organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o143-o144

7-Nitro-2-phenyl­imidazo[2,1-b][1,3]benzo­thia­zole

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, bDepartment of Organic, Bioorganic and Medicinal Chemistry, Samara State University, 1 Akademician Pavlov St, Samara 443011, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 5 January 2014; accepted 8 January 2014; online 15 January 2014)

In the title mol­ecule, C15H9N3O2S, the central imidazo[2,1-b][1,3]benzo­thia­zole heterotricyclic unit is essentially planar (r.m.s. deviation = 0.021 Å). The terminal phenyl ring and nitro group are twisted by 9.06 (1) and 11.02 (4)°, respectively, from the mean plane of the heterotricycle. In the crystal, mol­ecules are linked by ππ stacking inter­actions into columns along [100]; the inter­planar distance between neighboring imidazo[2,1-b][1,3]benzo­thia­zole planes within the columns is 3.370 (2) Å. Furthermore, the columns interact with each other by secondary S⋯O [2.9922 (10) and 3.1988 (11) Å] inter­actions, forming a three-dimensional framework.

Related literature

For applications of imidazo[2,1–b][1,3]benzo­thia­zoles, see: Ager et al. (1988[Ager, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098-1115.]); Sanfilippo et al. (1988[Sanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221-2227.]); Barchéchath et al. (2005[Barchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409-6422.]); Andreani et al. (2008[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809-816.]); Chao et al. (2009[Chao, Q., Sprankle, K. G., Grotzfeld, R. M., Lai, A. G., Carter, T. A., Velasco, A. M., Gunawardane, R. N., Cramer, M. D., Gardner, M. F., James, J., Zarrinkar, P. P., Patel, H. K. & Bhagwat, S. S. (2009). J. Med. Chem. 52, 7808-7816.]); Kumbhare et al. (2011[Kumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258-4266.]); Chandak et al. (2013[Chandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203-208.]). For the crystal structures of related compounds, see: Landreau et al. (2002[Landreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741-745.]); Adib et al. (2008[Adib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941-2944.]); Fun, Asik et al. (2011[Fun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810.]); Fun, Hemamalini et al. (2011[Fun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265-o3266.]); Ghabbour et al. (2012[Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631-o1632.]); Bunev et al. (2013[Bunev, A. S., Sukhonosova, E. V., Syrazhetdinova, D. R., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2013). Acta Cryst. E69, o531.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9N3O2S

  • Mr = 295.32

  • Monoclinic, P 21 /c

  • a = 6.8068 (3) Å

  • b = 21.0244 (9) Å

  • c = 9.0699 (4) Å

  • β = 105.077 (1)°

  • V = 1253.30 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 120 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.974

  • 19380 measured reflections

  • 4586 independent reflections

  • 3740 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.03

  • 4586 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazo[2,1–b][1,3]benzothiazole are of great interest due to their biological properties. These compounds and their derivatives demonstrate the antitumor (Andreani et al., 2008), antiallergic (Ager et al., 1988), anesthetic (Sanfilippo et al., 1988) and anticancer (Kumbhare et al., 2011) activities as well as the inhibition activity of apoptosis in testiculargerm cells (Chandak et al., 2013), lymphocytes (Barchéchath et al., 2005), and FMS–like tyrosine kinase–3 (FLT3) (Chao et al., 2009).

In this work, a 7–nitro–2–phenylimidazo[2,1–b][1,3]benzothiazole, C15H9N3O2S, (I) was prepared by the reaction of 2–amino–6–nitro–1,3–benzothiazole with 2–bromo–1–phenylethanone (Fig. 1), and its structure was unambiguously established by the X–ray diffraction study (Fig. 2).

The bond lengths and angles within the molecule of I are in a good agreement with those found in the related compounds (Landreau et al., 2002; Adib et al., 2008; Fun, Asik et al., 2011; Fun, Hemamalini et al., 2011; Ghabbour et al., 2012; Bunev et al., 2013). The central imidazo[2,1–b][1,3]benzothiazole tricycle in I is essentially planar (r.m.s. deviation is 0.021Å). The terminal phenyl ring and nitro–group are twisted at 9.06 (1) and 11.02 (4)°, respectively, from the mean plane of the tricycle.

In the crystal, the molecules of I are linked by the intermolecular π···π–stacking interactions into columns along [100] (Fig. 3). The molecules within the columns are arranged alternatively by their planar rotation of 180° (Fig. 3). The interplane distance between neighboring imidazo[2,1–b][1,3]benzothiazole planes is 3.370 (2)Å). Further the columns are bound to each other by the intermolecular secondary S9···O1i (3.1988 (11)Å) and S9···O2ii (2.9922 (10)Å) interactions into three–dimensional framework (Fig. 3). Symmetry codes: (i) x, y, 1+z; (ii) x, 1.5-y, 0.5-z.

Related literature top

For applications of imidazo[2,1–b][1,3]benzothiazoles, see: Ager et al. (1988); Sanfilippo et al. (1988); Barchéchath et al. (2005); Andreani et al. (2008); Chao et al. (2009); Kumbhare et al. (2011); Chandak et al. (2013). For the crystal structures of related compounds, see: Landreau et al. (2002); Adib et al. (2008); Fun, Asik et al. (2011); Fun, Hemamalini et al. (2011); Ghabbour et al. (2012); Bunev et al. (2013).

Experimental top

The mixture of 6–nitrobenzothiazol–2–amine (1.95 g, 10 mmol) and 2–bromo–1–phenylethanone (1.99 g, 10 mmol) was dissolved in ethanole (40 ml). The reaction mixture was heated under reflux for 8 h. The resulting precipitate was collected after cooling to room temperature and dissolved in DMF (20 ml). The warm solution basified with 20% NH4OH (20 ml) yielded the expected imidazo[2,1–b][1,3]benzothiazole I after cooling at room temperature. The basified solution was extracted with CH2Cl2 (3×50 ml), the organic phase was dried (Na2SO4) and evaporated in vacuo. The residue crystallized from DMF. Yield is 82%. The single–crystal of the product I was obtained by slow crystallization from DMF. M.p. = 539–541 K. IR (KBr), ν/cm-1: 3131, 3073, 1580, 1523, 1501, 1337, 1144, 815, 714. 1H NMR (500 MHz, DMSO–d6, 304 K): 7.36–7.29 (m, 3H, CH), 7.95 (d, 1H, J = 8.9, CH), 8.18 (c, 1H, CH), 8.30 (d, 1H, J = 8.9, CH), 8.54 (dd, 2H, J = 2.2, CH). Anal. Calcd for C15H9N3O2S: C, 61.01; H, 3.07. Found: C, 61.10; H, 3.12.

Refinement top

All hydrogen atoms were placed in the calculated positions with C—H = 0.95Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C)].

Structure description top

Imidazo[2,1–b][1,3]benzothiazole are of great interest due to their biological properties. These compounds and their derivatives demonstrate the antitumor (Andreani et al., 2008), antiallergic (Ager et al., 1988), anesthetic (Sanfilippo et al., 1988) and anticancer (Kumbhare et al., 2011) activities as well as the inhibition activity of apoptosis in testiculargerm cells (Chandak et al., 2013), lymphocytes (Barchéchath et al., 2005), and FMS–like tyrosine kinase–3 (FLT3) (Chao et al., 2009).

In this work, a 7–nitro–2–phenylimidazo[2,1–b][1,3]benzothiazole, C15H9N3O2S, (I) was prepared by the reaction of 2–amino–6–nitro–1,3–benzothiazole with 2–bromo–1–phenylethanone (Fig. 1), and its structure was unambiguously established by the X–ray diffraction study (Fig. 2).

The bond lengths and angles within the molecule of I are in a good agreement with those found in the related compounds (Landreau et al., 2002; Adib et al., 2008; Fun, Asik et al., 2011; Fun, Hemamalini et al., 2011; Ghabbour et al., 2012; Bunev et al., 2013). The central imidazo[2,1–b][1,3]benzothiazole tricycle in I is essentially planar (r.m.s. deviation is 0.021Å). The terminal phenyl ring and nitro–group are twisted at 9.06 (1) and 11.02 (4)°, respectively, from the mean plane of the tricycle.

In the crystal, the molecules of I are linked by the intermolecular π···π–stacking interactions into columns along [100] (Fig. 3). The molecules within the columns are arranged alternatively by their planar rotation of 180° (Fig. 3). The interplane distance between neighboring imidazo[2,1–b][1,3]benzothiazole planes is 3.370 (2)Å). Further the columns are bound to each other by the intermolecular secondary S9···O1i (3.1988 (11)Å) and S9···O2ii (2.9922 (10)Å) interactions into three–dimensional framework (Fig. 3). Symmetry codes: (i) x, y, 1+z; (ii) x, 1.5-y, 0.5-z.

For applications of imidazo[2,1–b][1,3]benzothiazoles, see: Ager et al. (1988); Sanfilippo et al. (1988); Barchéchath et al. (2005); Andreani et al. (2008); Chao et al. (2009); Kumbhare et al. (2011); Chandak et al. (2013). For the crystal structures of related compounds, see: Landreau et al. (2002); Adib et al. (2008); Fun, Asik et al. (2011); Fun, Hemamalini et al. (2011); Ghabbour et al. (2012); Bunev et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis of 7-nitro-2-phenylimidazo[2,1-b][1,3]benzothiazole.
[Figure 2] Fig. 2. Molecular structure with the atom numbering scheme of I. Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as a small spheres of arbitrary radius.
[Figure 3] Fig. 3. The crystal packing of I demonstrating the columns along the a axis. Dashed lines indicate the intermolecular secondary S···O interactions.
7-Nitro-2-phenylimidazo[2,1-b][1,3]benzothiazole top
Crystal data top
C15H9N3O2SF(000) = 608
Mr = 295.32Dx = 1.565 Mg m3
Monoclinic, P21/cMelting point = 539–541 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.8068 (3) ÅCell parameters from 6622 reflections
b = 21.0244 (9) Åθ = 2.5–32.7°
c = 9.0699 (4) ŵ = 0.27 mm1
β = 105.077 (1)°T = 120 K
V = 1253.30 (9) Å3Prism, yellow
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4586 independent reflections
Radiation source: fine–focus sealed tube3740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 32.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.924, Tmax = 0.974k = 3130
19380 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.471P]
where P = (Fo2 + 2Fc2)/3
4586 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C15H9N3O2SV = 1253.30 (9) Å3
Mr = 295.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8068 (3) ŵ = 0.27 mm1
b = 21.0244 (9) ÅT = 120 K
c = 9.0699 (4) Å0.30 × 0.10 × 0.10 mm
β = 105.077 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4586 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3740 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.974Rint = 0.041
19380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.54 e Å3
4586 reflectionsΔρmin = 0.38 e Å3
190 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28591 (16)0.51605 (5)0.71585 (12)0.01553 (19)
C20.28524 (17)0.45307 (5)0.66432 (13)0.0135 (2)
C30.25724 (17)0.45089 (5)0.50820 (14)0.0142 (2)
H30.25030.41420.44600.017*
N40.24150 (15)0.51394 (5)0.46181 (11)0.01305 (18)
C4A0.21228 (17)0.54833 (5)0.32729 (13)0.0128 (2)
C50.19297 (18)0.52421 (6)0.18123 (13)0.0145 (2)
H50.20350.47990.16470.017*
C60.15793 (18)0.56688 (6)0.06069 (13)0.0151 (2)
H60.14500.55220.04050.018*
C70.14192 (17)0.63163 (6)0.08972 (13)0.0141 (2)
N70.09229 (16)0.67506 (5)0.04063 (12)0.0179 (2)
O10.03830 (18)0.65210 (5)0.16990 (11)0.0285 (2)
O20.10321 (17)0.73262 (5)0.01562 (12)0.0264 (2)
C80.16850 (18)0.65707 (5)0.23520 (13)0.0147 (2)
H80.16210.70160.25140.018*
C8A0.20485 (17)0.61398 (6)0.35558 (13)0.0137 (2)
S90.23601 (5)0.631304 (14)0.55005 (3)0.01708 (8)
C9A0.25920 (18)0.55010 (6)0.59108 (13)0.0146 (2)
C100.31635 (17)0.39985 (5)0.77247 (13)0.0136 (2)
C110.37199 (18)0.41148 (6)0.92960 (14)0.0156 (2)
H110.38430.45400.96610.019*
C120.4096 (2)0.36113 (6)1.03320 (14)0.0191 (2)
H120.44740.36951.13980.023*
C130.3919 (2)0.29863 (6)0.98110 (15)0.0203 (2)
H130.42050.26441.05170.024*
C140.3318 (2)0.28656 (6)0.82445 (15)0.0202 (2)
H140.31630.24400.78840.024*
C150.29452 (19)0.33662 (6)0.72114 (14)0.0169 (2)
H150.25390.32800.61470.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0196 (5)0.0129 (4)0.0138 (4)0.0008 (3)0.0038 (4)0.0005 (3)
C20.0125 (5)0.0133 (5)0.0148 (5)0.0005 (4)0.0037 (4)0.0006 (4)
C30.0156 (5)0.0124 (5)0.0151 (5)0.0005 (4)0.0047 (4)0.0003 (4)
N40.0148 (4)0.0122 (4)0.0120 (4)0.0009 (3)0.0033 (3)0.0004 (3)
C4A0.0120 (5)0.0129 (5)0.0137 (5)0.0003 (4)0.0037 (4)0.0012 (4)
C50.0160 (5)0.0137 (5)0.0142 (5)0.0004 (4)0.0049 (4)0.0005 (4)
C60.0159 (5)0.0162 (5)0.0134 (5)0.0002 (4)0.0045 (4)0.0001 (4)
C70.0140 (5)0.0150 (5)0.0136 (5)0.0004 (4)0.0043 (4)0.0026 (4)
N70.0195 (5)0.0187 (5)0.0164 (5)0.0027 (4)0.0063 (4)0.0035 (4)
O10.0448 (6)0.0278 (5)0.0129 (4)0.0087 (5)0.0076 (4)0.0022 (4)
O20.0387 (6)0.0155 (4)0.0248 (5)0.0007 (4)0.0076 (4)0.0058 (4)
C80.0159 (5)0.0131 (5)0.0157 (5)0.0003 (4)0.0053 (4)0.0008 (4)
C8A0.0146 (5)0.0132 (5)0.0131 (5)0.0002 (4)0.0033 (4)0.0002 (4)
S90.02653 (16)0.01152 (13)0.01288 (13)0.00037 (10)0.00455 (11)0.00043 (9)
C9A0.0173 (5)0.0131 (5)0.0132 (5)0.0002 (4)0.0036 (4)0.0010 (4)
C100.0127 (5)0.0134 (5)0.0152 (5)0.0008 (4)0.0044 (4)0.0020 (4)
C110.0165 (5)0.0160 (5)0.0146 (5)0.0011 (4)0.0044 (4)0.0010 (4)
C120.0205 (6)0.0218 (6)0.0153 (5)0.0011 (4)0.0050 (4)0.0032 (4)
C130.0234 (6)0.0180 (5)0.0209 (6)0.0008 (4)0.0083 (5)0.0068 (4)
C140.0264 (6)0.0142 (5)0.0217 (6)0.0009 (4)0.0090 (5)0.0022 (4)
C150.0203 (5)0.0144 (5)0.0164 (5)0.0016 (4)0.0056 (4)0.0009 (4)
Geometric parameters (Å, º) top
N1—C9A1.3112 (15)N7—O11.2323 (15)
N1—C21.4038 (15)C8—C8A1.3905 (16)
C2—C31.3795 (16)C8—H80.9500
C2—C101.4666 (16)C8A—S91.7590 (12)
C3—N41.3865 (15)S9—C9A1.7457 (12)
C3—H30.9500C10—C111.3977 (16)
N4—C9A1.3761 (15)C10—C151.4034 (16)
N4—C4A1.3873 (14)C11—C121.3942 (17)
C4A—C51.3924 (16)C11—H110.9500
C4A—C8A1.4073 (16)C12—C131.3909 (19)
C5—C61.3861 (16)C12—H120.9500
C5—H50.9500C13—C141.3957 (19)
C6—C71.3962 (17)C13—H130.9500
C6—H60.9500C14—C151.3880 (17)
C7—C81.3913 (16)C14—H140.9500
C7—N71.4621 (15)C15—H150.9500
N7—O21.2298 (15)
C9A—N1—C2103.89 (10)C7—C8—H8121.7
C3—C2—N1111.14 (10)C8—C8A—C4A120.22 (11)
C3—C2—C10128.20 (11)C8—C8A—S9127.08 (9)
N1—C2—C10120.64 (10)C4A—C8A—S9112.66 (9)
C2—C3—N4105.00 (10)C9A—S9—C8A89.54 (5)
C2—C3—H3127.5N1—C9A—N4113.29 (10)
N4—C3—H3127.5N1—C9A—S9134.63 (9)
C9A—N4—C3106.68 (10)N4—C9A—S9112.07 (8)
C9A—N4—C4A114.97 (10)C11—C10—C15118.77 (11)
C3—N4—C4A138.35 (10)C11—C10—C2120.14 (10)
N4—C4A—C5127.12 (10)C15—C10—C2121.09 (11)
N4—C4A—C8A110.77 (10)C12—C11—C10120.52 (11)
C5—C4A—C8A122.12 (10)C12—C11—H11119.7
C6—C5—C4A117.98 (11)C10—C11—H11119.7
C6—C5—H5121.0C13—C12—C11120.25 (12)
C4A—C5—H5121.0C13—C12—H12119.9
C5—C6—C7119.22 (11)C11—C12—H12119.9
C5—C6—H6120.4C12—C13—C14119.61 (12)
C7—C6—H6120.4C12—C13—H13120.2
C8—C7—C6123.81 (11)C14—C13—H13120.2
C8—C7—N7118.19 (10)C15—C14—C13120.21 (12)
C6—C7—N7118.00 (10)C15—C14—H14119.9
O2—N7—O1123.34 (11)C13—C14—H14119.9
O2—N7—C7118.37 (11)C14—C15—C10120.61 (11)
O1—N7—C7118.28 (11)C14—C15—H15119.7
C8A—C8—C7116.54 (11)C10—C15—H15119.7
C8A—C8—H8121.7
C9A—N1—C2—C30.18 (13)N4—C4A—C8A—S90.33 (12)
C9A—N1—C2—C10178.54 (10)C5—C4A—C8A—S9179.35 (9)
N1—C2—C3—N40.39 (13)C8—C8A—S9—C9A177.73 (11)
C10—C2—C3—N4178.21 (11)C4A—C8A—S9—C9A0.12 (9)
C2—C3—N4—C9A0.43 (12)C2—N1—C9A—N40.11 (14)
C2—C3—N4—C4A179.63 (13)C2—N1—C9A—S9178.45 (11)
C9A—N4—C4A—C5178.88 (11)C3—N4—C9A—N10.36 (14)
C3—N4—C4A—C52.0 (2)C4A—N4—C9A—N1179.77 (10)
C9A—N4—C4A—C8A0.78 (14)C3—N4—C9A—S9178.54 (8)
C3—N4—C4A—C8A178.38 (13)C4A—N4—C9A—S90.88 (13)
N4—C4A—C5—C6177.96 (11)C8A—S9—C9A—N1179.12 (13)
C8A—C4A—C5—C62.41 (17)C8A—S9—C9A—N40.55 (9)
C4A—C5—C6—C70.48 (17)C3—C2—C10—C11170.54 (12)
C5—C6—C7—C83.11 (18)N1—C2—C10—C117.93 (17)
C5—C6—C7—N7176.24 (10)C3—C2—C10—C158.38 (18)
C8—C7—N7—O29.70 (17)N1—C2—C10—C15173.14 (11)
C6—C7—N7—O2170.91 (11)C15—C10—C11—C121.45 (17)
C8—C7—N7—O1169.09 (11)C2—C10—C11—C12177.50 (11)
C6—C7—N7—O110.30 (16)C10—C11—C12—C130.06 (19)
C6—C7—C8—C8A2.66 (17)C11—C12—C13—C141.4 (2)
N7—C7—C8—C8A176.69 (10)C12—C13—C14—C151.5 (2)
C7—C8—C8A—C4A0.31 (17)C13—C14—C15—C100.10 (19)
C7—C8—C8A—S9177.77 (9)C11—C10—C15—C141.37 (18)
N4—C4A—C8A—C8177.46 (10)C2—C10—C15—C14177.57 (11)
C5—C4A—C8A—C82.86 (17)

Experimental details

Crystal data
Chemical formulaC15H9N3O2S
Mr295.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.8068 (3), 21.0244 (9), 9.0699 (4)
β (°) 105.077 (1)
V3)1253.30 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.924, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
19380, 4586, 3740
Rint0.041
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.03
No. of reflections4586
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State program No. 3.1168.2011).

References

First citationAdib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941–2944.  Web of Science CSD CrossRef Google Scholar
First citationAger, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098–1115.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809–816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409–6422.  Web of Science PubMed Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunev, A. S., Sukhonosova, E. V., Syrazhetdinova, D. R., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2013). Acta Cryst. E69, o531.  CSD CrossRef IUCr Journals Google Scholar
First citationChandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203–208.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChao, Q., Sprankle, K. G., Grotzfeld, R. M., Lai, A. G., Carter, T. A., Velasco, A. M., Gunawardane, R. N., Cramer, M. D., Gardner, M. F., James, J., Zarrinkar, P. P., Patel, H. K. & Bhagwat, S. S. (2009). J. Med. Chem. 52, 7808–7816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265–o3266.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631–o1632.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258–4266.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLandreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741–745.  Web of Science CSD CrossRef Google Scholar
First citationSanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221–2227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o143-o144
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds