inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The mixed-metal tris­­(di­sulfide) thio­phosphate, KNb1.77Ta0.23PS10

aDivision of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 443-749, Republic of Korea
*Correspondence e-mail: hsyun@ajou.ac.kr

(Received 6 January 2014; accepted 9 January 2014; online 15 January 2014)

The title compound catena-poly[potassium [tri-μ-disulfido-μ-tetra­thiophos­pha­to-di[niobate(IV)/tantalate(IV)(0.885/0.115)]]], has been obtained through the reaction of the elements with KCl. The title compound is isostructural with KNb2PS10, with the Nb sites occupied by statistically disordered Nb (88.5%) and Ta (11.5%) atoms. The structure is composed of anionic 1[M2PS10] chains along [100] (M = Nb/Ta) and K+ ions. This chain is built up from distorted bicapped trigonal prisms [MS8] and [PS4] tetra­hedra. There are no inter­chain bonding inter­actions, except for electrostatic and van der Waals forces. The S22− and S2− anionic species and the M4+M4+ pair [MM = 2.8939 (3) Å] are observed. The classical charge balance is represented by [K+][M4+]2[PS43−][S22−]3.

Related literature

For the related mixed-metallic phase KNb1.75V0.25PS10, see: Yu & Yun (2011[Yu, J. & Yun, H. (2011). Acta Cryst. E67, i24.]). For related quaternary compounds, see: Goh et al. (2002[Goh, E., Kim, S. & Jung, D. (2002). J. Solid State Chem. 168, 119-125.]); Do & Yun (1996[Do, J. & Yun, H. (1996). Inorg. Chem. 35, 3729-3730.], 2009[Do, J. & Yun, H. (2009). Acta Cryst. E65, i56-i57.]); Kim & Yun (2002[Kim, C.-K. & Yun, H.-S. (2002). Acta Cryst. C58, i53-i54.]); Kwak et al. (2007[Kwak, J., Kim, C., Yun, H. & Do, J. (2007). Bull. Kor. Chem. Soc. 28, 701-704.]); Bang et al. (2008[Bang, H., Kim, Y., Kim, S. & Kim, S. (2008). J. Solid State Chem. 181, 1978-1802.]) and for quintenary compounds, see: Kwak & Yun (2008[Kwak, J. & Yun, H. (2008). Bull. Kor. Chem. Soc. 29, 273-275.]); Dong et al. (2005a[Dong, Y., Kim, S., Yun, H. & Lim, H. (2005a). Bull. Kor. Chem. Soc. 26(2), 309-311.],b[Dong, Y., Kim, S. & Yun, H. (2005b). Acta Cryst. C61, i25-i26.]). For Cs0.5Ag0.5Nb2PS10, see: Park & Yun (2010[Park, S. & Yun, H. (2010). Acta Cryst. E66, i51-i52.]). For a typical Nb4+—Nb4+ bond length, see: Angenault et al. (2000[Angenault, J., Cieren, X. & Quarton, M. (2000). J. Solid State Chem. 153, 55-65.]).

Experimental

Crystal data
  • KNb1.77Ta0.23PS10

  • Mr = 596.52

  • Orthorhombic, P c a 21

  • a = 13.0049 (3) Å

  • b = 7.5262 (2) Å

  • c = 13.3616 (3) Å

  • V = 1307.81 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.45 mm−1

  • T = 290 K

  • 0.32 × 0.06 × 0.04 mm

Data collection
  • Rigaku R-AXIS RAPID S diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.724, Tmax = 1.000

  • 12074 measured reflections

  • 2974 independent reflections

  • 2842 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.040

  • S = 1.08

  • 2974 reflections

  • 130 parameters

  • 1 restraint

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.64 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.102 (14)

Table 1
Selected bond lengths (Å)

Nb1/Ta1—S8i 2.4753 (10)
Nb1/Ta1—S7ii 2.4895 (9)
Nb1/Ta1—S2iii 2.5133 (10)
Nb1/Ta1—S9i 2.5255 (9)
Nb1/Ta1—S6i 2.5545 (9)
Nb1/Ta1—S10ii 2.5653 (8)
Nb1/Ta1—S1 2.5831 (9)
Nb1/Ta1—S4 2.6438 (8)
Nb2/Ta2—S9iv 2.4742 (9)
Nb2/Ta2—S2i 2.4805 (9)
Nb2/Ta2—S8iv 2.5185 (10)
Nb2/Ta2—S7 2.5513 (9)
Nb2/Ta2—S6i 2.5568 (9)
Nb2/Ta2—S10ii 2.5597 (8)
Nb2/Ta2—S5 2.5802 (8)
Nb2/Ta2—S4 2.6369 (8)
P—S3 1.9725 (14)
P—S5 2.0470 (14)
P—S1 2.0568 (13)
P—S4 2.0888 (14)
S2—S8ii 2.0302 (16)
S6—S10v 2.0568 (13)
S7—S9iv 2.0452 (15)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y, z]; (iii) [-x, -y, z-{\script{1\over 2}}]; (iv) [-x+1, -y, z-{\script{1\over 2}}]; (v) [-x+1, -y, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: locally modified version of ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

A number of monovalent metal Nb thiophosphates have been investigated. Among them are NaNb2PS10 (Goh et al., 2002), KNb2PS10 (Do & Yun, 1996), RbNb2PS10 (Kim & Yun, 2002), CsNb2PS10 (Kwak et al., 2007), TlNb2PS10 (Bang et al., 2008), Ag0.88Nb2PS10 (Do & Yun, 2009), K0.34Cu0.5Nb2PS10 (Kwak & Yun, 2008), K0.5Ag0.Nb2PS10 (Dong et al., 2005a), Rb0.38Ag0.5Nb2PS10 (Dong et al., 2005b), Cs0.5Ag0.5Nb2PS10 (Park & Yun, 2010), and KNb1.75V0.25PS10 (Yu & Yun, 2011). As a result of efforts to find new phases in this family, we have found a mixed-metallic phase,. In this paper we report the synthesis and structure of another mixed-metallic quintenary thiophosphate, KNb1.77Ta0.23PS10.

The structure of KNb1.77Ta0.23PS10 is isostructural with KNb2PS10 and mixed-metallic KNb1.75V0.25PS10. Detailed description of the structure is given previously (Do & Yun, 1996; Yu & Yun, 2011). The title compound is made up of the usual bicapped trigonal biprismatic [M2S12] unit (M=Nb/Ta) and the tetrahedral [PS4] group. The M sites are occupied by the statistically disordered Nb(88.5%) and Ta(11.5%) atoms. The bicapped biprismatic [M2S12] units and its neighboring tetrahedral [PS4] groups are given in Figure 1. These [M2S12] units are linked together to form the one-dimensional chains, 1[M2PS10-] by sharing the S22- prism edge.

The M atoms associate in pairs with M—M interactions alternating in the sequence of one short (2.8939 (3) Å) and one long (3.7670 (3) Å) distances. The short distance is typical of Nb4+—Nb4+ bonding interactions (Angenault et al., 2000). There are no interchain bonding interactions except the van der Waals forces and the K+ ions in this van der Waals gap stabilize the structure through the electrostatic interactions (Figure 2).

The structural studies of the three different crystals from the same reaction tube implied that the stoichiometry of each metal can vary, KNb2 - xTaxPS10, 0.18x0.26 and they seem to form a random substitutional solid solution. However Ta analogue of this phase, ATa2PS10 has never been synthsized and thus the maximum x should be small. Finally, the classical charge balance of this phase can be represented by [K+][M4+]2[PS43-][S22-]3.

Related literature top

For the related mixed-metallic phase KNb1.75V0.25PS10, see: Yu & Yun (2011). For related quaternary compounds, see: Goh et al. (2002); Do & Yun (1996, 2009); Kim & Yun (2002); Kwak et al. (2007); Bang et al. (2008) and for quintenary compounds, see: Kwak & Yun (2008); Dong et al. (2005a,b). For Cs0.5Ag0.5Nb2PS10, see: Park & Yun (2010). For a typical Nb4+—Nb4+ bond length, see: Angenault et al. (2000).

Experimental top

The title compound, KNb1.77Ta0.23PS10 was prepared by the reaction of the elemental with the use of the reactive alkali metal halides-flux technique. A combination of the pure elements, Nb powder (CERAC 99.8%), Ta powder (CERAC 99.9%), P powder(Aldrich 99.9%), and S powder (Aldrich 99.999%) were mixed in a fused silica tube in a molar ratio of Nb: Ta: P: S = 1:1:1:10 with KCl (CERAC 99.9%). The mass ratio of the reactants and the alkali metal halides flux was 1:1. The tube was evacuated to 0.133 Pa, sealed and heated gradually (70 K/h) to 1073 K, where it was kept for 72 h. The tube was cooled to 473 K at 6 K/h and then was quenched to room temperature. The excess halides were removed with distilled water and black needle-shaped single crystals were obtained. The crystals are stable in air and water. Qualitative analysis of these crystals using XRF showed the presence of K, Nb, Ta, P, and S.

Refinement top

The refinement of the model with occupational disorder on the M site caused significant decrease of the R-factor (wR2 = 0.042) in comparison if the full occupation by either metal had been considered (wR2 > 0.077). Also the displacement parameters in the disordered model became plausible. The disordered atoms were supposed to have the same displacement parameters. With the nonstoichiometric model, the parameter remained the same. The large anisotropic displacement parameters for alkali metals are also found in the related compounds such as KNb2PS10 (Do & Yun, 1996). The highest residual electron density is 0.40 Å from the M2 site and the deepest hole is 0.64 Å from the M1 site.

Structure description top

A number of monovalent metal Nb thiophosphates have been investigated. Among them are NaNb2PS10 (Goh et al., 2002), KNb2PS10 (Do & Yun, 1996), RbNb2PS10 (Kim & Yun, 2002), CsNb2PS10 (Kwak et al., 2007), TlNb2PS10 (Bang et al., 2008), Ag0.88Nb2PS10 (Do & Yun, 2009), K0.34Cu0.5Nb2PS10 (Kwak & Yun, 2008), K0.5Ag0.Nb2PS10 (Dong et al., 2005a), Rb0.38Ag0.5Nb2PS10 (Dong et al., 2005b), Cs0.5Ag0.5Nb2PS10 (Park & Yun, 2010), and KNb1.75V0.25PS10 (Yu & Yun, 2011). As a result of efforts to find new phases in this family, we have found a mixed-metallic phase,. In this paper we report the synthesis and structure of another mixed-metallic quintenary thiophosphate, KNb1.77Ta0.23PS10.

The structure of KNb1.77Ta0.23PS10 is isostructural with KNb2PS10 and mixed-metallic KNb1.75V0.25PS10. Detailed description of the structure is given previously (Do & Yun, 1996; Yu & Yun, 2011). The title compound is made up of the usual bicapped trigonal biprismatic [M2S12] unit (M=Nb/Ta) and the tetrahedral [PS4] group. The M sites are occupied by the statistically disordered Nb(88.5%) and Ta(11.5%) atoms. The bicapped biprismatic [M2S12] units and its neighboring tetrahedral [PS4] groups are given in Figure 1. These [M2S12] units are linked together to form the one-dimensional chains, 1[M2PS10-] by sharing the S22- prism edge.

The M atoms associate in pairs with M—M interactions alternating in the sequence of one short (2.8939 (3) Å) and one long (3.7670 (3) Å) distances. The short distance is typical of Nb4+—Nb4+ bonding interactions (Angenault et al., 2000). There are no interchain bonding interactions except the van der Waals forces and the K+ ions in this van der Waals gap stabilize the structure through the electrostatic interactions (Figure 2).

The structural studies of the three different crystals from the same reaction tube implied that the stoichiometry of each metal can vary, KNb2 - xTaxPS10, 0.18x0.26 and they seem to form a random substitutional solid solution. However Ta analogue of this phase, ATa2PS10 has never been synthsized and thus the maximum x should be small. Finally, the classical charge balance of this phase can be represented by [K+][M4+]2[PS43-][S22-]3.

For the related mixed-metallic phase KNb1.75V0.25PS10, see: Yu & Yun (2011). For related quaternary compounds, see: Goh et al. (2002); Do & Yun (1996, 2009); Kim & Yun (2002); Kwak et al. (2007); Bang et al. (2008) and for quintenary compounds, see: Kwak & Yun (2008); Dong et al. (2005a,b). For Cs0.5Ag0.5Nb2PS10, see: Park & Yun (2010). For a typical Nb4+—Nb4+ bond length, see: Angenault et al. (2000).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the bicapped trigonal biprismatic [M2S12] unit (M=Nb/Ta) and its neighboring tetrahedral [PS4] groups. Yellow circles are S atoms, blue circles are Nb atoms, pink and dark green circles are P and K atoms, respectively. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (v) 0.5 - x, y, -0.5 + z; (vi) -0.5 + x, -y, z; (viii) 1 - x, -y, -0.5 + z]
[Figure 2] Fig. 2. View of the KNb1.77Ta0.23PS10 down the b axis showing the one-dimensional nature of the compound. Atoms are as marked in Fig. 1.
catena-Poly[potassium [tri-µ-disulfido-µ-tetrathiophosphato-di[niobate(IV)/tantalate(IV)(0.885/0.115)]]] top
Crystal data top
KNb1.77Ta0.23PS10F(000) = 1133
Mr = 596.52Dx = 3.03 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 10926 reflections
a = 13.0049 (3) Åθ = 3.1–27.4°
b = 7.5262 (2) ŵ = 5.45 mm1
c = 13.3616 (3) ÅT = 290 K
V = 1307.81 (6) Å3Needle, black
Z = 40.32 × 0.06 × 0.04 mm
Data collection top
Rigaku R-AXIS RAPID S
diffractometer
2974 independent reflections
Radiation source: sealed X-ray tube2842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.724, Tmax = 1.000k = 99
12074 measured reflectionsl = 1717
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0132P)2 + 0.4965P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.001
wR(F2) = 0.040Δρmax = 0.40 e Å3
S = 1.08Δρmin = 0.64 e Å3
2974 reflectionsAbsolute structure: Flack (1983)
130 parametersAbsolute structure parameter: 0.102 (14)
Crystal data top
KNb1.77Ta0.23PS10V = 1307.81 (6) Å3
Mr = 596.52Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 13.0049 (3) ŵ = 5.45 mm1
b = 7.5262 (2) ÅT = 290 K
c = 13.3616 (3) Å0.32 × 0.06 × 0.04 mm
Data collection top
Rigaku R-AXIS RAPID S
diffractometer
2974 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2842 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 1.000Rint = 0.031
12074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0191 restraint
wR(F2) = 0.040Δρmax = 0.40 e Å3
S = 1.08Δρmin = 0.64 e Å3
2974 reflectionsAbsolute structure: Flack (1983)
130 parametersAbsolute structure parameter: 0.102 (14)
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
K0.38318 (10)0.50405 (16)0.30118 (10)0.0643 (3)
Nb10.024329 (14)0.05323 (3)0.03456 (2)0.01373 (8)0.8870 (16)
Ta10.024329 (14)0.05323 (3)0.03456 (2)0.01373 (8)0.1130 (16)
Nb20.313802 (14)0.07133 (3)0.03507 (2)0.01349 (8)0.8848 (16)
Ta20.313802 (14)0.07133 (3)0.03507 (2)0.01349 (8)0.1152 (16)
P0.16059 (6)0.40111 (13)0.11222 (8)0.02029 (19)
S10.03152 (5)0.39563 (11)0.02331 (9)0.0241 (2)
S20.05537 (7)0.15129 (15)0.40771 (7)0.0231 (2)
S30.15181 (9)0.58446 (14)0.21735 (9)0.0393 (3)
S40.16755 (6)0.14082 (12)0.16603 (6)0.01689 (19)
S50.29233 (6)0.41195 (10)0.02861 (11)0.0285 (2)
S60.33066 (6)0.05475 (12)0.40561 (7)0.0189 (2)
S70.44837 (7)0.13315 (14)0.16957 (6)0.0207 (2)
S80.60107 (7)0.10612 (14)0.39842 (7)0.0235 (2)
S90.60965 (7)0.11936 (13)0.66622 (6)0.0201 (2)
S100.67408 (5)0.16023 (11)0.00053 (6)0.01866 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K0.0846 (8)0.0454 (7)0.0629 (8)0.0038 (6)0.0317 (7)0.0034 (6)
Nb10.00877 (11)0.01781 (13)0.01460 (12)0.00086 (7)0.00002 (16)0.00118 (14)
Ta10.00877 (11)0.01781 (13)0.01460 (12)0.00086 (7)0.00002 (16)0.00118 (14)
Nb20.00838 (11)0.01692 (13)0.01516 (12)0.00106 (7)0.00005 (15)0.00009 (14)
Ta20.00838 (11)0.01692 (13)0.01516 (12)0.00106 (7)0.00005 (15)0.00009 (14)
P0.0158 (4)0.0172 (4)0.0279 (5)0.0018 (3)0.0010 (4)0.0027 (4)
S10.0156 (3)0.0208 (4)0.0359 (6)0.0022 (3)0.0026 (5)0.0045 (5)
S20.0139 (4)0.0342 (6)0.0213 (5)0.0031 (4)0.0019 (4)0.0071 (4)
S30.0450 (6)0.0281 (5)0.0449 (7)0.0070 (5)0.0044 (5)0.0179 (5)
S40.0138 (4)0.0200 (5)0.0169 (4)0.0004 (3)0.0002 (3)0.0011 (4)
S50.0160 (3)0.0192 (4)0.0503 (6)0.0005 (3)0.0068 (6)0.0056 (6)
S60.0125 (4)0.0275 (5)0.0166 (4)0.0000 (3)0.0002 (3)0.0027 (4)
S70.0168 (4)0.0267 (5)0.0185 (5)0.0007 (4)0.0008 (4)0.0050 (4)
S80.0150 (4)0.0354 (6)0.0202 (5)0.0047 (4)0.0029 (4)0.0084 (5)
S90.0166 (4)0.0253 (5)0.0183 (5)0.0017 (4)0.0009 (4)0.0033 (4)
S100.0152 (4)0.0169 (4)0.0239 (4)0.0001 (3)0.0012 (3)0.0018 (3)
Geometric parameters (Å, º) top
K—S33.2671 (16)S2—S8vi2.0302 (16)
K—S1i3.2720 (16)S2—Ta2i2.4805 (9)
K—S9ii3.3606 (15)S2—Nb2i2.4805 (9)
K—S73.4064 (16)S2—Nb1x2.5133 (10)
K—S2iii3.7107 (16)S2—Ta1x2.5133 (10)
K—S63.7213 (15)S2—Kxi3.7107 (16)
K—S3iii3.7288 (19)S3—Kxi3.7288 (19)
K—S10iv3.7461 (16)S6—S10xii2.0568 (13)
Nb1—S8v2.4753 (10)S6—Ta1i2.5545 (9)
Nb1—S7vi2.4895 (9)S6—Nb1i2.5545 (9)
Nb1—S2vii2.5133 (10)S6—Ta2i2.5568 (9)
Nb1—S9v2.5255 (9)S6—Nb2i2.5568 (9)
Nb1—S6v2.5545 (9)S7—S9viii2.0452 (15)
Nb1—S10vi2.5653 (8)S7—Ta1ix2.4895 (9)
Nb1—S12.5831 (9)S7—Nb1ix2.4895 (9)
Nb1—S42.6438 (8)S8—S2ix2.0302 (17)
Nb1—Nb2vi2.8939 (3)S8—Nb1i2.4753 (10)
Nb1—Ta2vi2.8939 (3)S8—Ta1i2.4753 (10)
Nb2—S9viii2.4742 (9)S8—Nb2xii2.5185 (10)
Nb2—S2v2.4805 (9)S8—Ta2xii2.5185 (10)
Nb2—S8viii2.5185 (10)S9—S7xii2.0452 (15)
Nb2—S72.5513 (9)S9—Ta2xii2.4742 (9)
Nb2—S6v2.5568 (9)S9—Nb2xii2.4742 (9)
Nb2—S10vi2.5597 (8)S9—Nb1i2.5255 (9)
Nb2—S52.5802 (8)S9—Ta1i2.5255 (9)
Nb2—S42.6369 (8)S9—Kiv3.3606 (15)
Nb2—Ta1ix2.8939 (3)S10—S6viii2.0568 (13)
Nb2—Nb1ix2.8939 (3)S10—Ta2ix2.5597 (8)
P—S31.9725 (14)S10—Nb2ix2.5597 (8)
P—S52.0470 (14)S10—Nb1ix2.5653 (8)
P—S12.0568 (13)S10—Ta1ix2.5653 (8)
P—S42.0888 (14)S10—Kii3.7461 (16)
S1—Kv3.2720 (16)
S3—K—S1i132.02 (6)S5—Nb2—Ta1ix115.097 (18)
S3—K—S9ii71.66 (3)S4—Nb2—Ta1ix138.44 (2)
S1i—K—S9ii133.45 (4)S9viii—Nb2—Nb1ix55.46 (2)
S3—K—S7101.77 (4)S2v—Nb2—Nb1ix55.12 (2)
S1i—K—S7100.34 (4)S8viii—Nb2—Nb1ix53.89 (2)
S9ii—K—S7114.03 (5)S7—Nb2—Nb1ix53.97 (2)
S3—K—S2iii123.90 (4)S6v—Nb2—Nb1ix132.67 (2)
S1i—K—S2iii67.78 (3)S10vi—Nb2—Nb1ix116.78 (2)
S9ii—K—S2iii66.39 (3)S5—Nb2—Nb1ix115.097 (18)
S7—K—S2iii128.37 (5)S4—Nb2—Nb1ix138.44 (2)
S3—K—S697.35 (4)Ta1ix—Nb2—Nb1ix0.000 (14)
S1i—K—S659.70 (3)S3—P—S5114.15 (6)
S9ii—K—S6166.57 (4)S3—P—S1112.22 (6)
S7—K—S659.64 (3)S5—P—S1111.63 (7)
S2iii—K—S6127.02 (4)S3—P—S4114.42 (7)
S3—K—S3iii142.46 (6)S5—P—S4100.89 (5)
S1i—K—S3iii84.85 (3)S1—P—S4102.44 (5)
S9ii—K—S3iii87.91 (4)P—S1—Nb190.91 (4)
S7—K—S3iii57.68 (3)P—S1—Kv104.02 (5)
S2iii—K—S3iii71.02 (3)Nb1—S1—Kv108.29 (4)
S6—K—S3iii97.02 (4)S8vi—S2—Ta2i67.02 (4)
S3—K—S10iv86.32 (4)S8vi—S2—Nb2i67.02 (4)
S1i—K—S10iv65.83 (3)Ta2i—S2—Nb2i0.000 (15)
S9ii—K—S10iv79.53 (3)S8vi—S2—Nb1x65.01 (4)
S7—K—S10iv165.76 (4)Ta2i—S2—Nb1x70.83 (3)
S2iii—K—S10iv51.37 (3)Nb2i—S2—Nb1x70.83 (3)
S6—K—S10iv108.05 (4)S8vi—S2—Ta1x65.01 (4)
S3iii—K—S10iv121.36 (4)Ta2i—S2—Ta1x70.83 (3)
S8v—Nb1—S7vi111.20 (3)Nb2i—S2—Ta1x70.83 (3)
S8v—Nb1—S2vii48.02 (4)Nb1x—S2—Ta1x0.000 (11)
S7vi—Nb1—S2vii88.85 (3)S8vi—S2—Kxi145.11 (5)
S8v—Nb1—S9v91.47 (3)Ta2i—S2—Kxi147.85 (4)
S7vi—Nb1—S9v48.13 (3)Nb2i—S2—Kxi147.85 (4)
S2vii—Nb1—S9v107.82 (3)Nb1x—S2—Kxi115.97 (4)
S8v—Nb1—S6v89.43 (3)Ta1x—S2—Kxi115.97 (4)
S7vi—Nb1—S6v141.65 (3)P—S3—K93.51 (5)
S2vii—Nb1—S6v81.51 (3)P—S3—Kxi98.23 (5)
S9v—Nb1—S6v168.03 (3)K—S3—Kxi136.62 (6)
S8v—Nb1—S10vi118.08 (3)P—S4—Nb289.36 (4)
S7vi—Nb1—S10vi94.41 (3)P—S4—Nb188.54 (4)
S2vii—Nb1—S10vi79.05 (3)Nb2—S4—Nb191.02 (3)
S9v—Nb1—S10vi140.41 (3)P—S5—Nb291.88 (4)
S6v—Nb1—S10vi47.37 (3)S10xii—S6—Ta1i66.59 (3)
S8v—Nb1—S179.67 (3)S10xii—S6—Nb1i66.59 (3)
S7vi—Nb1—S1128.22 (3)Ta1i—S6—Nb1i0.000 (13)
S2vii—Nb1—S1125.92 (3)S10xii—S6—Ta2i66.37 (3)
S9v—Nb1—S182.47 (3)Ta1i—S6—Ta2i94.95 (3)
S6v—Nb1—S185.96 (3)Nb1i—S6—Ta2i94.95 (3)
S10vi—Nb1—S1125.95 (3)S10xii—S6—Nb2i66.37 (3)
S8v—Nb1—S4155.83 (3)Ta1i—S6—Nb2i94.95 (3)
S7vi—Nb1—S486.48 (3)Nb1i—S6—Nb2i94.95 (3)
S2vii—Nb1—S4153.05 (3)Ta2i—S6—Nb2i0.000 (6)
S9v—Nb1—S488.51 (3)S10xii—S6—K162.09 (5)
S6v—Nb1—S485.81 (3)Ta1i—S6—K96.98 (3)
S10vi—Nb1—S474.88 (3)Nb1i—S6—K96.98 (3)
S1—Nb1—S476.37 (3)Ta2i—S6—K110.13 (4)
S8v—Nb1—Nb2vi55.28 (2)Nb2i—S6—K110.13 (4)
S7vi—Nb1—Nb2vi55.97 (2)S9viii—S7—Ta1ix66.86 (4)
S2vii—Nb1—Nb2vi54.06 (2)S9viii—S7—Nb1ix66.86 (4)
S9v—Nb1—Nb2vi53.81 (2)Ta1ix—S7—Nb1ix0.000 (14)
S6v—Nb1—Nb2vi134.55 (2)S9viii—S7—Nb264.03 (3)
S10vi—Nb1—Nb2vi121.05 (2)Ta1ix—S7—Nb270.06 (2)
S1—Nb1—Nb2vi110.949 (17)Nb1ix—S7—Nb270.06 (2)
S4—Nb1—Nb2vi138.22 (2)S9viii—S7—K132.92 (5)
S8v—Nb1—Ta2vi55.28 (2)Ta1ix—S7—K159.16 (5)
S7vi—Nb1—Ta2vi55.97 (2)Nb1ix—S7—K159.16 (5)
S2vii—Nb1—Ta2vi54.06 (2)Nb2—S7—K110.02 (4)
S9v—Nb1—Ta2vi53.81 (2)S2ix—S8—Nb1i66.97 (4)
S6v—Nb1—Ta2vi134.55 (2)S2ix—S8—Ta1i66.97 (4)
S10vi—Nb1—Ta2vi121.05 (2)Nb1i—S8—Ta1i0.000 (12)
S1—Nb1—Ta2vi110.949 (17)S2ix—S8—Nb2xii65.06 (4)
S4—Nb1—Ta2vi138.22 (2)Nb1i—S8—Nb2xii70.83 (3)
Nb2vi—Nb1—Ta2vi0.000 (16)Ta1i—S8—Nb2xii70.83 (3)
S9viii—Nb2—S2v110.53 (3)S2ix—S8—Ta2xii65.06 (4)
S9viii—Nb2—S8viii91.66 (3)Nb1i—S8—Ta2xii70.83 (3)
S2v—Nb2—S8viii47.92 (4)Ta1i—S8—Ta2xii70.83 (3)
S9viii—Nb2—S748.00 (3)Nb2xii—S8—Ta2xii0.000 (13)
S2v—Nb2—S788.20 (2)S7xii—S9—Ta2xii67.97 (4)
S8viii—Nb2—S7107.81 (3)S7xii—S9—Nb2xii67.97 (4)
S9viii—Nb2—S6v138.29 (3)Ta2xii—S9—Nb2xii0.000 (13)
S2v—Nb2—S6v92.96 (3)S7xii—S9—Nb1i65.01 (3)
S8viii—Nb2—S6v78.85 (3)Ta2xii—S9—Nb1i70.73 (2)
S7—Nb2—S6v171.69 (3)Nb2xii—S9—Nb1i70.73 (2)
S9viii—Nb2—S10vi91.05 (3)S7xii—S9—Ta1i65.01 (3)
S2v—Nb2—S10vi121.90 (3)Ta2xii—S9—Ta1i70.73 (2)
S8viii—Nb2—S10vi79.64 (3)Nb2xii—S9—Ta1i70.73 (2)
S7—Nb2—S10vi137.57 (3)Nb1i—S9—Ta1i0.000 (11)
S6v—Nb2—S10vi47.41 (3)S7xii—S9—Kiv141.46 (5)
S9viii—Nb2—S5130.06 (4)Ta2xii—S9—Kiv149.10 (4)
S2v—Nb2—S579.06 (4)Nb2xii—S9—Kiv149.10 (4)
S8viii—Nb2—S5123.38 (4)Nb1i—S9—Kiv124.00 (4)
S7—Nb2—S585.22 (4)Ta1i—S9—Kiv124.00 (4)
S6v—Nb2—S586.92 (3)S6viii—S10—Ta2ix66.22 (3)
S10vi—Nb2—S5126.41 (3)S6viii—S10—Nb2ix66.22 (3)
S9viii—Nb2—S486.29 (3)Ta2ix—S10—Nb2ix0.000 (17)
S2v—Nb2—S4154.41 (3)S6viii—S10—Nb1ix66.04 (3)
S8viii—Nb2—S4154.60 (3)Ta2ix—S10—Nb1ix94.62 (3)
S7—Nb2—S489.49 (3)Nb2ix—S10—Nb1ix94.62 (3)
S6v—Nb2—S485.91 (3)S6viii—S10—Ta1ix66.04 (3)
S10vi—Nb2—S475.09 (3)Ta2ix—S10—Ta1ix94.62 (3)
S5—Nb2—S475.35 (3)Nb2ix—S10—Ta1ix94.62 (3)
S9viii—Nb2—Ta1ix55.46 (2)Nb1ix—S10—Ta1ix0.000 (16)
S2v—Nb2—Ta1ix55.12 (2)S6viii—S10—Kii94.94 (4)
S8viii—Nb2—Ta1ix53.89 (2)Ta2ix—S10—Kii136.76 (3)
S7—Nb2—Ta1ix53.97 (2)Nb2ix—S10—Kii136.76 (3)
S6v—Nb2—Ta1ix132.67 (2)Nb1ix—S10—Kii113.42 (3)
S10vi—Nb2—Ta1ix116.78 (2)Ta1ix—S10—Kii113.42 (3)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y+1, z1/2; (iii) x+1/2, y+1, z; (iv) x+1, y+1, z+1/2; (v) x+1/2, y, z1/2; (vi) x1/2, y, z; (vii) x, y, z1/2; (viii) x+1, y, z1/2; (ix) x+1/2, y, z; (x) x, y, z+1/2; (xi) x1/2, y+1, z; (xii) x+1, y, z+1/2.
Selected bond lengths (Å) top
Nb1—S8i2.4753 (10)Nb2—S6i2.5568 (9)
Nb1—S7ii2.4895 (9)Nb2—S10ii2.5597 (8)
Nb1—S2iii2.5133 (10)Nb2—S52.5802 (8)
Nb1—S9i2.5255 (9)Nb2—S42.6369 (8)
Nb1—S6i2.5545 (9)Nb2—Ta1v2.8939 (3)
Nb1—S10ii2.5653 (8)Nb2—Nb1v2.8939 (3)
Nb1—S12.5831 (9)P—S31.9725 (14)
Nb1—S42.6438 (8)P—S52.0470 (14)
Nb1—Nb2ii2.8939 (3)P—S12.0568 (13)
Nb1—Ta2ii2.8939 (3)P—S42.0888 (14)
Nb2—S9iv2.4742 (9)S2—S8ii2.0302 (16)
Nb2—S2i2.4805 (9)S6—S10vi2.0568 (13)
Nb2—S8iv2.5185 (10)S7—S9iv2.0452 (15)
Nb2—S72.5513 (9)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x1/2, y, z; (iii) x, y, z1/2; (iv) x+1, y, z1/2; (v) x+1/2, y, z; (vi) x+1, y, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant No. 2011–0011309).

References

First citationAngenault, J., Cieren, X. & Quarton, M. (2000). J. Solid State Chem. 153, 55–65.  Web of Science CrossRef CAS Google Scholar
First citationBang, H., Kim, Y., Kim, S. & Kim, S. (2008). J. Solid State Chem. 181, 1978–1802.  Web of Science CrossRef Google Scholar
First citationDo, J. & Yun, H. (1996). Inorg. Chem. 35, 3729–3730.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDo, J. & Yun, H. (2009). Acta Cryst. E65, i56–i57.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, Y., Kim, S. & Yun, H. (2005b). Acta Cryst. C61, i25–i26.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, Y., Kim, S., Yun, H. & Lim, H. (2005a). Bull. Kor. Chem. Soc. 26(2), 309–311.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, E., Kim, S. & Jung, D. (2002). J. Solid State Chem. 168, 119–125.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKim, C.-K. & Yun, H.-S. (2002). Acta Cryst. C58, i53–i54.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKwak, J., Kim, C., Yun, H. & Do, J. (2007). Bull. Kor. Chem. Soc. 28, 701–704.  CAS Google Scholar
First citationKwak, J. & Yun, H. (2008). Bull. Kor. Chem. Soc. 29, 273–275.  CAS Google Scholar
First citationPark, S. & Yun, H. (2010). Acta Cryst. E66, i51–i52.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J. & Yun, H. (2011). Acta Cryst. E67, i24.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds