0.0424 (10)0.0333 (9)0.0027 (7)0.0056 (7)0.0011 (7)
C140.0409 (10)0.0411 (10)0.0378 (10)0.0016 (7)0.0112 (8)0.0000 (7)
C150.0386 (9)0.0455 (10)0.0341 (9)0.0034 (7)0.0059 (7)0.0029 (7)
C160.0278 (8)0.0575 (12)0.0301 (9)0.0015 (7)0.0035 (7)0.0003 (8)
C170.0334 (9)0.0480 (11)0.0411 (10)0.0046 (7)0.0014 (8)0.0074 (8)
C180.0361 (9)0.0413 (10)0.0391 (10)0.0024 (7)0.0045 (7)0.0024 (7)
C190.0496 (12)0.0459 (11)0.0549 (12)0.0075 (8)0.0154 (10)0.0018 (9)
C200.0598 (14)0.0521 (14)0.0764 (16)0.0053 (10)0.0227 (12)0.0114 (11)
C210.090 (2)0.0527 (17)0.134 (3)0.0128 (14)0.053 (2)0.0278 (17)
C220.132 (3)0.0504 (19)0.155 (4)0.021 (2)0.068 (3)0.013 (2)
C230.131 (3)0.083 (3)0.117 (3)0.054 (2)0.020 (3)0.034 (2)
C240.091 (2)0.0693 (17)0.0765 (18)0.0285 (14)0.0045 (15)0.0078 (13)
C250.0492 (12)0.0635 (13)0.0340 (10)0.0033 (9)0.0043 (9)0.0026 (9)
C260.0422 (12)0.0717 (16)0.0870 (18)0.0142 (10)0.0034 (12)0.0007 (13)
N10.0368 (8)0.0445 (8)0.0325 (8)0.0025 (6)0.0025 (6)0.0024 (6)
N20.0576 (11)0.0413 (10)0.0659 (12)0.0001 (8)0.0158 (9)0.0014 (8)
O10.0407 (8)0.0681 (10)0.0655 (10)0.0108 (7)0.0047 (7)0.0103 (7)
O20.0667 (10)0.0666 (10)0.0429 (8)0.0010 (7)0.0159 (7)0.0057 (7)
O30.0677 (12)0.0498 (10)0.1355 (18)0.0124 (8)0.0353 (12)0.0033 (10)
O40.0775 (13)0.0578 (11)0.1262 (17)0.0173 (9)0.0093 (12)0.0258 (10)
O50.0310 (6)0.0498 (8)0.0477 (8)0.0013 (5)0.0021 (6)0.0047 (6)
S10.0422 (3)0.0440 (3)0.0430 (3)0.00159 (18)0.0079 (2)0.00157 (19)
Cl10.0647 (4)0.0520 (3)0.0571 (3)0.0080 (2)0.0205 (3)0.0108 (2)
Cl20.0392 (3)0.0869 (4)0.0457 (3)0.0042 (2)0.0174 (2)0.0040 (2)
Geometric parameters (Å, º) top
C1—C61.391 (3)C16—C171.372 (3)
C1—C21.389 (3)C16—Cl21.7144 (18)
C1—N11.426 (2)C17—C181.379 (3)
C2—C31.373 (3)C17—H170.9300
C2—H20.9300C18—N21.462 (2)
C3—C41.373 (3)C19—C241.362 (4)
C3—H30.9300C19—C201.385 (3)
C4—C51.374 (3)C19—S11.749 (2)
C4—H40.9300C20—C211.382 (4)
C5—C61.389 (2)C20—H200.9300
C5—H50.9300C21—C221.361 (6)
C6—C71.444 (2)C21—H210.9300
C7—C81.387 (2)C22—C231.358 (6)
C7—C121.396 (2)C22—H220.9300
C8—O51.377 (2)C23—C241.382 (4)
C8—C91.390 (2)C23—H230.9300
C9—C101.405 (2)C24—H240.9300
C9—C251.503 (3)C25—H25A0.9600
C10—C111.382 (3)C25—H25B0.9600
C10—C131.492 (2)C25—H25C0.9600
C11—C121.379 (2)C26—O51.430 (3)
C11—H110.9300C26—H26A0.9600
C12—N11.418 (2)C26—H26B0.9600
C13—C181.384 (3)C26—H26C0.9600
C13—C141.385 (3)N1—S11.6623 (15)
C14—C151.380 (2)N2—O31.207 (2)
C14—H140.9300N2—O41.217 (2)
C15—C161.390 (3)O1—S11.4163 (16)
C15—Cl11.7161 (19)O2—S11.4173 (16)
C6—C1—C2121.43 (18)C16—C17—H17120.4
C6—C1—N1108.66 (15)C18—C17—H17120.4
C2—C1—N1129.89 (18)C17—C18—C13123.32 (17)
C3—C2—C1117.3 (2)C17—C18—N2116.71 (17)
C3—C2—H2121.4C13—C18—N2119.95 (17)
C1—C2—H2121.4C24—C19—C20120.8 (2)
C2—C3—C4121.9 (2)C24—C19—S1120.0 (2)
C2—C3—H3119.1C20—C19—S1119.23 (19)
C4—C3—H3119.1C21—C20—C19118.8 (3)
C3—C4—C5121.1 (2)C21—C20—H20120.6
C3—C4—H4119.4C19—C20—H20120.6
C5—C4—H4119.4C22—C21—C20120.2 (3)
C4—C5—C6118.37 (19)C22—C21—H21119.9
C4—C5—H5120.8C20—C21—H21119.9
C6—C5—H5120.8C21—C22—C23120.6 (3)
C5—C6—C1119.93 (17)C21—C22—H22119.7
C5—C6—C7132.40 (17)C23—C22—H22119.7
C1—C6—C7107.67 (15)C22—C23—C24120.4 (4)
C8—C7—C12119.32 (15)C22—C23—H23119.8
C8—C7—C6133.05 (16)C24—C23—H23119.8
C12—C7—C6107.63 (15)C19—C24—C23119.3 (3)
O5—C8—C7118.38 (15)C19—C24—H24120.4
O5—C8—C9120.63 (16)C23—C24—H24120.4
C7—C8—C9120.84 (16)C9—C25—H25A109.5
C8—C9—C10117.74 (16)C9—C25—H25B109.5
C8—C9—C25121.05 (16)H25A—C25—H25B109.5
C10—C9—C25121.18 (16)C9—C25—H25C109.5
C11—C10—C9122.69 (16)H25A—C25—H25C109.5
C11—C10—C13116.92 (15)H25B—C25—H25C109.5
C9—C10—C13120.32 (16)O5—C26—H26A109.5
C12—C11—C10117.71 (16)O5—C26—H26B109.5
C12—C11—H11121.1H26A—C26—H26B109.5
C10—C11—H11121.1O5—C26—H26C109.5
C11—C12—C7121.67 (16)H26A—C26—H26C109.5
C11—C12—N1129.61 (16)H26B—C26—H26C109.5
C7—C12—N1108.72 (15)C12—N1—C1107.23 (14)
C18—C13—C14116.10 (16)C12—N1—S1122.47 (12)
C18—C13—C10124.76 (16)C1—N1—S1124.15 (12)
C14—C13—C10118.88 (16)O3—N2—O4123.7 (2)
C15—C14—C13122.00 (17)O3—N2—C18118.82 (18)
C15—C14—H14119.0O4—N2—C18117.53 (19)
C13—C14—H14119.0C8—O5—C26114.36 (15)
C14—C15—C16119.94 (17)O2—S1—O1120.21 (10)
C14—C15—Cl1118.53 (14)O2—S1—N1106.07 (9)
C16—C15—Cl1121.52 (14)O1—S1—N1106.33 (8)
C17—C16—C15119.40 (17)O2—S1—C19109.16 (10)
C17—C16—Cl2119.72 (15)O1—S1—C19108.80 (11)
C15—C16—Cl2120.88 (15)N1—S1—C19105.23 (9)
C16—C17—C18119.17 (17)
C6—C1—C2—C30.5 (3)C14—C15—C16—Cl2176.85 (14)
N1—C1—C2—C3178.70 (19)Cl1—C15—C16—Cl24.3 (2)
C1—C2—C3—C41.2 (3)C15—C16—C17—C182.2 (3)
C2—C3—C4—C50.9 (3)Cl2—C16—C17—C18177.65 (13)
C3—C4—C5—C60.1 (3)C16—C17—C18—C130.2 (3)
C4—C5—C6—C10.6 (3)C16—C17—C18—N2178.70 (17)
C4—C5—C6—C7179.07 (19)C14—C13—C18—C171.0 (3)
C2—C1—C6—C50.3 (3)C10—C13—C18—C17175.02 (17)
N1—C1—C6—C5178.16 (15)C14—C13—C18—N2177.48 (17)
C2—C1—C6—C7179.44 (17)C10—C13—C18—N23.4 (3)
N1—C1—C6—C72.06 (18)C24—C19—C20—C210.1 (3)
C5—C6—C7—C81.0 (3)S1—C19—C20—C21178.99 (18)
C1—C6—C7—C8178.70 (18)C19—C20—C21—C220.3 (4)
C5—C6—C7—C12179.87 (18)C20—C21—C22—C230.8 (5)
C1—C6—C7—C120.12 (18)C21—C22—C23—C241.0 (5)
C12—C7—C8—O5176.94 (14)C20—C19—C24—C230.1 (4)
C6—C7—C8—O51.8 (3)S1—C19—C24—C23179.2 (2)
C12—C7—C8—C91.3 (2)C22—C23—C24—C190.7 (5)
C6—C7—C8—C9177.38 (17)C11—C12—N1—C1177.70 (17)
O5—C8—C9—C10176.46 (15)C7—C12—N1—C13.11 (18)
C7—C8—C9—C100.9 (2)C11—C12—N1—S124.3 (3)
O5—C8—C9—C251.6 (3)C7—C12—N1—S1156.49 (12)
C7—C8—C9—C25177.13 (17)C6—C1—N1—C123.19 (18)
C8—C9—C10—C110.6 (3)C2—C1—N1—C12178.47 (19)
C25—C9—C10—C11178.71 (17)C6—C1—N1—S1156.01 (13)
C8—C9—C10—C13177.44 (16)C2—C1—N1—S125.7 (3)
C25—C9—C10—C134.5 (3)C17—C18—N2—O3138.2 (2)
C9—C10—C11—C121.8 (3)C13—C18—N2—O343.3 (3)
C13—C10—C11—C12178.68 (16)C17—C18—N2—O441.6 (3)
C10—C11—C12—C71.4 (3)C13—C18—N2—O4136.9 (2)
C10—C11—C12—N1179.54 (16)C7—C8—O5—C2696.3 (2)
C8—C7—C12—C110.1 (2)C9—C8—O5—C2688.1 (2)
C6—C7—C12—C11178.87 (16)C12—N1—S1—O2175.29 (14)
C8—C7—C12—N1179.12 (14)C1—N1—S1—O235.85 (17)
C6—C7—C12—N11.87 (18)C12—N1—S1—O146.24 (16)
C11—C10—C13—C1882.6 (2)C1—N1—S1—O1164.90 (15)
C9—C10—C13—C18100.5 (2)C12—N1—S1—C1969.08 (16)
C11—C10—C13—C1491.3 (2)C1—N1—S1—C1979.77 (16)
C9—C10—C13—C1485.6 (2)C24—C19—S1—O2146.25 (19)
C18—C13—C14—C150.1 (3)C20—C19—S1—O232.82 (19)
C10—C13—C14—C15174.57 (16)C24—C19—S1—O113.3 (2)
C13—C14—C15—C161.8 (3)C20—C19—S1—O1165.73 (16)
C13—C14—C15—Cl1177.08 (14)C24—C19—S1—N1100.3 (2)
C14—C15—C16—C173.0 (3)C20—C19—S1—N180.66 (17)
Cl1—C15—C16—C17175.87 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.332.915 (3)121
C11—H11···O10.932.362.955 (2)122
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.932.332.915 (3)121
C11—H11···O10.932.362.955 (2)122
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.  Web of Science CrossRef CAS Google Scholar
First citationGopinath, S., Sethusankar, K., Ramalingam, B. M. & Mohanakrishnan, A. K. (2013). Acta Cryst. E69, o1420–o1421.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o212-o213
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds